CN112886597A - 一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法 - Google Patents
一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法 Download PDFInfo
- Publication number
- CN112886597A CN112886597A CN202110086127.XA CN202110086127A CN112886597A CN 112886597 A CN112886597 A CN 112886597A CN 202110086127 A CN202110086127 A CN 202110086127A CN 112886597 A CN112886597 A CN 112886597A
- Authority
- CN
- China
- Prior art keywords
- node
- new energy
- power
- voltage
- affine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/04—Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
- H02J3/06—Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/10—Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开了一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法,包括如下步骤:建立辐射状配网中上游节点集合和共有上游节点集合表达式;建立任意节点电压幅值平方项关于支路功率的表达式;建立任意节点新能源注入功率波动时引起的其它节点电压幅值平方项波动的对应关系;建立多个新能源注入功率波动时节点电压平方项的表达式;建立新能源注入功率不确定性用仿射表示时,各节点电压平方的仿射解析表达式。本发明在考虑新能源注入功率不确定性时,得到节点电压平方的波动范围,从而对节点电压的越限情况进行理论分析,提升配电系统运行的安全性,并且能够为新能源在配网中的规划和运行控制提供理论支撑。
Description
技术领域
本发明属于配电网控制、运行与优化领域,具体涉及一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法。
背景技术
分布式光伏、风电等新能源发电在配网中的渗透率逐步提升。新能源功率注入辐射状配电网,可能引起配网中的功率倒送,从而抬高新能源接入节点的电压,甚至出现电压越限的情况。在新能源渗透率较高的局部配网,已经出现了因为电压越限而无法对新能源进行完全消纳的情况。同时,新能源发电功率出力具有一定的不确定性,对配电网电压状况的分析带来一定的困难,分析考虑新能源功率不确定时的电网电压幅值分布,已成为新能源在配网中的规划和运行时的重要问题。
现有的配网仿射潮流分析中,通常依赖仿射计算规则,基于潮流方程等式进行理论分析,而没有给出某一任意节点新能源功率波动对电网中其它任意节点电压幅值影响的解析表达式,也没有给出当电网中存在多个节点新能源功率波动时,电网中各节点电压的关于功率波动值的解析表达式。
所以,需要一个新的技术方案来解决这些问题。
发明内容
发明目的:为了克服现有技术中存在的不足,提供一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法,其可以在考虑新能源注入功率不确定性时,得到节点电压平方的波动范围,从而对节点电压的越限情况进行理论分析,提升配电系统运行的安全性,并且能够为新能源在配网中的规划和运行控制提供理论支撑。
技术方案:为实现上述目的,本发明提供一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法,包括如下步骤:
S1:建立辐射状配网中上游节点集合和共有上游节点集合表达式;
S2:基于上游节点集合,建立任意节点电压幅值平方项关于支路功率的表达式;基于共有节点集合,建立任意节点新能源注入功率波动时引起的其它节点电压幅值平方项波动的对应关系;
S3:根据步骤S2获取的任意节点电压幅值平方项关于支路功率的表达式和任意节点新能源注入功率波动时引起的其它节点电压幅值平方项波动的对应关系,建立多个新能源注入功率波动时节点电压平方项的表达式;
S4:建立新能源注入功率不确定性用仿射表示时,各节点电压平方的仿射解析表达式。
进一步地,所述步骤S1中上游节点集合和共有上游节点集合的表达式分别为式(1)和式(2):
进一步地,所述步骤S2中节点电压幅值平方项关于支路功率的表达式为:
式(3)中,和分别为以变电站节点为根节点时由k节点的父节点流向k节点的有功和无功功率;rk和xk分别为以变电站节点为根节点时k节点的父节点到k节点支路的电阻和电抗;为i节点电压幅值的平方,Usqr,ref为变电站节点电压幅值的平方。
进一步地,所述步骤S2中任意节点新能源注入功率波动时引起的其它节点电压幅值平方项波动的对应关系如下:
式(4)和式(5)中,和分别定义为节点i和节点j之间的有功电压影响因子和无功电压影响因子;式(6)中,和为j节点新能源注入功率的有功和无功波动值,为由j节点新能源注入功率波动引起的i节点电压幅值平方波动值。
进一步地,所述步骤S3中,多个新能源注入功率波动时节点电压平方项的表达式为:
式(7)中,ΦR为配网中含有新能源注入功率的节点的集合。
进一步地,所述步骤S4中节点电压平方的仿射解析表达式为:
式(8)和式(9)中,和分别为k节点新能源注入的有功和无功功率;和分别为k节点注入有功和无功功率不确定量的中心值;εn为噪声元;Pk,n和Qk,n为噪声元系数,分别表示噪声元i对不确定量和的影响程度;式(10)中,为新能源注入功率不确定性用仿射表示时,节点i电压平方的仿射解析表达式,为各新能源不确定注入量均取中心值时,根据确定性潮流求解得到的节点i的电压幅值平方值。
有益效果:本发明与现有技术相比,给出了任意两个节点之间的有功电压影响因子和无功电压影响因子,可以明确地分析多个新能源接入时,每个新能源功率的波动值对电压分布波动的影响权重,从而更加明确地揭示节点电压波动的原因,对于高渗透率新能源在配网中的规划和运行具有重要的价值。
附图说明
图1为本发明方法的流程示意图;
图2为本实施例中采用的电网结构图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
如图1所示,本发明提供一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法,包括如下步骤:
S1:建立辐射状配网中上游节点集合和共有上游节点集合表达式:
上游节点集合和共有上游节点集合的表达式分别为式(1)和式(2):
S2:基于上游节点集合,建立任意节点电压幅值平方项关于支路功率的表达式:
节点电压幅值平方项关于支路功率的表达式为:
式(3)中,和分别为以变电站节点为根节点时由k节点的父节点流向k节点的有功和无功功率;rk和xk分别为以变电站节点为根节点时k节点的父节点到k节点支路的电阻和电抗;为i节点电压幅值的平方,Usqr,ref为变电站节点电压幅值的平方。
S3:基于共有节点集合,建立任意节点新能源注入功率波动时引起的其它节点电压幅值平方项波动的对应关系:
任意节点新能源注入功率波动时引起的其它节点电压幅值平方项波动的对应关系如下:
式(4)和式(5)中,和分别定义为节点i和节点j之间的有功电压影响因子和无功电压影响因子;式(6)中,和为j节点新能源注入功率的有功和无功波动值,为由j节点新能源注入功率波动引起的i节点电压幅值平方波动值。
S4:根据获取的任意节点电压幅值平方项关于支路功率的表达式和任意节点新能源注入功率波动时引起的其它节点电压幅值平方项波动的对应关系,建立多个新能源注入功率波动时节点电压平方项的表达式:
多个新能源注入功率波动时节点电压平方项的表达式为:
式(7)中,ΦR为配网中含有新能源注入功率的节点的集合。
S5:建立新能源注入功率不确定性用仿射表示时,各节点电压平方的仿射解析表达式:
节点电压平方的仿射解析表达式为:
式(8)和式(9)中,和分别为k节点新能源注入的有功和无功功率;和分别为k节点注入有功和无功功率不确定量的中心值;εn为噪声元;Pk,n和Qk,n为噪声元系数,分别表示噪声元i对不确定量和的影响程度;式(10)中,为新能源注入功率不确定性用仿射表示时,节点i电压平方的仿射解析表达式,为各新能源不确定注入量均取中心值时,根据确定性潮流求解得到的节点i的电压幅值平方值。
基于上述方案,本实施例将上述方法进行应用和分析,具体如下:
本实施例中,选取修改过的IEEE 33节点系统作为配网算例,在原始测试系统的基础上,分别在节点17,22,31接入新能源,如图2所示。IEEE 33节点的参数如表1所示。
表1 IEEE 33节点标准算例参数
新能源不确定性的仿射表示为:
根据仿射潮流解析计算方法,可以计算得到各节点电压幅值的上界和下界。为了验证解析计算的正确性,采用蒙特卡洛模拟方法进行验证。根据式(11)-(13),随机生成10000组17、22、31节点新能源的功率值,并进行确定性潮流计算,可得到各节点电压幅值的最大值和最小值,将解析计算的结果与蒙特卡洛模拟结果进行对比,如表2所示。
表2节点电压幅值解析计算与仿真验证
由表2可知,根据本发明提供的仿射潮流解析计算的方法,解析计算得到的电压幅值下界与蒙特卡洛模拟中的节点电压幅值最小值基本一致,误差不超过0.3%;解析计算得到的电压幅值上界与蒙特卡洛模拟中的节点电压幅值最大值基本一致,误差不超过0.2%,从而验证了本发明提供的仿射潮流解析计算方法的正确性。
同时,根据本实施例的结果,在现有的新能源出力特征下,节点电压幅值最大值已经超过通常配电系统运行所允许的上限(1.05p.u.),在新能源运行过程中应该有适当的切机或电压调节措施,以保证电力系统运行的安全性,体现了本发明所提供的解析计算方法的有益效果。
Claims (6)
1.一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法,其特征在于,包括如下步骤:
S1:建立辐射状配网中上游节点集合和共有上游节点集合表达式;
S2:基于上游节点集合,建立任意节点电压幅值平方项关于支路功率的表达式;基于共有节点集合,建立任意节点新能源注入功率波动时引起的其它节点电压幅值平方项波动的对应关系;
S3:根据步骤S2获取的任意节点电压幅值平方项关于支路功率的表达式和任意节点新能源注入功率波动时引起的其它节点电压幅值平方项波动的对应关系,建立多个新能源注入功率波动时节点电压平方项的表达式;
S4:建立新能源注入功率不确定性用仿射表示时,各节点电压平方的仿射解析表达式。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110086127.XA CN112886597B (zh) | 2021-01-22 | 2021-01-22 | 一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110086127.XA CN112886597B (zh) | 2021-01-22 | 2021-01-22 | 一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112886597A true CN112886597A (zh) | 2021-06-01 |
CN112886597B CN112886597B (zh) | 2022-08-30 |
Family
ID=76050104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110086127.XA Active CN112886597B (zh) | 2021-01-22 | 2021-01-22 | 一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112886597B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115986747A (zh) * | 2022-12-27 | 2023-04-18 | 上海交通大学 | 一种基于升维仿射的配电网节点电压实时控制方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107204617A (zh) * | 2017-01-24 | 2017-09-26 | 华南理工大学 | 基于线性规划的直角坐标形式的区间潮流计算方法 |
CN107482633A (zh) * | 2017-08-22 | 2017-12-15 | 东南大学 | 一种适用于辐射状配电网的非迭代区间潮流算法 |
-
2021
- 2021-01-22 CN CN202110086127.XA patent/CN112886597B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107204617A (zh) * | 2017-01-24 | 2017-09-26 | 华南理工大学 | 基于线性规划的直角坐标形式的区间潮流计算方法 |
CN107482633A (zh) * | 2017-08-22 | 2017-12-15 | 东南大学 | 一种适用于辐射状配电网的非迭代区间潮流算法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115986747A (zh) * | 2022-12-27 | 2023-04-18 | 上海交通大学 | 一种基于升维仿射的配电网节点电压实时控制方法 |
CN115986747B (zh) * | 2022-12-27 | 2024-01-12 | 上海交通大学 | 一种基于升维仿射的配电网节点电压实时控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112886597B (zh) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rylander et al. | Default volt-var inverter settings to improve distribution system performance | |
Dugan et al. | Advanced inverter controls for distributed resources | |
Liu et al. | Research on short-circuit currents calculation method considering dynamic reactive power support of renewable energy systems | |
CN112886597B (zh) | 一种考虑新能源出力不确定性的辐射状配电网仿射潮流解析计算方法 | |
Klaić et al. | Impact of photovoltaic and biogas power plant on harmonics in distribution network | |
Trevisan et al. | Analysis of low frequency interactions of DFIG wind turbine systems in series compensated grids | |
Ashari et al. | Optimal location, size and type of DGs to reduce power losses and voltage deviation considering THD in radial unbalanced distribution systems | |
CN106374520A (zh) | 一种安全互动调度的分布式电源可接纳功率评估方法 | |
He et al. | Coordinated optimization of parameters of PSS and UPFC-PODCs to improve small-signal stability of a power system with renewable energy generation | |
Yadav et al. | Technical advances and stability analysis in wind-penetrated power generation systems—A review | |
CN114626575A (zh) | 考虑暂态电压稳定的含高渗透率风电的受端电网无功规划方法 | |
Di Fazio et al. | Decentralized voltage control of distributed generation using a distribution system structural MIMO model | |
Zhang et al. | Unified Dynamic Equivalent Model for Distributed Photovoltaic Generation Systems With Different Fault-Ride-Through Strategies | |
Kim | Steady‐state short‐circuit current calculation for internally limited inverter‐based distributed generation sources connected as current sources using the sequence method | |
Kirmani et al. | Optimal placement of SPV based DG system for loss reduction in radial distribution network using heuristic search strategies | |
Li et al. | Suppression to Angular Oscillation among Synchronous Generators by Optimizing Parameters and Set‐Points of Synchronous Condenser and High‐Voltage DC | |
Zhou et al. | Novel optimal control strategy for power fluctuation and current harmonic suppression of a three‐phase photovoltaic inverter under unbalanced grid faults | |
CN112886596B (zh) | 一种基于不确定性最优潮流的配电网可再生能源消纳能力计算方法 | |
CN112865136B (zh) | 一种考虑注入功率随机性的配电网节点电压概率分布计算方法 | |
Castillo et al. | Optimal location and size for various renewable distributed generators in distribution networks | |
Lin et al. | Coordinated power control strategy of voltage source converter‐based multiterminal high‐voltage direct current based on the voltage‐current curve | |
Saw et al. | Power flow analysis of power distribution system integrated with solar photovoltaic based distributed generation | |
Nouha et al. | Analysis and evaluation of phtovoltaic integration impacts in Tunisian grid using PSSE | |
Yu et al. | MMC‐HVDC system oscillation suppression control strategy based on state feedback decoupling control | |
Ghorbani et al. | A new method to point of common coupling voltage control in distribution grid‐connected photovoltaic systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |