CN112876245A - 一种氧化锆陶瓷的制备方法 - Google Patents

一种氧化锆陶瓷的制备方法 Download PDF

Info

Publication number
CN112876245A
CN112876245A CN202110119119.0A CN202110119119A CN112876245A CN 112876245 A CN112876245 A CN 112876245A CN 202110119119 A CN202110119119 A CN 202110119119A CN 112876245 A CN112876245 A CN 112876245A
Authority
CN
China
Prior art keywords
zirconia ceramic
zirconia
slurry
powder
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110119119.0A
Other languages
English (en)
Inventor
余明先
冼锐伟
张霖
王伟江
刘友昌
戴高环
王超
何培与
何晓刚
姚伟昌
李毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Taotao Technology Co ltd
Original Assignee
Shenzhen Taotao Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Taotao Technology Co ltd filed Critical Shenzhen Taotao Technology Co ltd
Priority to CN202110119119.0A priority Critical patent/CN112876245A/zh
Publication of CN112876245A publication Critical patent/CN112876245A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种氧化锆陶瓷的制备方法,包括以下步骤:浆料制备:选取纳米或者亚微米级别的氧化锆陶瓷粉体,并将其与分散剂和溶剂进行第一次混合,制得第一混合物;再将第一混合物与PVB胶水进行第二次混合,得到浆料;所述氧化锆陶瓷粉体为稀土掺杂氧化锆粉体,其通式为Zr1‑xRE2xO2+x,其中,RE为+3价态的稀土元素,0.01≤x≤0.05。脱泡步骤:将所述浆料进行真空脱泡处理,得到脱泡后的浆料。流延步骤:将所述脱泡后的浆料流延,得到流延膜片。生坯制备:将所述流延膜片叠层后进行等静压处理,得到陶瓷生坯。固结步骤。本发明提供的氧化锆陶瓷的制备方法可有效防止氧化锆陶瓷中的气孔产生,大大提高了氧化锆陶瓷的致密度及强度,避免了陶瓷的相变老化。

Description

一种氧化锆陶瓷的制备方法
技术领域
本发明属于陶瓷材料技术领域,特别是涉及一种氧化锆陶瓷的制备方法。
背景技术
由于氧化锆陶瓷具有良好的耐腐蚀性、耐磨性、硬度高、强度高、散热性强、穿透力强等特点,因此有着广泛的应用。但是,目前的氧化锆陶瓷在制作及加工过程中,常存在致密性较差的缺陷,抛光后表面很多凹坑,严重影响了氧化锆陶瓷的加工性,且作为一些产品的外观件使用时非常影响美观度,导致产品存在质量缺陷,甚至因此报废。并且,现有技术制备的氧化锆陶瓷,由于致密性较差,导致其强度差,无法制备较薄的产品,且制备的半成品厚度较厚,往往需要多道加工工序才能将产品最终加工成型,导致生产效率低下,加工成本高。
发明内容
本发明的目的在于克服现有技术中存在的不足,并提供一种氧化锆陶瓷的制备方法,该方法可有效防止氧化锆陶瓷中的气孔产生,大大提高了氧化锆陶瓷的致密度及强度,避免了陶瓷的相变老化。
为实现上述目的,本发明采用的技术方案为:
一种氧化锆陶瓷的制备方法,包括以下步骤:
S1、浆料制备:选取纳米或者亚微米级别的氧化锆陶瓷粉体,并将其与分散剂和溶剂进行第一次混合,制得第一混合物;再将第一混合物与PVB胶水进行第二次混合,得到浆料;所述氧化锆陶瓷粉体为稀土掺杂氧化锆粉体,其通式为Zr1-xRE2xO2+x,其中,RE为正三价态的稀土元素,0.01≤x≤0.05;
S2、脱泡步骤:将步骤S1制得的所述浆料进行真空脱泡处理,得到脱泡后的浆料;
S3、流延步骤:将步骤S2制得的脱泡后的浆料流延,得到流延膜片;
S4、生坯制备:将步骤S3制得的流延膜片叠层后进行等静压处理,得到陶瓷生坯;
S5、固结步骤:包括
S5.1、排除有机物步骤:将步骤S4制得的陶瓷生坯置于烧结炉中,于2-3个大气压强范围内,及500℃-600℃温度范围内,对陶瓷生坯中的有机物进行分解;
S5.2、烧结步骤:将经步骤S5.1处理后的陶瓷生坯在真空条件下继续于烧结炉中进行烧结,以得到氧化锆陶瓷;其中,烧结温度为1400℃-1450℃,真空度小于1Pa。
对上述技术方案的进一步改进是:
步骤S1中所述第一混合物还包括可挥发性盐粉体,所述可挥发性盐粉体的挥发温度低于1250℃,且可挥发性盐粉体与所述氧化锆陶瓷粉体的质量比为0.85~1:100。
所述可挥发性盐粉体为钨酸锂和/或钽酸锂。
步骤S1中所述第一次混合和第二次混合的方式为砂磨,砂磨转速为800-1500rpm,第一次混合的时间为10-60min,第二次混合的时间为1-5h;或,步骤S1中所述第一次混合和第二次混合的方式为球磨,料球比为2-5:1,转速为90-600rpm,第一次混合的时间为5-24h,第二次混合的时间为5-24h。
步骤S1中所述氧化锆陶瓷粉体中Zr源和RE源分别采用氧化物、氯化物、硝酸盐、碳酸盐、或硫酸盐中的一种,且所述浆料中氧化锆陶瓷粉体占浆料总质量的45%-70%。
步骤S1中所述稀土元素包括Y、Co、Sc、La、Dy、Er、Eu、或Sm中的一种或几种。
步骤S5.1中烧结炉从室温升至350℃时的升温速率为0.2-1℃/min,从350℃升至600℃时的升温速率为1-3℃/min;在步骤S5.1中,向烧结炉内通入反应气氛以保持烧结炉内的压强,所述反应气氛为碳氧化物气体或氮氧化物气体。
步骤S5.2中所述烧结炉由600℃升至1100℃时的升温速率为5-10℃/min,由1100℃升至1450℃时的升温速率为3-5℃/min。
步骤S1中所述分散剂包括磷酸酯、铵盐、聚氨酯、聚丙烯酸、聚丙烯酸钠、脂肪酸衍生物、聚甲基丙烯酸甲酯、以及高分子嵌段聚合物中的至少一种;所述分散剂与所述氧化锆陶瓷粉体的质量比为0.5-2:100。
步骤S1中所述PVB胶水包括聚乙烯醇缩丁醛酯、溶剂和增塑剂;其中,各组成部分的质量份数比为,聚乙烯醇缩丁醛酯:溶剂:增塑剂=20~30:40~80:5~20;所述增塑剂包括邻苯二甲酸丁基苄酯、聚乙二醇或指邻苯二甲酸二辛酯中的至少一种;所述溶剂包括甲苯、二甲苯、甲醇、无水乙醇、丙醇、丙酮、正丁醇、异丙醇、丙三醇、丁酮、三氯乙烯中的至少一种。
根据本发明的技术方案可知,本发明的氧化锆陶瓷的制备方法,在制备浆料时先将氧化锆陶瓷粉体与分散剂和溶剂进行第一次混合,再将制得的第一混合物与PVB胶水进行第二次混合,两次混合后得到混合均匀的浆料。其分两次对原料进行混合,可使得到的浆料混合更加均匀,有助于后序生产。其在浆料制备时加入了稀土掺杂氧化锆粉体,由于氧化锆粉体容易相变老化,掺杂稀土元素后,稀土元素相当于稳定剂,可使氧化锆在室温下保持四方相,不发生相变老化。其固结步骤分两步操作,首先,在高压条件下对陶瓷生坯中的有机物进行分解,不仅可以使有机物的分解更为彻底,且在高压下,有机物分解形成的气孔更小,可有效减少陶瓷烧结后残留气孔的可能性。接下来,在真空条件下对氧化锆陶瓷进行烧结,由于陶瓷内部形成的气孔为高压状态下形成的,因此其孔内的气压偏高,在烧结的过程中,与炉内的低压形成压差,有助于气孔内的气体排出,及易于被氧化锆颗粒填充,从而进一步减少陶瓷内部的残留孔洞,提高陶瓷的致密性及强度。
附图说明
图1为本发明实施例氧化锆陶瓷的制备方法的流程示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
如图1所示,本实施例的氧化锆陶瓷的制备方法,包括以下步骤:
S1、浆料制备:选取纳米或者亚微米级别的氧化锆陶瓷粉体,并将其与可挥发性盐粉体、分散剂和第一溶剂进行第一次混合,制得第一混合物;再将第一混合物与PVB胶水进行第二次混合,得到浆料。
所述氧化锆陶瓷粉体为稀土掺杂氧化锆粉体,其通式为Zr1-xRE2xO2+x,其中,RE为正三价态的稀土元素,所述稀土元素包括Y、Co、Sc、La、Dy、Er、Eu、或Sm中的一种或几种,0.01≤x≤0.05。按摩尔比称取Zr源和RE源,可以为氧化物、氯化物、硝酸盐、碳酸盐、或硫酸盐中的一种,比如可以为ZrO2和RE2O3等。且所述浆料中氧化锆陶瓷粉体占浆料总质量的45%-70%。
可挥发性盐粉体的挥发温度低于1250℃,且可挥发性盐粉体与所述氧化锆陶瓷粉体的质量比为0.85~1:100,可挥发性盐粉体包括钨酸锂和钽酸锂中的至少一种。可挥发性盐的挥发温度低于氧化锆粉体的烧结温度,因此在烧结步骤时,可挥发性盐会变成熔融状态,有利于氧化锆颗粒填充到陶瓷的残留气孔中去。
所述分散剂包括磷酸酯、铵盐、聚氨酯、聚丙烯酸、聚丙烯酸钠、脂肪酸衍生物、聚甲基丙烯酸甲酯(PMMA)、以及高分子嵌段聚合物中的至少一种;所述分散剂与所述氧化锆陶瓷粉体的质量比为0.5~2:100。
所述第一溶剂为有机溶剂体系,包括甲苯、二甲苯、甲醇、无水乙醇、丙醇、丙酮、正丁醇、异丙醇、丙三醇、丁酮、三氯乙烯中的至少一种,如为两种以上时时,则所有组成物质组成共沸溶剂,所述第一溶剂与所述氧化锆陶瓷粉体的质量比为15~30:100。
所述PVB胶水包括聚乙烯醇缩丁醛酯(PVB)、第二溶剂和增塑剂。其中,各组成的质量份数比为,PVB:溶剂:增塑剂=20~30:40~80:5~20。所述增塑剂包括邻苯二甲酸丁基苄酯(BBP)、聚乙二醇(PEG)或指邻苯二甲酸二辛酯(DOP)中的至少一种。PVB胶水占浆料总质量的10-25%。
所述第二溶剂为有机溶剂体系,包括甲苯、二甲苯、甲醇、无水乙醇、丙醇、丙酮、正丁醇、异丙醇、丙三醇、丁酮、三氯乙烯中的至少一种,如为两种以上时时,则所有组成物质组成共沸溶剂。
所述第一次混合和第二次混合的方式均为砂磨,砂磨转速为800-1500rpm,第一次混合的时间为10-60min,第二次混合的时间为1-5h。
或者所述第一次混合和第二次混合的方式均为球磨,料球比为2-5:1,转速为90-600rpm,第一次混合的时间为5-24h,第二次混合的时间为5-24h。
S2、脱泡步骤:将步骤S1制得的所述浆料进行真空脱泡处理,真空脱泡时间为1-5H,真空度为-0.09~-0.1MPa,得到脱泡后的浆料。
S3、流延步骤:将步骤S2制得的脱泡后的浆料流延,得到流延膜片,流延膜片的厚度为0.1~1mm。
S4、生坯制备:将步骤S3制得的流延膜片在相应的预设模具上叠层,并进行等静压处理,叠层总厚度为0.4-2mm,等静压温度为50-80℃,等静压压力为50-200MPa,保压时间为1-10min,成型至所需厚度,得到陶瓷生坯。预设模具可以成型平片状的2D结构形状,也可以成型其它3D的任意结构形状。
S5、固结步骤:包括
S5.1、排除有机物步骤:将步骤S4制得的陶瓷生坯置于烧结炉中,于常压或者真空状态下,升温至400℃;再在烧结炉中充入高压气体,于2-3个大气压强范围内,升温至500℃-600℃温度范围内,并保温保压30-60min,对陶瓷生坯中的有机物进行分解。在分解处理的同时,不断向烧结炉内通入气氛以保持烧结炉内的压强,所述气氛可以是碳氧化物气体或者氮氧化物气体等,比如CO2或NO2气体等。所述真空状态的真空度小于1Pa。
烧结炉从室温升至400℃时的升温速率为0.2-1℃/min,从400℃升至600℃时的升温速率为1-3℃/min。
有机物分解属于化学反应过程,常规情况下,有机物分解在空气气氛条件进行,此条件下化学反应不好控制,其反应速率较快,极易造成陶瓷生坯在此过程中发生变形、开裂、鼓泡等现象,而由此导致报废。而本方法之所以采用碳氧化物气体或者氮氧化物气体作为反应气氛,就是为了避免上述现象的发生,此种气氛可以很好地控制化学反应的速率,使得陶瓷生坯中的有机物在彻底分解的同时,不产生变形等缺陷。
S5.2、烧结步骤:将经步骤S5.1处理后的陶瓷生坯在真空条件下继续于烧结炉中进行烧结,以得到氧化锆陶瓷;其中,烧结温度为1400℃-1450℃,真空度小于1Pa,保温保压时间为30-60min。其中,烧结炉由600℃升至1100℃时的升温速率为5-10℃/min,由1100℃升至1450℃时的升温速率为3-5℃/min。
本实施例的氧化锆陶瓷,在高压条件下进行有机物的排除,此时,由于受到压力作用,有机物分解形成的气孔比常压环境下形成的气孔更小、更均匀,可有效降低陶瓷烧结后残留气孔的可能性。在低压条件下对氧化锆陶瓷生坯进行烧结,烧结过程中,由于氧化锆陶瓷粉中掺杂了熔点较低的过渡液相可挥发性盐粉体,在烧结过程中可挥发性盐粉体能够发生熔融。而在有机物分解时残留在陶瓷生坯中形成的气孔为高压气孔,烧结过程中与烧结炉内的低压形成压差,此时,熔融的过渡液相在熔融温度下带动氧化锆颗粒移动和变形,高压气孔中留存的气体会在低压环境下更易于排出,从而消除陶瓷中残留的气泡,而小颗粒氧化锆的移动则能够对气孔的空缺位置进行填充,最终避免氧化锆陶瓷生坯在烧结后出现气孔的现象。而且过渡液相在烧结过程中能够形成液桥,更有利于氧化锆颗粒的传递或迁移,从而提高氧化锆陶瓷的致密度和强度。由于氧化锆陶瓷的致密度和强度得到有效提高,因此,可以把氧化锆陶瓷生坯的厚度做到足够接近产品本身的厚度,从而减少后道工序的生产,比如CNC、激光、磨削等工序。本实施例制备方法制备的氧化锆陶瓷可以直接通过研磨抛光就可以得到最终产品,大大提高了产能。且本发明的制备方法在达到产品性能要求的条件下,使制备的产品更加轻薄,能够满足人们越来越高的轻量化需求。
实施例1:本实施例的氧化锆陶瓷的制备方法与上述实施例的制备方法步骤相同,在此不再赘述,其中具体实施方式的数据如下:
S5.1、排除有机物步骤:于2个大气压强下,及600℃温度条件下,保温保压30min。
S5.2、烧结步骤:烧结温度为1400℃,保温保压时间为60min。
实施例2:本实施例的氧化锆陶瓷的制备方法与实施例1的制备方法步骤相同,在此不再赘述,不同的是:
S5.1、排除有机物步骤:于3个大气压强下,及500℃温度条件下,保温保压60min。
S5.2、烧结步骤:烧结温度为1450℃,保温保压时间为45min。
实施例3:本实施例的氧化锆陶瓷的制备方法与实施例1的制备方法步骤相同,在此不再赘述,不同的是:
S5.1、排除有机物步骤:于2.5个大气压强下,及550℃温度条件下,保温保压45min。
S5.2、烧结步骤:烧结温度为1450℃,保温保压时间为30min。
实施例4:本实施例的氧化锆陶瓷的制备方法与实施例1的制备方法步骤相同,在此不再赘述,不同的是:
S5.1、排除有机物步骤:于3个大气压强下,及500℃温度条件下,保温保压60min。
S5.2、烧结步骤:烧结温度为1450℃,保温保压时间为60min。
实施例5:本实施例的氧化锆陶瓷的制备方法与实施例1的制备方法步骤相同,在此不再赘述,不同的是:
S5.1、排除有机物步骤:于3个大气压强下,及550℃温度条件下,保温保压30min。
S5.2、烧结步骤:烧结温度为1450℃,保温保压时间为30min。
为与上述实施例进行对比,特做如下两例对比实施例:
对比例1:本对比例的氧化锆陶瓷的制备方法如下:
S1、S2、S3和S4步骤均与实施例1的步骤相同,在此不再赘述,
S5、固结步骤:将陶瓷生坯置于烧结炉中,进行排胶和预烧,预烧温度为900℃,保温时间为1.5h,烧结炉由室温升到350℃时的升温速率为0.5℃/min,由350℃升温到600℃时的升温速率为3℃/min,由600℃升温到900℃时的升温速率为5℃/min;由900℃升温至1100℃时的升温速率为8℃/min,由1100℃升温到1450℃时的升温速率为3℃/min,在1450℃温度条件下烧结,烧结保温时间为3h,烧结之后得到氧化锆陶瓷。
对比例2:本对比例的氧化锆陶瓷的制备方法与对比例1的方法基本一致,不同的是:
S5、固结步骤:将陶瓷生坯置于烧结炉中,进行排胶和预烧,预烧温度为1000℃,保温时间为1h,烧结炉由室温升到350℃时的升温速率为0.5℃/min,由350℃升温到600℃时的升温速率为3℃/min,由600℃升温到1000℃时的升温速率为5℃/min;由1000℃升温至1150℃时的升温速率为8℃/min,由1150℃升温到1450℃时的升温速率为3℃/min,在1450℃温度条件下烧结,烧结保温时间为3h,烧结之后得到氧化锆陶瓷。
本发明的制备方法制备的氧化锆陶瓷用于手机后盖的制造,此手机后盖的性能要求如下:密度≥6.08g/cm3,四点弯曲≥900MPa,维氏硬度≥1200kgf/mm2,厚度≤0.5mm。
经检测,上述实施例及对比例的最终结果如表1所示:
表1
Figure BDA0002921836140000091
由上述检测数据可知,本发明实施例方法制备的氧化锆陶瓷其具有较大的密度,陶瓷本身更加致密,其弯曲强度更高,硬度更大,厚度更薄,在满足产品本身的性能要求的基础上,大大提高了氧化锆陶瓷的综合性能,使手机后盖的美观要求及轻量化要求都得到了满足,使产品更加具有竞争力,且生产方法简单,可靠,简化了后序机械加工的程序,大大提高了生产效率,节约了原材料的使用量,节约了成本,提高了产品的产能。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的优选的实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种氧化锆陶瓷的制备方法,其特征在于包括以下步骤:
S1、浆料制备:选取纳米或者亚微米级别的氧化锆陶瓷粉体,并将其与分散剂和溶剂进行第一次混合,制得第一混合物;再将第一混合物与PVB胶水进行第二次混合,得到浆料;所述氧化锆陶瓷粉体为稀土掺杂氧化锆粉体,其通式为Zr1-xRE2xO2+x,其中,RE为正三价态的稀土元素,0.01≤x≤0.05;
S2、脱泡步骤:将步骤S1制得的所述浆料进行真空脱泡处理,得到脱泡后的浆料;
S3、流延步骤:将步骤S2制得的脱泡后的浆料流延,得到流延膜片;
S4、生坯制备:将步骤S3制得的流延膜片叠层后进行等静压处理,得到陶瓷生坯;
S5、固结步骤:包括
S5.1、排除有机物步骤:将步骤S4制得的陶瓷生坯置于烧结炉中,于2-3个大气压强范围内,及500℃-600℃温度范围内,对陶瓷生坯中的有机物进行分解;
S5.2、烧结步骤:将经步骤S5.1处理后的陶瓷生坯在真空条件下继续于烧结炉中进行烧结,以得到氧化锆陶瓷;其中,烧结温度为1400℃-1450℃,真空度小于1Pa。
2.根据权利要求1所述的氧化锆陶瓷的制备方法,其特征在于:步骤S1中所述第一混合物还包括可挥发性盐粉体,所述可挥发性盐粉体的挥发温度低于1250℃,且可挥发性盐粉体与所述氧化锆陶瓷粉体的质量比为0.85~1:100。
3.根据权利要求2所述的氧化锆陶瓷的制备方法,其特征在于:所述可挥发性盐粉体为钨酸锂和/或钽酸锂。
4.根据权利要求1所述的氧化锆陶瓷的制备方法,其特征在于:步骤S1中所述第一次混合和第二次混合的方式为砂磨,砂磨转速为800-1500rpm,第一次混合的时间为10-60min,第二次混合的时间为1-5h;或,步骤S1中所述第一次混合和第二次混合的方式为球磨,料球比为2-5:1,转速为90-600rpm,第一次混合的时间为5-24h,第二次混合的时间为5-24h。
5.根据权利要求1所述的氧化锆陶瓷的制备方法,其特征在于:步骤S1中所述氧化锆陶瓷粉体中Zr源和RE源分别采用氧化物、氯化物、硝酸盐、碳酸盐、或硫酸盐中的一种,且所述浆料中氧化锆陶瓷粉体占浆料总质量的45%-70%。
6.根据权利要求1所述的氧化锆陶瓷的制备方法,其特征在于:步骤S1中所述稀土元素包括Y、Co、Sc、La、Dy、Er、Eu、或Sm中的一种或几种。
7.根据权利要求1所述的氧化锆陶瓷的制备方法,其特征在于:步骤S5.1中烧结炉从室温升至350℃时的升温速率为0.2-1℃/min,从350℃升至600℃时的升温速率为1-3℃/min;在步骤S5.1中,向烧结炉内通入反应气氛以保持烧结炉内的压强,所述反应气氛为碳氧化物气体或氮氧化物气体。
8.根据权利要求1所述的氧化锆陶瓷的制备方法,其特征在于:步骤S5.2中所述烧结炉由600℃升至1100℃时的升温速率为5-10℃/min,由1100℃升至1450℃时的升温速率为3-5℃/min。
9.根据权利要求1所述的氧化锆陶瓷的制备方法,其特征在于:步骤S1中所述分散剂包括磷酸酯、铵盐、聚氨酯、聚丙烯酸、聚丙烯酸钠、脂肪酸衍生物、聚甲基丙烯酸甲酯、以及高分子嵌段聚合物中的至少一种;所述分散剂与所述氧化锆陶瓷粉体的质量比为0.5-2:100。
10.根据权利要求1所述的氧化锆陶瓷的制备方法,其特征在于:步骤S1中所述PVB胶水包括聚乙烯醇缩丁醛酯、溶剂和增塑剂;其中,各组成部分的质量份数比为,聚乙烯醇缩丁醛酯:溶剂:增塑剂=20~30:40~80:5~20;所述增塑剂包括邻苯二甲酸丁基苄酯、聚乙二醇或指邻苯二甲酸二辛酯中的至少一种;所述溶剂包括甲苯、二甲苯、甲醇、无水乙醇、丙醇、丙酮、正丁醇、异丙醇、丙三醇、丁酮、三氯乙烯中的至少一种。
CN202110119119.0A 2021-01-28 2021-01-28 一种氧化锆陶瓷的制备方法 Pending CN112876245A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110119119.0A CN112876245A (zh) 2021-01-28 2021-01-28 一种氧化锆陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110119119.0A CN112876245A (zh) 2021-01-28 2021-01-28 一种氧化锆陶瓷的制备方法

Publications (1)

Publication Number Publication Date
CN112876245A true CN112876245A (zh) 2021-06-01

Family

ID=76053066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110119119.0A Pending CN112876245A (zh) 2021-01-28 2021-01-28 一种氧化锆陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN112876245A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436651A (zh) * 2022-03-14 2022-05-06 湖北丹瑞新材料科技有限公司 一种ysz陶瓷芯片的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534001A (zh) * 2003-04-02 2004-10-06 珠海粤科清华电子陶瓷有限公司 由流延法制备氧化锆陶瓷的方法及其由该方法获得的产品
CN106098968A (zh) * 2016-08-12 2016-11-09 京东方科技集团股份有限公司 一种烧结方法
CN106986631A (zh) * 2017-04-01 2017-07-28 广东百工新材料科技有限公司 一种陶瓷手机外壳及其制备方法
CN107399969A (zh) * 2016-05-19 2017-11-28 张尚权 一种原位流延制备氧化锆陶瓷片的方法
CN108046798A (zh) * 2017-12-01 2018-05-18 广东百工新材料科技有限公司 一种氧化锆陶瓷手机后盖及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1534001A (zh) * 2003-04-02 2004-10-06 珠海粤科清华电子陶瓷有限公司 由流延法制备氧化锆陶瓷的方法及其由该方法获得的产品
CN107399969A (zh) * 2016-05-19 2017-11-28 张尚权 一种原位流延制备氧化锆陶瓷片的方法
CN106098968A (zh) * 2016-08-12 2016-11-09 京东方科技集团股份有限公司 一种烧结方法
CN106986631A (zh) * 2017-04-01 2017-07-28 广东百工新材料科技有限公司 一种陶瓷手机外壳及其制备方法
CN108046798A (zh) * 2017-12-01 2018-05-18 广东百工新材料科技有限公司 一种氧化锆陶瓷手机后盖及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436651A (zh) * 2022-03-14 2022-05-06 湖北丹瑞新材料科技有限公司 一种ysz陶瓷芯片的制备方法及其应用

Similar Documents

Publication Publication Date Title
KR100794071B1 (ko) 핵연료 소결체의 제조 방법
US20160002117A1 (en) Transparent spinel article and tape cast methods for making
CN111394706B (zh) 一种晶粒尺寸可控ito陶瓷靶材的制备方法
CN108640672A (zh) 一种镁铝尖晶石透明陶瓷的制备方法
CN110776311A (zh) 一种热压烧结制备钙钛矿型复合氧化物高熵陶瓷的方法
CN113354407A (zh) 一种掺铝氧化锌靶材的变温快烧工艺
CN115231903B (zh) 一种大尺寸高纯陶瓷基板的制备工艺
CN112876245A (zh) 一种氧化锆陶瓷的制备方法
CN110986586B (zh) 一种烧结装置及一种氧化物陶瓷靶材的制备方法
CN113773092A (zh) 氮化硅陶瓷基板生坯及其制备方法、陶瓷基板
CN112759398B (zh) 碳化硼陶瓷及其制备方法
KR101222867B1 (ko) 구형 기공 전구체를 이용한 고체산화물 연료전지용 연료극 지지체와 고체산화물 연료전지 및 그 제조방법
CN116396076B (zh) 一种导电铌酸锂靶材的制备方法
CN110698206B (zh) 大尺寸氮化硅轴承球的烧结方法和大尺寸氮化硅轴承球的制备方法
CN116275050B (zh) 一种高强度钼的制备方法
US20130045359A1 (en) Ceramic article and method for making same, and electronic device using same
CN114751754B (zh) 一种氮化硅陶瓷基板素坯的制备方法
US10633290B2 (en) High strength transparent ceramic using corundum powder and methods of manufacture
EP2990391A1 (en) Nano-porous corundum ceramics and methods of manufacture
CN110590353A (zh) 一种提升yag基透明陶瓷掺杂离子固溶度的方法
CN113045310B (zh) 一种am凝胶注模成型工艺制备锆酸镧钆透明陶瓷的方法
CN113182522B (zh) 一种金属超薄砂轮脱脂烧结一体化的热等静压方法
US20140072469A1 (en) Inert high hardness material for tool lens production
CN114133270A (zh) 中空平板陶瓷过滤膜及其制备方法
KR100531743B1 (ko) 세라믹 테이프를 사용하여 제조된 세라믹 분리막 및 이의제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210601