CN112892485B - 一种土壤气被动采样用吸附剂及其制备和使用方法 - Google Patents

一种土壤气被动采样用吸附剂及其制备和使用方法 Download PDF

Info

Publication number
CN112892485B
CN112892485B CN202011610104.6A CN202011610104A CN112892485B CN 112892485 B CN112892485 B CN 112892485B CN 202011610104 A CN202011610104 A CN 202011610104A CN 112892485 B CN112892485 B CN 112892485B
Authority
CN
China
Prior art keywords
mil
sampling
adsorbent
soil gas
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011610104.6A
Other languages
English (en)
Other versions
CN112892485A (zh
Inventor
周友亚
郭晓欣
张超艳
张蒙蒙
李卫东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Center Of Soil And Agricultural Rural Ecological Environment Supervision Ministry Of Ecological Environment
Original Assignee
Technical Center Of Soil And Agricultural Rural Ecological Environment Supervision Ministry Of Ecological Environment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Center Of Soil And Agricultural Rural Ecological Environment Supervision Ministry Of Ecological Environment filed Critical Technical Center Of Soil And Agricultural Rural Ecological Environment Supervision Ministry Of Ecological Environment
Priority to CN202011610104.6A priority Critical patent/CN112892485B/zh
Publication of CN112892485A publication Critical patent/CN112892485A/zh
Application granted granted Critical
Publication of CN112892485B publication Critical patent/CN112892485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2294Sampling soil gases or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

本发明涉及一种包含有机材料的固体吸附剂组合物,公开了一种土壤气被动采样用吸附剂及其制备和使用方法。本发明中,发明人经长期研究发现,实际使用中,现有的各种吸附剂,在用于湿润土壤的土壤气采样时都会吸附并储存一定的水分,但仍可正常使用;但MIL‑101(Cr)较为特殊,水分会严重抑制MIL‑101(Cr)对VOC的吸附,导致其在湿润土壤上采样时效果不理想。根据这一结论,发明人对MIL‑101(Cr)晶体表面及内部的微孔壁面进行了疏水化处理,克服了水分对MIL‑101(Cr)吸附能力的影响,使之能够进行湿润土壤的土壤气采样;且MIL‑101(Cr)强度及稳定性均高,微孔不易堵塞,也不易因无法回收的质量损失而影响测量结果,还可以在将挥发性有机污染物解吸出去的同时保持自身结构的稳定性,多次使用。

Description

一种土壤气被动采样用吸附剂及其制备和使用方法
技术领域
本发明涉及一种包含有机材料的固体吸附剂组合物,特别是涉及一种土壤气被动采样用吸附剂及其制备和使用方法。
背景技术
土壤气,属表层沉积物中的气体,按存在环境有土壤及底土中气体、沼泽与泥炭中气体、海底沉积物中气体等,在环境科学领域一般指的是土壤间隙中的气体。土壤污染物中的VOC(挥发性有机物)在从土壤中逸出到大气中前,会先进入土壤气,因此通过测量土壤气中的VOC挥发通量,可计算土壤中的VOC所造成的健康风险。
测量土壤气中的VOC挥发通量,需要对土壤气进行采样。采样方法分主动采样和被动采样两类。主动采样,即主动抽取土壤气进行分析,采样时间相对较短,适用于大体积采样,但在低渗透性、高含水率的污染场地中,由于抽气困难,难以应用。被动采样,也即采集土壤挥发出的物质进行分析,用时较长,但能很好反映VOC在长时间内的逸出量,用于计算VOC所造成的健康风险时更为准确。
土壤气被动采样方法,根据采集土壤气的载体的不同,主要分采样袋法、采样罐法、吸附剂采样法三种。采样袋极易受到污染,只适用于严重污染的气体检测。采样罐使用前需用商业化的清洗仪清洗,价格昂贵。因此吸附剂法是目前应用最为广泛的土壤气被动采样方法,且吸附剂的吸附能力越强,测量结果越准确。
目前吸附剂法进行土壤气采样时,最常用的吸附剂为活性炭,活性炭为多孔材料,有着巨大的比表面积,主要依靠微孔填充进行吸附。但活性炭本质上是一种石墨,依靠石墨烯层间的范德华力维持形体,强度很低,其用于内扩散的大孔容易被破碎的微粒堵塞;与其它物体接触时,还容易因留在其它物体表面的划痕/微尘而损失质量,这部分损失的质量难以回收,影响测量结果。
MIL-101(Cr),是配位金属为Cr、配体为对苯二甲酸的、CAS号为869288-09-5的MOF(金属有机骨架材料),有着很高的强度和很好的稳定性,含有巨量不易堵塞的微孔,其比表面积大于活性炭,实验室中测得其对VOC的吸附能力也好于活性炭(环境科学研究,2018,31(6):1129-1137),但在实际使用中,其吸附能力存在波动。
发明内容
本发明提供一种土壤气被动采样用吸附剂及其制备和使用方法。
解决的技术问题是:使用活性炭作为吸附剂进行土壤气被动采样时,会因为活性炭的内扩散孔道堵塞以及难以回收的质量损失而造成结果不准。
为解决上述技术问题,本发明采用如下技术方案:一种土壤气被动采样用吸附剂,所述吸附剂为为表面及微孔壁面经疏水改性的MIL-101(Cr)晶体。
进一步,所述土壤气被动采样用吸附剂为表面及微孔壁面带有疏水基团的MIL-101(Cr)晶体。
进一步,所述疏水基团为碳原子数不少于10个的烷基、或碳原子数不少于4个的环烷基。
进一步,所述疏水基团为芳烃基。
进一步,所述疏水基团为苯基。
一种吸附剂的制备方法,用于制备上述的一种土壤气被动采样用吸附剂,并包括以下步骤:
步骤一:制备干燥的MIL-101(Cr)晶体粉末;
步骤二:用溶于有机溶剂的疏水改性剂对步骤二制备的MIL-101(Cr)晶体粉末进行疏水改性;
步骤三:用有机溶剂洗涤步骤二制备的MIL-101(Cr)晶体粉末除去残留的疏水改性剂,然后干燥除去残留的有机溶剂。
进一步,步骤二采用苯基锂作为疏水改性剂,步骤二与步骤三中的有机溶剂均为正丁醚。
进一步,苯基锂的用量不超过步骤一制备的MIL-101(Cr)晶体粉末质量的十分之一,苯基锂溶于正丁醚后得到的溶液的浓度不超过0.5%wt,并在绝氧环境下逐滴加入步骤一制备的MIL-101(Cr)晶体粉末中进行反应。
进一步,步骤二中,苯基锂溶于正丁醚后得到的溶液滴加完毕后,在搅拌下反应至少6小时。
一种土壤气被动采样用吸附剂的使用方法,使用上述的一种土壤气被动采样用吸附剂,并包括以下步骤:
步骤A:将土壤气被动采样用吸附剂置于被动采样器中,将被动采样器置于通量测试仪中,将通量测试仪安装于采样点进行采样;
步骤B:取出步骤A的土壤气被动采样用吸附剂,分析并求取土壤气挥发通量;
步骤C:根据土壤气挥发通量评估测试点的未来人群的健康风险。
本发明一种土壤气被动采样用吸附剂及其制备和使用方法与现有技术相比,具有如下有益效果:
本发明中,发明人经长期研究发现,实际使用中,现有的各种吸附剂,包括活性炭,在用于湿润土壤的土壤气采样时都会吸附并储存一定的水分,但仍可正常使用,但MIL-101(Cr)较为特殊,水分会严重抑制MIL-101(Cr)对VOC的吸附,导致其在湿润土壤上采样时效果不理想。根据这一结论,发明人对MIL-101(Cr)晶体表面及内部的微孔壁面进行疏水化处理,克服了水分对MIL-101(Cr)吸附能力的影响,使之能够进行湿润土壤的土壤气采样;
本发明中采用的MIL-101(Cr)强度及稳定性均高,微孔不易堵塞,也不易因无法回收的质量损失而影响测量结果,还可以在将挥发性有机污染物解吸出去的同时保持自身结构的稳定性,多次使用。
具体实施方式
一种土壤气被动采样用吸附剂,用于土壤中进行土壤气采样,吸附剂为为表面及微孔壁面经疏水改性的MIL-101(Cr)晶体,具体为表面及微孔壁面带有疏水基团的MIL-101(Cr)晶体粉末。
疏水基团为碳原子数不少于10个的烷基、或碳原子数不少于4个的环烷基,或芳烃基。一般情况下,碳原子数越多,疏水基团的疏水效应越强,烷基作为疏水基团时(如洗涤剂),需要碳原子数不少于10个,所有环烷基的疏水效果都比较好,但环丙烷基非常不稳定,容易开环,因此需要碳原子数不少于4个。
本发明中,选取苯基作为疏水基团,苯基比较容易通过锂化试剂添加到MIL-101(Cr)晶体表面。此外,我们实验室模拟结果显示,环己烷基的疏水效果最好,但我们目前尚没能找到合适的方法将环己烷基加到MIL-101(Cr)晶体表面及微孔壁面。
上述的一种土壤气被动采样用吸附剂,制备过程包含以下步骤:
步骤一:制备干燥的MIL-101(Cr)晶体粉末;本实施例中制备过程具体如下:
称取1.66g的对苯二甲酸配体和4g九水硝酸铬装入100ml聚四氟乙烯内衬中,密封装入高压釜,再向其中加入125μL氢氟酸和为70mL的水,密封,然后超声振荡30min;
超声结束后,置于220℃烘箱内加热8h,然后降至室温。将得到的产物用水多次洗涤、离心,用无水甲醇浸泡10天,得到绿色粉末;
步骤二:用溶于有机溶剂的疏水改性剂对步骤二制备的MIL-101(Cr)晶体粉末进行疏水改性;本实施例中疏水改性过程具体如下:
在滴液漏斗中加入100ml无水正丁醚与2.64ml浓度为1.6mol/L的苯基锂溶液(溶剂为正丁醚,苯基锂试剂通常以溶于正丁醚的形式出售)并混匀;
向烧瓶中加入步骤一制备的绿色粉末、20ml无水正丁醚、以及磁力搅拌子,开启搅拌;
在氮气保护下,用不少于20分钟的时间将无水正丁醚稀释过的苯基锂溶液均匀滴入烧瓶,滴加完毕后,保持搅拌至少6小时,使微孔壁充分疏水化,得到墨绿色粉末;
注意,这里苯基锂的用量不得超过步骤一制备的MIL-101(Cr)晶体粉末质量的十分之一,否则会过度反应,损伤MIL-101(Cr)的微孔;苯基锂溶于正丁醚后得到的溶液的浓度不得超过0.5%wt,并逐滴加入,否则反应会过快,损伤MIL-101(Cr)的微孔。
步骤三:用无水正丁醚多次洗涤步骤二制备的墨绿色粉末除去残留的苯基锂,然后100℃下真空干燥一晚上除去残留的无水正丁醚,即为成品,成品放保干器中备用。
本实施例中的疏水改性方法在实施过程中有一定的危险性,需要严格防火。且如果滴加过快,会导致大量副产物产生,整个烧瓶内都会被染黑,为避免这种情况发生,也可以在滴加稀释过的苯基锂溶液时,将烧瓶置于冰浴中,并在滴加完毕后将保持搅拌时间延长到24小时。
典型的土壤有机污染物有苯及其衍生物、卤代烃、以及多环芳烃,其中多环芳烃不挥发,不是VOC,代表性的VOC有苯和三氯乙烯。疏水改性的MIL-101(Cr)制备完毕后,以河北一处污染场地不同区域的湿润污染土壤为例,我们比较了未经疏水改性的MIL-101(Cr)和经疏水改性的MIL-101(Cr)对湿润土壤中苯和三氯乙烯的吸附能力,方法如下:
将污染土壤样品置于烧瓶底,将待测吸附剂包裹在透气容器中(这里我们选用的是聚丙烯膜),然后将透气容器悬吊于烧瓶底,密封吸附两天以上;然后用有机溶剂(本实施例中为二硫化碳)洗脱待测吸附剂,测量吸附量,结果如下:
表1:每克吸附剂吸附的VOC的毫克数
Figure BDA0002870306850000041
由表1可知,土壤含水量对VOC的吸附有不利影响,使MIL-101(Cr)对VOC的吸附能力下降;实际使用中,现有的各种吸附剂,包括活性炭,在用于湿润土壤的土壤气采样时都会吸附并储存一定的水分,但仍可正常使用。实验结果还显示,经疏水改性后,MIL-101(Cr)克服了这一不利影响。
此外,我们也尝试了用常用的三甲基氯硅烷对MIL-101(Cr)进行甲基化,来对MIL-101(Cr)进行疏水改性,但效果不明显。
一种土壤气被动采样用吸附剂的使用方法,使用上述的一种土壤气被动采样用吸附剂,并包括以下步骤:
步骤A:将土壤气被动采样用吸附剂置于徽章式采样器中,将徽章式采样器置于通量测试仪中,将通量测试仪安装于采样点进行采样。
步骤B:取出步骤A的土壤气被动采样用吸附剂,采用二硫化碳解吸-气相色谱法分析并求取土壤气挥发通量;具体步骤如下:
将土壤气被动采样用吸附剂转移到棕色玻璃瓶内。加入3ml二硫化碳,密闭后轻轻振动,在室温下解吸1h;然后将二硫化碳稀释成浓度在1ppm左右,取1μL注入气相色谱仪进行分析;
本实施例中,采用气相色谱-质谱联用仪进行分析,操作条件为:DB-5MS色谱柱(30m×0.25mm i.d.0.25μm)。载气为高纯He(纯度为99.9999%),采用分流进样,分流比10:1;柱温50℃;分析时长5min;恒定柱流速1.2mL/min;进样口温度120℃;隔垫清洗流量3mL/min;离子源温度230℃;四级杆温度150℃;传输线温度280℃;全扫描模式(SCAN)。
步骤C:根据土壤气挥发通量评估测试点的未来人群的健康风险;
计算公式如下:
Figure BDA0002870306850000051
其中
Figure BDA0002870306850000052
公式中各参数定义及取值如下:
表2,参数定义与取值
Figure BDA0002870306850000053
Figure BDA0002870306850000061
对于本实施例中的采样点(石家庄市区),RIH结果为1.27×10-8
上述一种土壤气被动采样用吸附剂的使用方法属被动采样并分析,但也可用于诸如真空泵-吸附管法这样需要用到吸附剂的主动采样法中。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (3)

1.一种土壤气被动采样用吸附剂的制备方法,其特征在于:所述吸附剂为表面及微孔壁面经疏水改性的MIL-101(Cr)晶体;
疏水改性基团为苯基;并借助溶于正丁醚的苯基锂对MIL-101(Cr)晶体进行疏水改性;
在进行疏水改性过程中,通过控制反应速率及避免过度反应来避免MIL-101(Cr)中的微孔受损;
所述制备方法包括以下步骤:
步骤一:制备干燥的MIL-101(Cr)晶体粉末;
步骤二:用溶于正丁醚的苯基锂对步骤一制备的MIL-101(Cr)晶体粉末进行疏水改性;
步骤三:用正丁醚洗涤步骤二制备的MIL-101(Cr)晶体粉末并离心,除去残留的苯基锂,然后干燥除去残留的正丁醚;
步骤二中,苯基锂的用量不超过步骤一制备的MIL-101(Cr)晶体粉末质量的十分之一,苯基锂溶于正丁醚后得到的溶液的浓度不超过0.5%wt,并在绝氧环境下逐滴加入到步骤一制备的MIL-101(Cr)晶体粉末中进行反应。
2.根据权利要求1所述的一种土壤气被动采样用吸附剂的制备方法,其特征在于:步骤二中,苯基锂溶于正丁醚后得到的溶液滴加完毕后,在搅拌下反应至少6小时。
3.一种土壤气被动采样用吸附剂的使用方法,其特征在于:使用如权利要求1所述的一种土壤气被动采样用吸附剂的制备方法制备得到的吸附剂进行采样,并包括以下步骤:
步骤A:将土壤气被动采样用吸附剂置于被动采样器中,将被动采样器置于通量测试仪中,将通量测试仪安装于采样点进行采样;
步骤B:取出步骤A的土壤气被动采样用吸附剂,分析并求取土壤气挥发通量;
步骤C:根据土壤气挥发通量评估测试点的未来人群的健康风险。
CN202011610104.6A 2020-12-29 2020-12-29 一种土壤气被动采样用吸附剂及其制备和使用方法 Active CN112892485B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011610104.6A CN112892485B (zh) 2020-12-29 2020-12-29 一种土壤气被动采样用吸附剂及其制备和使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011610104.6A CN112892485B (zh) 2020-12-29 2020-12-29 一种土壤气被动采样用吸附剂及其制备和使用方法

Publications (2)

Publication Number Publication Date
CN112892485A CN112892485A (zh) 2021-06-04
CN112892485B true CN112892485B (zh) 2023-03-28

Family

ID=76112044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011610104.6A Active CN112892485B (zh) 2020-12-29 2020-12-29 一种土壤气被动采样用吸附剂及其制备和使用方法

Country Status (1)

Country Link
CN (1) CN112892485B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588344B (zh) * 2021-08-05 2022-03-22 南方海洋科学与工程广东省实验室(广州) 一种流体通量监测和流体样品采集的装置及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1935867A1 (en) * 2006-12-20 2008-06-25 F. Hoffmann-La Roche Ag Process for preparing 1-(2-ethyl-butyl)-cyclohexanecarboxylic acid
DE102010014933A1 (de) * 2010-04-14 2011-10-20 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
CN102408447B (zh) * 2011-07-28 2014-02-26 华南理工大学 憎水性mil-101铬金属有机骨架材料的制备方法
US9399912B2 (en) * 2012-09-13 2016-07-26 Geosyntec Consultants, Inc. Passive sampling device and method of sampling and analysis
CN103191588B (zh) * 2013-04-11 2016-04-06 陈伟 一种疏水性白炭黑的制备方法
CN106053288B (zh) * 2016-08-11 2018-11-30 北京市环境保护科学研究院 采用球形被动式采样器测定土壤气体挥发通量的方法
CN109180956B (zh) * 2018-08-27 2021-04-23 福建师范大学 亲水性寡聚物@疏水性金属有机框架的复合材料的制备方法
CN109174011B (zh) * 2018-10-12 2021-03-05 辽宁大学 一种超疏水型金属有机骨架复合材料及其制备方法和应用
CN110951086B (zh) * 2019-11-26 2021-06-22 南昌大学 一种疏水强酸性MOFs的制备方法
CN111060618A (zh) * 2019-12-18 2020-04-24 生态环境部土壤与农业农村生态环境监管技术中心 含水层硝酸盐反硝化速率原位测定方法和装置

Also Published As

Publication number Publication date
CN112892485A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
Wang et al. Metal–organic framework MIL-101 (Cr) as a sorbent of porous membrane-protected micro-solid-phase extraction for the analysis of six phthalate esters from drinking water: a combination of experimental and computational study
Li et al. In situ hydrothermal growth of ytterbium-based metal–organic framework on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons from environmental samples
Chen et al. Metal–organic framework MIL-53 (Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography–tandem mass spectrometry
Gu et al. Metal–organic frameworks for analytical chemistry: from sample collection to chromatographic separation
Król et al. Monitoring VOCs in atmospheric air II. Sample collection and preparation
Zheng et al. In situ growth of IRMOF-3 combined with ionic liquids to prepare solid-phase microextraction fibers
Liu et al. Metal azolate framework-66-coated fiber for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons
CN112892485B (zh) 一种土壤气被动采样用吸附剂及其制备和使用方法
CN103675134B (zh) 一种采用内标法检测气体中的苯系污染物的方法
CN110702495B (zh) 一种基于MOFs材料富集分析空气中苯系物的方法
Zang et al. Hollow fiber-protected metal–organic framework materials as micro-solid-phase extraction adsorbents for the determination of polychlorinated biphenyls in water samples by gas chromatography-tandem mass spectrometry
CN109001320A (zh) 一种测定环境空气中苯系物含量的方法
CN104399353B (zh) 甲烷-二氧化碳-氮气或氢气多组份分离方法及装置
Zang et al. Metal organic framework MIL-101 coated fiber for headspace solid phase microextraction of volatile aromatic compounds
Lee et al. A model for the adsorption kinetics of CO2 on amine-impregnated mesoporous sorbents in the presence of water
CN106841411A (zh) 一种环境测试舱挥发性有机化合物回收率测试方法
Tu et al. Silica gel modified with 1-(2-aminoethyl)-3-phenylurea for selective solid-phase extraction and preconcentration of Sc (III) from environmental samples
Huang et al. Evaluation and application of a passive air sampler for atmospheric volatile organic compounds
CN114570328A (zh) 一种疏水改性分子筛及其制备方法和应用
Idris et al. A comparative study of selected sorbents for sampling of aromatic VOCs from indoor air
CN106950303B (zh) 生物样本血液中苯系物的测定方法
Azenha et al. Solid-phase microextraction Ni–Ti fibers coated with functionalised silica particles immobilized in a sol–gel matrix
Rahimpoor et al. Determination of halogenated hydrocarbons in urine samples using a needle trap device packed with Ni/Zn–BTC bi-MMOF via the dynamic headspace method
Karwacki et al. Effect of temperature on the desorption and decomposition of mustard from activated carbon
CN108414637B (zh) 一种利用固相微萃取-气相色谱-质谱联用技术检测水中挥发性消毒副产物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant