CN112858423A - 乙烯基钌配合物氧化电聚合薄膜的制备及其光电催化氧还原 - Google Patents

乙烯基钌配合物氧化电聚合薄膜的制备及其光电催化氧还原 Download PDF

Info

Publication number
CN112858423A
CN112858423A CN202011618747.5A CN202011618747A CN112858423A CN 112858423 A CN112858423 A CN 112858423A CN 202011618747 A CN202011618747 A CN 202011618747A CN 112858423 A CN112858423 A CN 112858423A
Authority
CN
China
Prior art keywords
vinyl
film
ruthenium complex
photo
electropolymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011618747.5A
Other languages
English (en)
Other versions
CN112858423B (zh
Inventor
王克志
尹红菊
张晨星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN202011618747.5A priority Critical patent/CN112858423B/zh
Publication of CN112858423A publication Critical patent/CN112858423A/zh
Application granted granted Critical
Publication of CN112858423B publication Critical patent/CN112858423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F130/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F130/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/36Glass electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明首次公开了一种含乙烯基钌配合物的氧化电聚合薄膜的制备方法、电化学和光电化学的性质,采用简单的电化学的方法使乙烯基单核钌配合物在ITO电极上形成聚合物薄膜,该聚合物薄膜在二氯甲烷溶液中具有较好的稳定性,电化学结果显示具有较好的氧化还原性质和较低的电荷转移电阻。光电实验结果显示聚合3圈的薄膜具有显著的阴极光电流性质和氧气还原的催化性质。当偏压为0V时,随着电子给体氢醌的浓度的增加,聚合3圈的薄膜展现出光电流极性光开关的特性,由阴极光电流转变成较高的阳极光电流(光电流密度)2.58μA(9.22μA/cm2)。在加入0.84mM氢醌的0.1M Na2SO4水溶液中,聚合3圈的薄膜的单色光光电转化效率值高达0.605%。因此,本发明中的含乙烯基的钌配合物氧化电聚合薄膜的制备方法是首次报道的例子,在能量转换领域有着广泛的应用前景。

Description

乙烯基钌配合物氧化电聚合薄膜的制备及其光电催化氧还原
技术领域
本发明属于电化学领域,涉及含乙烯基钌配合物首次通过氧化电聚合制备薄膜的方法及其电化学和光电化学性质。
背景技术
近年来,金属配合物薄膜修饰电极在电致变色、太阳能转换、染料敏化太阳能电池、水催化氧化和二氧化碳催化还原等方面的应用引起了广泛的关注。常见的修饰电极的方法主要有共价自组装、层层自组装、电聚合、电喷射、旋涂和滴涂[C.X.Zhang,T.Yang,H.J.Yin,L.H.Gao,K.Z.Wang,Electrodeposited thiophene-containing organic smallmolecule-modified ITO electrode with highly efficient photoelectricconversion and photoelectrochemical oxygen reduction.Electrochim.Acta,2020,362,137150-137161]。其中,旋涂和滴涂这两种方法主要适用于溶解度较好的聚合物。相比较之下,电聚合具有以下优点:(1)单体不需要太好的溶解度;(2)单体可以在电极表面实现原位电聚合;(3)聚合操作简单;(4)可以通过改变聚合圈数控制聚合膜的厚度;(5)通过改变电化学参数进行掺杂[H.Yin,T.Yang,K.Z.Wang,J.Tong,S.Y.Yu,Unusualphotoelectrochemical properties of electropolymerized films of atriphenylamine-containing organic small molecule.Langmuir,2019,35,12620-12629]。常见的电聚合基团主要有:噻吩基,咔唑基,乙烯基,吡咯基,三苯胺基及其他芳香胺等。其中,文献报道的乙烯基金属配合物主要是采用还原电聚合的方法制备薄膜。
Figure BDA0002877592600000011
Meyer和其他作者早在1981年就首次报道了乙烯基取代配体的Ru配合物和铁配合物通过还原电聚合制备了具有电化学活性的薄膜[H.D.
Figure BDA0002877592600000012
P.Denisevich,M.
Figure BDA0002877592600000013
T.J.Meyer,R.W.Murray,Rectifying interfaces using two-layer films ofelectrochemically polymerized vinylpyridine and vinylbipyridine complexes ofruthenium and iron on electrodes.J.Am.Chem.Soc.,1981,103,1-5]。之后,涌现出了很多含乙烯基的金属配合物还原电聚合薄膜修饰电极的制备、电化学性质研究及在电催化、电分析、相分离、化学发光和CO2还原等方面的应用[H.D.
Figure BDA0002877592600000014
Coordination chemistryin two dimensions:chemistry modified electrodes.Coord.Chem.Rev.,1988,86,135-189]。近年来,钟课题组制备了一系列乙烯基吡啶钌配合物,通过还原电聚合在电极表面组装膜,并研究了其近红外电致变色等性质[Y.W.Zhong,C.J.Yao,H.J.Nie,Electropolymerized films of vinyl-substituted polypyridine complexes:synthesis,characterization,and applications.Coord.Chem.Rev.2013,257,1357-1372]。例如,电聚合薄膜Poly-[Ru2(vtpy)2(tpb)]2+[C.J.Yao,Y.W.Zhong,H.D.
Figure BDA0002877592600000015
J.Yao,Near-IR electrochromism in electropolymerized films of abiscyclometalated ruthenium complex bridged by1,2,4,5-tetra(2-pyridyl)benzene.J.Am.Chem.Soc.,2011,133,20720-20723]和poly-[Ru2(vtpy)2(tppyr)]2+[C.J.Yao,J.Yao,Y.W.Zhong,Metallopolymeric films based on a biscyclometalatedruthenium complex bridged by 1,3,6,8-tetra(2-pyridyl)pyrene:applications innear-infrared electrochromic windows.Inorg.Chem.,2012,51,6259-6263]表现出良好的电化学稳定性和三色可调近红外电致变色,且响应时间短、长时记忆和较好的对比度;最近他们组也观察到乙烯基环金属钌胺配合物还原电聚合薄膜展示了多态近红外电致变色,优异的对比度(1070nm处为52%,700nm处为76%),长保留时间和信息存储性能以及近红外电致变色性质[B.B.Cui,J.H.Tang,J.N.Yao,Y.W.Zhong,A Molecular platform formultistate near-infrared electrochromism and flip-flop,flip-flap-flop,andternary memory.Angew.Chem.Int.Ed.,2015,54,9192-9197]。目前为止,已经报导的乙烯基金属配合物的电聚合制备薄膜修饰电极采用的都是还原电聚合,而还原电聚合实验中的电解液需要严格的除氧操作。有的乙烯基金属配合物的还原电聚合薄膜不太稳定,且电化学活性变差[H.J.Nie,J.Y.Shao,J.Wu,J.Yao,Y.W.Zhong,Synthesis and reductiveelectropolymerization of metal complexes with5,5′-divinyl-2,2′-bipyridine.Organometallics,2012,31,6952-6959]。
发明内容
本发明是首次由乙烯基Ru(II)配合物单体通过氧化电聚合的方法在铟-锡氧化物(ITO)导电玻璃和玻碳电极上制备了薄膜,该薄膜具有较好的稳定性,良好的氧化还原性质和较大的光电响应;且随着电子给体氢醌浓度的增加,该薄膜展现出了光电流极性开关的性质。
本发明的技术方案如下:
本发明所提供的含乙烯基钌配合物电聚合薄膜,在三电极体系的电解池中加入溶解含有0.8mM乙烯基钌配合物的0.1M六氟合磷酸四丁基铵的CH2Cl2溶液中,通过氧化电聚合的方法将乙烯基钌配合物沉积到工作电极表面。改变聚合过程的扫描圈数,可以得到不同厚度的聚合物薄膜。所述乙烯基钌配合物由阳离子部分和阴离子(抗衡离子)两部分组成,其中阳离子部分为[RuL3]2+,阴离子部分为无机盐阴离子(ClO4 2-,PF6 2-或Cl-),配体L的结构如下式所示,其中R1=H或苯基:
Figure BDA0002877592600000021
具体地,乙烯基钌配合物的分子式为[RuL3](PF6)2,结构如下式所示,其中R1=H或苯基:
Figure BDA0002877592600000031
本发明还提供上述乙烯基钌配合物聚合薄膜的氧化电聚合方法、电化学及光电化学性质。
与现有技术相比,本发明的有益效果在于:
这是首次发现乙烯基钌配合物能通过氧化电聚合的方法在ITO和玻碳电极上制备薄膜。其中ITO/ploy-Ru膜在0.1M的二氯甲烷中比较稳定,连续重复扫描100圈之后,峰电流衰减约23%。本发明测定了ITO/ploy(Ru)膜的紫外可见吸收光谱、氧化还原性质、电化学阻抗性质及光电化学性质(光电流大小、通氮气/氧气之后的光电流响应、电子给体氢醌存在下光电流极性开光性质及光电转换效率)。由此可见,本发明中的乙烯基钌配合物聚合薄膜在能量转换领域和光电催化领域具有潜在的应用前景。
附图说明
图1[RuL3](PF6)2溶液的循环伏安图,铂电极为辅助电极,银丝为预参比电极,扫速为0.1V/s;(a)ITO为工作电极,连续扫描5圈,(b)玻碳电极为工作电极,连续扫描10圈。
图2聚合薄膜ITO/ploy(Ru)n(n=1~5)的紫外可见吸收光谱,插图为300nm和456nm处的吸光度与膜聚合圈数n的线性关系图。
图3[RuL3](PF6)2电聚合3圈所得聚合薄膜ITO/ploy(Ru)3的在0.1M六氟合磷酸四丁基铵的二氯甲烷溶液中扫描100圈后的循环伏安图。
图4不同扫速下聚合薄膜在0.1M六氟合磷酸四丁基铵的二氯甲烷溶液中的循环伏安图:(a)ITO/ploy(Ru)1,扫描速率范围0.01~0.09V/s和(b)ITO/ploy(Ru)2,扫描速率范围0.01~0.1V/s。插图为峰电流与扫描速率的线性关系。
图5(a)聚合薄膜ITO/ploy(Ru)n(n=1~5)在5mM[Fe(CN)6]3-/4-0.1M的Na2SO4水溶液中的电化学阻抗谱图,(b)拟合电化学阻抗谱图的等效电路。
图6(a)不同聚合圈数的聚合薄膜ITO/ploy(Ru)n(n=1~5)在偏压-0.4V下的光电流响应图,插图为薄膜的光电流与不同聚合圈数的关系图;(b)ITO/ploy(Ru)3在不同偏压下的光电流响应图,插图为光电流与偏压的关系图。
图7-0.4V偏压下,聚合薄膜ITO/ploy(Ru)3在空气、氧气和氮气平衡的0.1M Na2SO4溶液中的光电流响应图。
图8(a)0V偏压下,电子给体氢醌(H2Q)浓度变化对聚合薄膜ITO/ploy(Ru)3在0.1MNa2SO4溶液中的光电流密度的影响,(b)从阴极到阳极的光电流极性开关图。
图9 0V偏压下,聚合薄膜ITO/ploy(Ru)3在的紫外可见吸收光谱和在0.84mM氢醌的Na2SO4溶液中的光电流工作谱的对比图。
具体实施方式
下面通过实施例对本发明进一步说明。
实施例一、配体L(R1=苯基)的制备
配体L的合成路线如下所示:
Figure BDA0002877592600000041
210mg(1.0mmol)的二酮,198mg(1.5mmol)的对乙烯基苯甲醛,770mg醋酸铵,93mg(1mmol)的苯胺和10mL的醋酸放于50mL圆底烧瓶中,氮气保护下,110℃反应12h。冷却至室温,加入150mL的水,用氨水将溶液pH调制中性,产生浅黄色沉淀,抽滤,得粗产品。粗产品经二氯甲烷/乙腈=1:3(V/V)重结晶,得到浅黄色晶体,真空干燥,产量:270mg,产率:67.8%。
氢核磁共振谱(δH,ppm,400MHz,d-CDCl3):9.20(d,J=4.4Hz,1H),9.16(d,J=8.4Hz,1H),9.05(d,J=4.4Hz,1H),7.76(dd,J1=8.4Hz,J2=4.4Hz,1H),7.69-7.62(m,3H),7.56-7.52(m,4H),7.44(d,J=8.4Hz,1H),7.35(t,1H),7.33(t,1H),7.29(dd,J1=8.4Hz,J2=4.4Hz,1H),6.67(dd,J1=17.6Hz,J2=10.8Hz,1H),5.76(d,J=17.6Hz,1H),5.29(d,J=10.8Hz,1H)。
质谱(Triple TOFTM 5600+MS in CH3OH):计算值,m/z=399.15(M+H+);实验值,m/z=399.42(M+H+,100%)。
元素分析C27H18N4·0.9H2O:理论值:C,78.20;H,4.81;N,13.51;实验值:C,78.15;H,4.43;N,13.31。
实施例二、乙烯基钌配合物[RuL3](PF6)2的制备(R1=苯基)
钌配合物[RuL3](PF6)2的合成路线如下所示:
Figure BDA0002877592600000051
将171mg(0.429mmol)的配体L和34mg(0.13mmol)的RuCl3·3H2O同时加入25mL的乙醇溶液中,氮气保护下回流24h,然后冷却到室温。反应液经过滤后,浓缩的粗产品。粗产品通过硅胶柱层析,以v/v(CH3CN/MeOH)=15:1,为洗脱剂,收集橘黄色色带得到红色固体。红色固体经过乙腈/乙醚扩散重结晶后得到约120mg纯品,产率:58.3%。
氢核磁共振谱(δH,ppm,400MHz,d-DMSO):9.21~9.14(m,3H),8.09~8.02(m,3H),7.98~7.91(m,3H),7.85~7.66(m,18H),7.59~7.54(m,6H),7.50~7.46(m,9H),7.43~7.35(m,3H),6.74~6.67(m,3H),5.89(d,J=17.84Hz,3H),5.32(d,J=11.28Hz,3H)。
质谱(Triple TOFTM 5600+MS in CH3OH):计算值,m/z=648.18([M–2PF6]2+);实验值,m/z=648.71([M–2PF6]2+,100%)。
元素分析C81H54F12N12P2Ru·2.3H2O:理论值:C,59.77;H,3.63;N,10.33;实验值:C,59.74;H,3.68;N,10.30。
实施例三、乙烯基钌配合物电聚合薄膜的制备
1.ITO导电玻璃的清洗。按照文献[H.Yin,T.Yang,K.Z.Wang,J.Tong,S.Y.Yu,Unusual photoelectrochemical properties of electropolymerized films of atriphenylamine-containing organic small molecule.Langmuir,2019,35,12620-12629]中的方法进性清洗。
2.乙烯基钌配合物氧化电聚合薄膜修饰电极的方法
在含0.8mM乙烯基钌配合物的电解质溶液(0.1M六氟合磷酸四丁基铵的二氯甲烷溶液)中,先通入氮气20min以除去电解液中的氧气,采用三电极体系(ITO或玻碳电极为工作电极,铂丝为辅助电极,银丝为参比电极),固定扫速为0.1V/s,在电位范围0V~2.0V内分别扫描1圈,2圈,3圈,4圈,5圈等可制备不同圈数的薄膜。
实施例四、电聚合薄膜的表征、电化学及光电化学性质
(一)电聚合薄膜的表征
从氧化电聚合过程中的循环伏安图(见图1)中可以看出,随着聚合圈数的增加,峰电流呈现增大的趋势,说明单体在ITO导电玻璃上和玻碳电极上都聚合成膜。
通过测定ITO/ploy(Ru)n(n=1~5)的紫外可见吸收光谱(见图2),发现随着聚合圈数的增加,在300nm处和456nm处的吸光度也呈现增长的趋势,说明钌配合物成功的沉积到ITO电极上。且1~3层紫外可见光谱显示360nm处出现新的吸收峰,与单体[RuL3](PF6)2的紫外可见吸收光谱相比,这是一个新的吸收带,说明ITO电极上的薄膜结构与单体不同。
(二)电化学性质
所有的电化学性质测试都在CHI-660D电化学工作站中进行,采用三电极体系,铂丝为辅助电极,电聚合薄膜ITO/ploy(Ru)n为工作电极,银丝为预参比电极,之后用二茂铁(E°=+0.425V versus SCE)做内标[C.J.da Cunha,E.S.Dodsworth,M.A.Monteiro,A.B.P.Lever,Bis(2,2′-bipyridine)(1,2-diimino-9,10-anthraquinone)-ruthenium(II)derivatives:A ZINDO analysis of a redox series involving coupled protonand electron transfers.Inorg.Chem.,1999,38,5399-5409]。电解液为0.1M二氯甲烷溶液。
聚合薄膜ITO/ploy(Ru)3的稳定性实验(见图3)显示,在0.1V/s的扫描速率下,重复扫描100圈之后,损失率约为23%。
通过测定ITO/ploy(Ru)1和ITO/ploy(Ru)2的循环伏安图(见图4)发现电聚合薄膜具有良好的氧化还原性质。
电化学阻抗实验是在支持电解质为含5mM[Fe(CN)6]3-/4-0.1M的Na2SO4水溶液中进行测试,图5(b)为拟合EIS谱的等效电路图。
(三)光电化学性质
光电化学性质测试均采用光源为500W超高压球形氙灯高亮度光源系统(北京畅拓科技有限公司);在CHI-660D电化学工作站上测定电聚合薄膜的光电流-时间曲线(I-t曲线),电极面积为0.282cm2,支持电解液为0.1M硫酸钠溶液。
在同一偏压(-0.4V)下,测定不同聚合圈数的电聚合薄膜ITO/ploy(Ru)n(n=1~5)的光电流-时间曲线(见图6a),发现在白光重复“开/关”循环下快速产生了可重复的光电流响应。其中聚合3圈(n=3)的聚合薄膜具有最大阴极光电流(电流密度):2.25μA(8.04μA/cm2)。
通过施加不同的偏压,测定聚合薄膜ITO/ploy(Ru)3的光电流-时间曲线(见图6b),发现所加的偏压越负,该电聚合薄膜的光电流越大,充分说明该聚合薄膜产生的是阴极光电流。
为了研究电子给体(氢醌,H2Q)和电子受体(O2)对聚合薄膜的光电流响应的影响,测定在H2Q和O2存在下,聚合薄膜ITO/ploy(Ru)3的光电流-时间曲线。试验结果(见图7)表明在氧气饱和的电解液体系中,ITO/ploy(Ru)3的光电流增强到9.56μA,是氮气饱和的电解液体系中的4.7倍。随着氢醌浓度的增加,聚合薄膜ITO/ploy(Ru)3的光电流极性从阴极转向阳极,并在氢醌浓度为0.84mM时,达到最大的阳极光电流(电流密度)2.58μA(9.22μA/cm2)。
乙烯基钌配合物电聚合薄膜的单色光转换效率(IPCE)按下列公式1计算:
Figure BDA0002877592600000071
Jsc为光电流密度的大小(mW·cm-2),
Figure BDA0002877592600000072
是特定波长下入射光的强度(mA·cm-2),λ是入射单色光波长(nm)。
通过测定在偏压为0V和氢醌浓度为0.84mM时电聚合薄膜ITO/ploy(Ru)3在不同波长单色光下的光电转换效率IPCE值为0.605%(见图9)。

Claims (3)

1.一种含乙烯基的钌配合物[RuL3](PF6)2,其特性在于其结构如下式所示:
Figure FDA0002877592590000011
2.如权利要求1所述的乙烯基单核钌配合物的电聚合薄膜制备方法,其特性在于通过氧化电聚合方法将含乙烯基钌配合物聚合到ITO导电玻璃或玻碳电极上得到的薄膜。
3.权利要求1所述的乙烯基钌配合物的薄膜修饰电极在光电转换和光电化学氧还原领域中的应用。
CN202011618747.5A 2020-12-31 2020-12-31 乙烯基钌配合物氧化电聚合薄膜的制备及其光电催化氧还原 Active CN112858423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011618747.5A CN112858423B (zh) 2020-12-31 2020-12-31 乙烯基钌配合物氧化电聚合薄膜的制备及其光电催化氧还原

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011618747.5A CN112858423B (zh) 2020-12-31 2020-12-31 乙烯基钌配合物氧化电聚合薄膜的制备及其光电催化氧还原

Publications (2)

Publication Number Publication Date
CN112858423A true CN112858423A (zh) 2021-05-28
CN112858423B CN112858423B (zh) 2023-02-24

Family

ID=75998975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011618747.5A Active CN112858423B (zh) 2020-12-31 2020-12-31 乙烯基钌配合物氧化电聚合薄膜的制备及其光电催化氧还原

Country Status (1)

Country Link
CN (1) CN112858423B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259687A (ja) * 2004-02-13 2005-09-22 Kochi Univ 色変換フィルタおよびそれを用いた有機elディスプレイ
CN102924384A (zh) * 2011-08-12 2013-02-13 财团法人工业技术研究院 含乙烯基的咪唑衍生物及其在电致发光元件中的用途
CN106946884A (zh) * 2017-03-22 2017-07-14 浙江工业大学 A‑π‑A`化合物及其制备方法与应用
CN108676149A (zh) * 2018-03-30 2018-10-19 北京师范大学 一种钌配合物薄膜的高效电化学聚合制备和应用
CN110294855A (zh) * 2019-07-09 2019-10-01 北京师范大学 基于噻吩功能化的钌(ⅱ)配合物3d电聚合薄膜
CN110400910A (zh) * 2018-04-24 2019-11-01 北京工商大学 一种杂多配合物/钌配合物电聚合薄膜的制备及其光电性能

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259687A (ja) * 2004-02-13 2005-09-22 Kochi Univ 色変換フィルタおよびそれを用いた有機elディスプレイ
CN102924384A (zh) * 2011-08-12 2013-02-13 财团法人工业技术研究院 含乙烯基的咪唑衍生物及其在电致发光元件中的用途
US20130041153A1 (en) * 2011-08-12 2013-02-14 Chien-Hong Cheng Derivatives having vinyl group and its use in electroluminescent element
CN106946884A (zh) * 2017-03-22 2017-07-14 浙江工业大学 A‑π‑A`化合物及其制备方法与应用
CN108676149A (zh) * 2018-03-30 2018-10-19 北京师范大学 一种钌配合物薄膜的高效电化学聚合制备和应用
CN110400910A (zh) * 2018-04-24 2019-11-01 北京工商大学 一种杂多配合物/钌配合物电聚合薄膜的制备及其光电性能
CN110294855A (zh) * 2019-07-09 2019-10-01 北京师范大学 基于噻吩功能化的钌(ⅱ)配合物3d电聚合薄膜

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HAO WANG ET AL.: "Three-dimensional high-rate electropolymerized thin film with exceptionally high photocurrent based on a triphenylamine-containing ruthenium complex", 《ELECTROCHIMICA ACTA》 *
HONG-JU YIN ET AL.: "DNA groove-binding and acid-base properties of a Ru(II) complex containing anthryl moieties", 《NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS》 *
NURUL IZNI ABDULLAH HALID AND SITI AISHAH HASBULLAH: "Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox", 《AIP CONFERENCE PROCEEDINGS》 *
R. OWEN BONELLO ET AL.: "Luminescent rhenium(I) complexes of substituted imidazole[4,5-f]-1,10-phenanthroline derivatives", 《JOURNAL OF ORGANOMETALLIC CHEMISTRY》 *
TONG YANG ET AL.: "A 3D electropolymerized thin film based on a thiophene-functionalized Ru(ii) complex: electrochemical and photoelectrochemical insights", 《INORGANIC CHEMISTRY FRONTIERS》 *
XIANGHONG LI ET AL.: "A new carbazole-based phenanthrenyl ruthenium complex as sensitizer for a dye-sensitized solar cell", 《INORGANICA CHIMICA ACTA》 *

Also Published As

Publication number Publication date
CN112858423B (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
Seo et al. Coumarin dyes containing low-band-gap chromophores for dye-sensitised solar cells
Chen et al. New ruthenium complexes containing oligoalkylthiophene‐substituted 1, 10‐phenanthroline for nanocrystalline dye‐sensitized solar cells
Pastore et al. Computational modeling of stark effects in organic dye-sensitized TiO2 heterointerfaces
Ji et al. Photoinduced electron transfer dynamics of cyclometalated ruthenium (II)–naphthalenediimide dyad at NiO photocathode
Dinçalp et al. Effect of side chain substituents on the electron injection abilities of unsymmetrical perylene diimide dyes
Mikroyannidis et al. New photosensitizer with phenylenebisthiophene central unit and cyanovinylene 4-nitrophenyl terminal units for dye-sensitized solar cells
Cogal et al. Asymmetric phthalocyanine derivatives containing 4-carboxyphenyl substituents for dye-sensitized solar cells
Athanas et al. Co-sensitization of ruthenium (II) dye-sensitized solar cells by coumarin based dyes
Duan et al. New organic dyes containing tert-Butyl-capped N-Arylcarbazole moiety for Dye-sensitized solar cells
Abdellah et al. Visible light photoredox catalysis for the synthesis of new chromophores as co-sensitizers with benchmark N719 for highly efficient DSSCs
Fang et al. Novel diyne-bridged dyes for efficient dye-sensitized solar cells
Chen et al. The effect of different alkyl chains on the photovoltaic performance of D–π–A porphyrin-sensitized solar cells
Karjule et al. Heterotriangulene-based unsymmetrical squaraine dyes: synergistic effects of donor moieties and out-of-plane branched alkyl chains on dye cell performance
Park et al. Effect of regioisomeric substitution patterns on the performance of quinoxaline-based dye-sensitized solar cells
Qiao et al. Effect of π-spacers and anchoring groups on the photovoltaic performances of ullazine-based dyes
Deng et al. Two polymeric metal complexes based on polycarbazole containing complexes of 8-hydroxyquinoline with Zn (II) and Ni (II) in the backbone: Synthesis, characterization and photovoltaic applications
Kabanakis et al. Synthesis of novel semi-squaraine derivatives and application in efficient dye-sensitized solar cells
KR20120099026A (ko) 치환 바이피리딜기를 갖는 이핵 루테늄 착물 색소를 갖는 광전 변환 소자, 및 광화학 전지
Yu et al. Restrain recombination by spraying pyrolysis TiO2 on NiO film for quinoxaline-based p-type dye-sensitized solar cells
Yang et al. A 3D electropolymerized thin film based on a thiophene-functionalized Ru (II) complex: Electrochemical and photoelectrochemical insights
Nasr-Esfahani et al. Fabrication and characterization of a new dye sensitized solar cell with a new Schiff base cobalt complex as a redox mediator
Al-horaibi et al. Novel Squaraine dyes for high-performance in dye-sensitized solar cells: Photophysical properties and adsorption behavior on TiO2 with different anchoring groups
Yin et al. Oxidative electropolymerization films of a styrene-appending ruthenium complex with highly performed electrochemical, solar photoelectric conversion and photoelectrochemical oxygen reduction properties
CN117658899A (zh) 双吡啶作为桥联基团的卟啉聚合物薄膜及其制备方法与应用
CN112858423B (zh) 乙烯基钌配合物氧化电聚合薄膜的制备及其光电催化氧还原

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant