CN112853353B - 一种纳米填料改性陶瓷涂层的制备方法 - Google Patents

一种纳米填料改性陶瓷涂层的制备方法 Download PDF

Info

Publication number
CN112853353B
CN112853353B CN202011626300.2A CN202011626300A CN112853353B CN 112853353 B CN112853353 B CN 112853353B CN 202011626300 A CN202011626300 A CN 202011626300A CN 112853353 B CN112853353 B CN 112853353B
Authority
CN
China
Prior art keywords
coating
nano
ceramic coating
powder
modified ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011626300.2A
Other languages
English (en)
Other versions
CN112853353A (zh
Inventor
白皓
张泽飞
陈豪
李立鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202011626300.2A priority Critical patent/CN112853353B/zh
Publication of CN112853353A publication Critical patent/CN112853353A/zh
Application granted granted Critical
Publication of CN112853353B publication Critical patent/CN112853353B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明提供了一种纳米填料改性陶瓷涂层的制备方法,包括表面清理、制备过渡层、制备陶瓷涂层等步骤。本发明提供的纳米填料改性陶瓷涂层的制备方法具有工艺简单,成本低等特点,制得的纳米填料改性陶瓷涂层具有良好的结合强度、抗热震性能和耐磨性能,同时还显著提高了涂层的使用寿命。与现有技术中的陶瓷涂层相比,本发明制备出的纳米填料改性陶瓷涂层的性能提高了40%以上。

Description

一种纳米填料改性陶瓷涂层的制备方法
技术领域
本发明涉及陶瓷涂层技术领域,尤其涉及一种纳米填料改性陶瓷涂层的制备方法。
背景技术
纳米材料研究是目前材料科学研究领域热点之一。纳米材料是指晶粒尺寸至少在一维方向上小于100nm,且必须具有截然不同于普通块状材料的电学、光学、热学、化学或力学等性能的一类材料体系。纳米材料从根本上改变了材料的结构,可望得到诸如高强金属和合金,塑性陶瓷、金属间化合物以及性能特异的原子规模复合材料等新一代材料,为克服材料科学研究领域中长期末能解决的问题开拓了新的途径。
纳米陶瓷的研究始于80年代中期。纳米陶瓷是指在陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米尺寸水平。由于纳米陶瓷晶粒的细化,晶界数量大幅度增加,可使材料的强度、韧性和超塑性大为提高,并对材料的力学、电学、热学、磁学、光学等性能产生重要的影响。
然而,由于烧结和团聚等难题的困扰,制备纳米结构陶瓷涂层材料还存在一定的技术困难。如何发挥纳米陶瓷涂层材料的优异性能,为人类所用,是当前纳米材料研究亟待解决的问题。目前本领域主要采用料浆法制备纳米陶瓷涂层,该方法工艺简单,无需特殊设备,具备成本低、操作方便、易于涂敷在形状复杂零件上等优点,并且该方法克服了金属基材与陶瓷间存在不润湿、不粘附等难点。采用热喷涂和料浆法两者结合能显著降低成本,提高涂层广泛应用。然而当前料浆法制备的涂层普遍存在结合强度不高、抗热震性以及耐磨性低等缺点,制约了纳米陶瓷涂层材料的应用。因此亟需开发一种米填料改性陶瓷涂层的制备方法,以克服现有技术中存在的问题。
发明内容
为解决上述问题,本发明提供了一种纳米填料改性陶瓷涂层的制备方法,包括以下步骤:
1)清理表面:除去金属基体表面的灰尘、油脂和氧化物,并对其表面进行清洗和干燥;
2)制备过渡层:将金属基体表面粗化,通过热喷涂法将过渡层粉末喷涂至金属基体表面,形成粘结层;
3)将氧化物粉料充分混匀后加入无机粘结剂中,搅拌均匀后加入适量添加剂,搅拌均匀得到料浆后,按比例添加纳米填料后,继续搅拌均匀得到最终料浆;
4)将浆料喷涂或涂覆在步骤2)所形成的粘结层上,形成厚度为150-500μm的表面涂层,将涂层在常温下阴干后形成涂层生坯;
5)将生坯放入加热炉内,通入保护性气体,在400-800℃的条件下,保温烧结2-4h,即可在金属基体上形成具有微结构的陶瓷防护涂层。
进一步的,步骤2)中所述金属基体表面粗化的方法为喷丸或喷砂。
进一步的,步骤2)中所述渡层粉末为NiAl、NiCrAlY、NiCoCrAlY中的一种或几种。
进一步的,所述步骤2)中粘结层的厚度为70-100μm。
进一步的,步骤3)中所述氧化物粉料由以下重量份的原料组成:
氧化硅20-60份;
氧化铝15-40份;
氧化锆10-30份;
氧化钛5-20份。
进一步的,所述步骤3)中的纳米填料为纳米氧化铝粉末或纳米氧化锆粉末。
进一步的,步骤3)中所述无机粘结剂为钠水玻璃和钾水玻璃一种或两种。
进一步的,步骤3)中所述添加剂为有机硅消泡剂。
进一步的,步骤3)中粉料、无机粘结剂、添加剂的重量比为0.8-1.2:1.5-2:0.05-0.3。
进一步的,步骤5)中所述保护性气体为氮气和氩气中的一种或两种。
本发明通过向陶瓷涂层中加入纳米填料的方法,利用纳米填料的纳米效应优化了涂层的物相组成和微观结构,达到了显著改善和提高涂层性能的目的。
与现有技术相比,本发明的有益技术效果:
本发明所述的纳米填料改性陶瓷涂层的制备方法工艺简单,成本低,制得的纳米填料改性陶瓷涂层具有良好的结合强度、抗热震性能和耐磨性能,显著提高了涂层的性能和使用寿命。与现有技术中的陶瓷涂层相比,本发明制备出的纳米填料改性陶瓷涂层性能提高了40%以上。
附图说明
下面结合附图说明对本发明作进一步说明。
图1为加入纳米填料前陶瓷涂层内部的微观结构;
图2为加入纳米填料后陶瓷涂层内部的微观结构。
具体实施方式
本发明提供了一种纳米填料改性陶瓷涂层的制备方法,包括以下步骤:
纳米填料改性陶瓷涂层的制备方法,包括以下步骤:
1)清理表面:除去金属基体表面的灰尘、油脂和氧化物,并对其表面进行清洗和干燥;
2)制备过渡层:将金属基体表面粗化,通过热喷涂法将过渡层粉末喷涂至金属基体表面,形成粘结层;
3)将氧化物粉料充分混匀后加入无机粘结剂中,搅拌均匀后加入适量添加剂,搅拌均匀得到料浆后,按比例添加纳米填料后,继续搅拌均匀得到最终料浆;
4)将浆料喷涂或涂覆在步骤2)所形成的粘结层上,形成厚度为150-500μm的表面涂层,将涂层在常温下阴干后形成涂层生坯;
5)将生坯放入加热炉内,通入保护性气体,在400-800℃的条件下,保温烧结2-4h,即可在金属基体上形成具有微结构的陶瓷防护涂层。
在一个实施例中,步骤2)中所述金属基体表面粗化的方法为喷丸或喷砂。
在一个实施例中,步骤2)中所述渡层粉末为NiAl、NiCrAlY、NiCoCrAlY中的一种或几种。
在一个实施例中,所述步骤2)中粘结层的厚度为70-100μm。
在一个实施例中,步骤3)中所述氧化物粉料由以下重量份的原料组成:
氧化硅20-60份;
氧化铝15-40份;
氧化锆10-30份;
氧化钛5-20份。
在一个实施例中,所述步骤3)中的纳米填料为纳米氧化铝粉末或纳米氧化锆粉末。
在一个实施例中,步骤3)中所述无机粘结剂为钠水玻璃和钾水玻璃一种或两种。
在一个实施例中,步骤3)中所述添加剂为有机硅消泡剂。
在一个实施例中,步骤3)中粉料、无机粘结剂、添加剂的重量比为0.8-1.2:1.5-2:0.05-0.3。
在一个实施例中,步骤5)中所述保护性气体为氮气和氩气中的一种或两种。
本发明通向陶瓷涂层中加入纳米填料,利用纳米填料的纳米效应优化了涂层的物相组成和微观结构,从而达到显著改善涂层性能的目的。
以下结合实施例对本发明提供的纳米填料改性陶瓷涂层的制备方法进行进一步说明。
实施例1
一种纳米填料改性陶瓷涂层的制备方法,包括以下步骤:
1)清理表面:除去金属基体表面的灰尘、油脂和氧化物,并对其表面进行清洗和干燥;
2)制备过渡层:将金属基体表面进行喷砂粗化,通过热喷涂法将过渡层粉末喷涂至金属基体表面,形成厚度为100μm的粘结层;
3)将氧化物粉料充分混匀后加入钠水玻璃中,搅拌均匀后加入适量有机硅消泡剂,搅拌均匀得到料浆后,按比例添加纳米氧化铝粉末和纳米氧化锆粉末,继续搅拌均匀得到最终料浆,所述粉料由以下重量份的原料组成:氧化硅47%;氧化铝25%;氧化锆22%;氧化钛6%;所述粉料、无机粘结剂、添加剂的重量比为1:1.8:0.1;
4)将浆料喷涂或涂覆在步骤2)所形成的粘结层上,形成厚度为200μm的表面涂层,将涂层在常温下阴干后形成涂层生坯;
5)将生坯放入加热炉内,通入氮气,对材料进行烧结,烧结温度为600℃,保温时间为5h,即可在金属基体上形成陶瓷防护涂层。
测试例1
分别测定加入填料前陶瓷涂层的XRD物相组成和加入填料后陶瓷涂层的XRD物相组成,结果如下:
加入前:SiO2、Al2O3、ZrO2、ZrSiO4、Al2Si3O9
加入后:SiO2、Al2O3、ZrO2、ZrSiO4、Al2Si3O9、NaAlSiO4
测试例2
测试实施例1中纳米填料改性陶瓷涂层的结合强度,方法如下:
选用E-7高温胶作为界面粘结剂。将带有涂层的圆柱试样粘到砂纸打磨粗化的对偶拉伸棒上,然后用夹具夹紧拉伸试样,接触压力为0.05MPa。拉伸试样先在室温下放置3小时,再放入恒温加热炉进行105℃×3小时固化处理后,放在空气中冷却,即可以进行拉伸测试。以未添加纳米填料的普通陶瓷涂层作为对照。
选择微机控制电子万能试验机—CMT5105进行拉伸。
测试结果:与对照组相比,加入纳米填料后,改性陶瓷涂层的结合强度提高了1.6倍
测试实施例1中纳米填料改性陶瓷涂层的抗热震性能,方法如下:
抗热震性实验是测定涂层在反复加热到冷却两个状态交替作用下,涂层的抗开裂和剥落的能力。实验方法是将试样放入电阻炉内升温至600℃,保温10分钟后取出来进行一次室温水急冷,等水面平静,取出观察表面是否有剥落现象,如没有出现此现象就再进行一次热冲击循环,直到试样涂层发生剥落,记录下试样的热震循环冲击次数。以未添加纳米填料的普通陶瓷涂层作为对照。
测试结果:与对照组相比,加入纳米填料后,改性陶瓷涂层的抗热震性提高了2.6倍
测试实施例1中纳米填料改性陶瓷涂层的显微硬度,方法如下:
采用THV-1MDX高级自动转塔数显显微硬度计测试涂层和基体的微观硬度。测试条件为:试验加载荷选择200g,加载的时间是15s,对陶瓷涂层的硬度进行测试。以未添加纳米填料的普通陶瓷涂层作为对照。
测试结果:与对照组相比,加入纳米填料后,改性陶瓷涂层的显微硬度提高了2.5倍
测试实施例1中纳米填料改性陶瓷涂层的耐磨性能,方法如下:
耐磨性是以规定摩擦条件下的磨损率或磨损度的倒数来表示,即dt/dV或dL/dV表示材料的耐磨损性能。采用MFW-02型往复式摩擦磨损试验机测定涂层的摩擦磨损性能。其中摩擦副为直径6.35mm的Si3N4陶瓷球,载荷:600g(5.88N),往复行程为10mm,往复频率为3Hz,以此数值表征涂层的耐磨性。
测试结果:与对照组相比,加入纳米填料后,改性陶瓷涂层的耐磨性能提高了2.1倍。

Claims (5)

1.一种纳米填料改性陶瓷涂层的制备方法,其特征在于,包括以下步骤:
1)清理表面:除去金属基体表面的灰尘、油脂和氧化物,并对其表面进行清洗和干燥;
2)制备过渡层:将金属基体表面粗化,通过热喷涂法将过渡层粉末喷涂至金属基体表面,形成粘结层;
3)将氧化物粉料充分混匀后加入无机粘结剂中,搅拌均匀后加入适量添加剂,搅拌均匀得到料浆后,按比例添加纳米填料后,继续搅拌均匀得到最终料浆;
4)将浆料喷涂或涂覆在步骤2)所形成的粘结层上,形成厚度为150-500μm的表面涂层,将涂层在常温下阴干后形成涂层生坯;
5)将生坯放入加热炉内,通入保护性气体,在400-800℃的条件下,保温烧结2-4h,即可在金属基体上形成具有微结构的陶瓷防护涂层;
所述过 渡层粉末为NiAl、NiCrAlY、NiCoCrAlY中的一种或几种;
步骤2)中所述粘结层的厚度为70-100μm;
步骤3)中所述氧化物粉料由以下重量份的原料组成:
氧化硅20-60份;
氧化铝15-40份;
氧化锆10-30份;
氧化钛5-20份。
步骤3)中的纳米填料为纳米氧化铝粉末和纳米氧化锆粉末中的一种或两种;
步骤5)中所述保护性气体为氮气和氩气中的一种或两种。
2.根据权利要求1所述的纳米填料改性陶瓷涂层的制备方法,其特征在于,步骤2)中所述金属基体表面粗化的方法为喷丸或喷砂。
3.根据权利要求1所述的纳米填料改性陶瓷涂层的制备方法,其特征在于,步骤3)中所述无机粘结剂为钠水玻璃和钾水玻璃一种或两种。
4.根据权利要求1所述的纳米填料改性陶瓷涂层的制备方法,其特征在于,步骤3)中所述添加剂为有机硅消泡剂。
5.根据权利要求1所述的纳米填料改性陶瓷涂层的制备方法,其特征在于,步骤3)中粉料、无机粘结剂、添加剂的重量比为0.8-1.2:1.5-2:0.05-0.3。
CN202011626300.2A 2020-12-31 2020-12-31 一种纳米填料改性陶瓷涂层的制备方法 Active CN112853353B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011626300.2A CN112853353B (zh) 2020-12-31 2020-12-31 一种纳米填料改性陶瓷涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011626300.2A CN112853353B (zh) 2020-12-31 2020-12-31 一种纳米填料改性陶瓷涂层的制备方法

Publications (2)

Publication Number Publication Date
CN112853353A CN112853353A (zh) 2021-05-28
CN112853353B true CN112853353B (zh) 2022-03-15

Family

ID=75999496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011626300.2A Active CN112853353B (zh) 2020-12-31 2020-12-31 一种纳米填料改性陶瓷涂层的制备方法

Country Status (1)

Country Link
CN (1) CN112853353B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650029A (zh) * 2012-04-25 2012-08-29 常州大学 一种热作模具钢表面纳米陶瓷复合涂层材料的制备方法
US20150247413A1 (en) * 2014-02-28 2015-09-03 General Electric Company Coated article and method for producing coating
CN109231971A (zh) * 2018-11-13 2019-01-18 普施耐(苏州)工业技术有限公司 一种无溶剂型可喷涂的陶瓷纳米颗粒复合耐磨涂层
CN109440044A (zh) * 2018-11-30 2019-03-08 昆明理工大学 一种多孔耐磨热喷涂陶瓷涂层的制备方法
CN109972070B (zh) * 2019-04-25 2021-07-30 北京科技大学 一种表面涂覆防护涂层的金属复合材料及其制备工艺

Also Published As

Publication number Publication date
CN112853353A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
CN111848198B (zh) 一种氧化铝陶瓷阀芯瓷片的制备方法及其产品
CN111675552B (zh) 一种石墨基材上耐高温涂层及其制备方法
CN105565837A (zh) 一种碳陶复合材料的制备方法及其应用
WO2023103209A1 (zh) 一种改性碳纤维增韧氧化铝自愈合陶瓷的制备方法
CN108822792B (zh) 一种适用于镍基合金的高温胶黏剂制备方法
CN110421114B (zh) 一种耐高温覆膜砂
CN109440045A (zh) 一种电磁感应加热线圈超薄防护工艺
CN112853353B (zh) 一种纳米填料改性陶瓷涂层的制备方法
CN110903074A (zh) 一种碳化硅基体表面高温抗氧化涂层及其制备方法
WO2018094969A1 (zh) 一种专用于激光修复不锈钢表面微小裂纹的微纳米复合粉末
CN108277444B (zh) 一种C/C-ZrC-SiC表层铁基合金改性复合材料及制备方法
CN112279653B (zh) 一种具有裂纹愈合能力的陶瓷材料及其制备方法
CN110591619A (zh) 一种适用于tc4钛基合金的高温胶黏剂制备方法
CN108329040B (zh) 一种铝水流槽用赛隆结合熔融石英预制件及其制造方法
CN115057692B (zh) 一种添加钛铁合金的铝碳滑板砖及其生产方法
CN113996783B (zh) 裂纹愈合热障涂层粉体材料的制备方法
CN113999023B (zh) 用于塞棒的纳米耐火材料制备方法
JPH0250994B2 (zh)
Yamane et al. Bonding of partially-stabilized zirconia and nickel with nickel oxide layer
CN107382345A (zh) 一种微纳米尖晶石增韧的MgO‑MA骨料的制备方法
CN111995418A (zh) 一种高强度高韧性的碳化硅纳米线增强碳化硅陶瓷复合材料的制备方法
CN111825479A (zh) 一种电化学-浸渍协同制备石墨耐高温复合涂层的方法
JPS6251913B2 (zh)
CN107570709B (zh) 一种含金属陶瓷涂层的铜合金及其制备方法和应用
CN104744062A (zh) 一种陶瓷与非晶的连接方法和一种非晶合金-陶瓷复合体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant