CN109972070B - 一种表面涂覆防护涂层的金属复合材料及其制备工艺 - Google Patents

一种表面涂覆防护涂层的金属复合材料及其制备工艺 Download PDF

Info

Publication number
CN109972070B
CN109972070B CN201910338470.1A CN201910338470A CN109972070B CN 109972070 B CN109972070 B CN 109972070B CN 201910338470 A CN201910338470 A CN 201910338470A CN 109972070 B CN109972070 B CN 109972070B
Authority
CN
China
Prior art keywords
resistant
layer
parts
corrosion
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910338470.1A
Other languages
English (en)
Other versions
CN109972070A (zh
Inventor
白皓
张泽飞
李立鸿
汪义如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201910338470.1A priority Critical patent/CN109972070B/zh
Publication of CN109972070A publication Critical patent/CN109972070A/zh
Application granted granted Critical
Publication of CN109972070B publication Critical patent/CN109972070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明公开了一种表面涂覆防护涂层的金属复合材料及其制备工艺,该复合材料包括金属基体、过渡层以及陶瓷层,所述陶瓷层包括厚度为50μm‑100μm的热障层和厚度为100μm‑200μm的耐磨耐蚀层。该复合材料的过渡层与金属基体结合能力强,热障层和耐磨耐蚀层依次与过渡层结合,可综合提高防护涂层的耐热性、耐磨性以及耐蚀性等,从而极大地提高了金属基复合陶瓷涂层在高温磨损腐蚀等恶劣环境下的使用寿命。

Description

一种表面涂覆防护涂层的金属复合材料及其制备工艺
技术领域
本发明涉及金属表面处理技术领域,特别是涉及一种表面涂覆防护涂层的金属复合材料及其制备工艺。
背景技术
随着高新技术的不断发展,对材料性能的要求越来越高,由于工程机械、陶瓷生产辅助设备及构件等工作条件日益苛刻,例如高炉风口和高温烟气管道,要求材料具有耐高温、高温抗氧化、抗疲劳、抗温度急变、耐磨损以及耐侵蚀等性能。其中高炉风口作为高炉冶炼送风的重要部件,承受着高温高速气流的冲击、高速煤粉的腐蚀和炉内液态渣铁的冲刷,这些因素都加剧了风口的失效。风口失效将严重影响高炉的产量、铁水的质量和工人的劳动强度。为解决此问题,涂覆陶瓷涂层技术进入研究视野,该技术通过在金属基体上制备陶瓷涂层,能将金属材料良好的力学性能和陶瓷材料耐高温、耐磨损、耐腐蚀性能相结合。但是传统的陶瓷涂层存在以下弊端:金属基体与陶瓷的热膨胀系数差异较大,在高温环境下,陶瓷涂层易发生脱落,从而降低复合材料的使用寿命,尤其在极端恶劣的作业环境下,其使用寿命更加短暂。
为此,汪义如等人在2017年发表了一篇《过渡层对铜基陶瓷涂层性能的影响》,其中公开了在铜基体表面先通过大气等离子喷涂一层过渡层,然后再采用热化学反应法制备陶瓷层,经热处理后获得一种复合涂层的铜基材料。该铜基复合材料相比金属铜的综合性能得到极大的提升。但是目前的研究存在两个问题,一是在研究中过渡层的厚度为70-150μm,但是较厚的过渡层厚度一方面增加了制备成本,另一方面是限制了陶瓷层的厚度从而降低陶瓷层发挥的作用。二是传统的陶瓷涂层综合性能不高导致复合材料在恶劣环境下的使用寿命不高,从而增加成本并影响正常生产。综上所述,成本低、综合性能高、使用寿命长的金属基防护涂层的复合材料实现在恶劣环境中使用成为本领域亟需解决的技术难题。
发明内容
本发明为了解决上述技术难题,提供了一种表面涂覆防护涂层的金属复合材料。该复合材料的表面依次涂覆过渡层、热障层和耐磨耐蚀层,通过降低过渡层的厚度,实现提高陶瓷层的作用,降低生产成本,并通过将陶瓷层分层,突出提高陶瓷层的各项性能,大大提高了复合材料耐高温耐磨耐腐蚀等综合性能,同时提高了复合材料各层之间的结合能力,最终提高了金属复合材料的使用寿命。
本发明的另一目的是提供了该金属复合材料的制备工艺。
一种表面涂覆防护涂层的金属复合材料,其包括金属基体、过渡层以及陶瓷层,所述陶瓷层包括厚度为50μm-100μm的热障层和厚度为100μm-200μm的耐磨耐蚀层。
在一些实施例中,优选的所述热障层是陶瓷骨料粒径为0.5-100μm的氧化物,所述氧化物包括以下重量份的组分:ZrO2 45-65份、Al2O3 15-30份、MgO 10-20份和Y2O3 1-10份。
在一些实施例中,优选的所述耐磨耐蚀层是陶瓷骨料粒径为0.5-100μm的氧化物,所述氧化物包括以下重量份的组分:SiO2 20-50份、Al2O3 10-30份、TiO2 5-20份、Cr2O3 5-20份、ZnO 1-15份、SiC 1-10份和CeO2 1-10份。
在一些实施例中,优选的所述金属基体为铜、钢、铁、铝、铜合金或铝合金中的一种。
在一些实施例中,优选的所述过渡层选用粒度为200-400目的MCrAlY粉末或NiAl粉末,M为Ni、Co和NiCo中的至少一种,所述过渡层的厚度为50μm-60μm。
一种表面涂覆防护涂层的金属复合材料的制备工艺,包括以下步骤:
金属基体的表面清洗,将金属基体进行表面打磨后,使用表面活性剂和超声波相结合进行清洗,以除去金属基体表面的灰尘、油脂和氧化物;
金属基体的表面粗化,即将表面清洗后的金属喷砂、喷丸或打磨进行粗化;
粗化后的金属基体表面热喷涂过渡层粉末,在金属基体表面形成厚度为50μm-60μm的过渡层所述热喷涂方法包括等离子热喷涂、火焰喷涂、爆炸喷涂中的一种;
制备热障层陶瓷浆料:将热障层陶瓷骨料按比例称取后加入到水中,边搅拌边加入消泡剂和无机黏结剂,其中热障层陶瓷骨料与水、消泡剂、无机黏结剂的重量比为4∶1∶0.15∶8,搅拌均匀后制得热障层陶瓷浆料;
制备耐磨耐蚀层陶瓷浆料:将耐磨耐蚀层陶瓷骨料按比例称取后加入到水中,边搅拌边加入无机黏结剂,其中耐磨耐蚀层陶瓷骨料与水、无机黏结剂的重量比为4∶1∶7,搅拌均匀后制成耐磨耐蚀层陶瓷浆料;
将热障层陶瓷浆料在常温下喷涂或涂覆在过渡层上,在金属基体上形成厚度为50μm-100μm的热障层,并在常温下阴干;
将耐磨耐蚀层陶瓷浆料在常温下喷涂或涂覆在阴干后的热障层上,形成厚度为100μm-200μm的耐磨耐蚀层,并在常温下阴干制成生坯;
将制成的生坯在惰性气氛和还原性气氛保护下进行加热处理,具体处理工艺如下:首先以0.5-1.5℃/min的升温速度加热至85℃,在85℃下保温1h;然后以1.5-3℃/min的升温速度加热至300℃,在300℃下保温1h;然后以1.5-3℃/min的升温速度加热至400-1000℃,在400-1000℃下保温2-6h,随炉冷却后即制得表面涂覆防护涂层的金属复合材料。
优选的,所述无机黏结剂为模数为3.3的硅酸钠水玻璃、硅酸钾水玻璃或磷酸盐中的一种。
优选的,所述消泡剂为有机硅消泡剂。
优选的,所述惰性气氛为氮气,所述还原性气氛为氢气。
更优选的,所述氮气和氢气的体积为4∶1。
与现有技术相比,本发明具有以下有益效果:本发明的表面涂覆防护涂层的金属复合材料,通过在金属基体上依次设置有过渡层、热障层以及耐磨耐蚀层,可充分发挥各层的优良性能,大大提高复合材料的耐高温耐磨耐腐蚀能力以及力学性能;同时本发明的复合材料的制备工艺简单,操作方便、成本低,可广泛使用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1制备的表面涂覆防护涂层的金属复合材料截面的SEM图;
图2为对比例1制备的表面涂覆防护涂层的金属复合材料截面的SEM图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步阐述。
实施例1
一种表面涂覆防护涂层的金属复合材料,如图1所示,其包括铜基体、过渡层以及100μm的热障层、厚度为150μm的耐磨耐蚀层。所述热障层的陶瓷骨料包括以下粒径的氧化物组分分别为:ZrO2 10μm、Al2O3 0.5μm、MgO 20μm和Y2O3 20μm,所述氧化物组分按以下重量份混合:ZrO2 65份、Al2O3 30份、MgO 10份和Y2O3 5份;所述耐磨耐蚀层的陶瓷骨料包括以下粒径的氧化物:SiO2 40μm、Al2O3 1μm、TiO2 10μm、Cr2O3 10μm、ZnO 20μm、SiC 10μm和CeO2 1μm,所述氧化物组分按以下重量份混合:SiO2 30份、Al2O3 10份、TiO2 10份、Cr2O3 10份、ZnO15份、SiC 5份和CeO2 5份;所述过渡层选用粒度为300目NiCoCrAlY粉末,且所述过渡层的厚度为50μm。
该表面涂覆防护涂层的金属复合材料的制备工艺,包括以下步骤:
金属基体的表面清洗,将金属基体进行表面打磨后,使用表面活性剂和超声波相结合进行清洗,以除去金属基体表面的灰尘、油脂和氧化物;
金属基体的表面粗化,即将表面清洗后的金属打磨进行粗化;
采用等离子热喷涂方法将300目NiCoCrAlY粉末喷涂在粗化后的金属基体表面,在金属基体表面形成厚度为50μm的过渡层,其主要工艺参数为:主气氢气流量45L/min、辅气氢气流量0.9-1.0L/min、送粉速率40g/min、喷涂距离100mm、功率500A×70V、移动速率800mm/s;
制备热障层陶瓷浆料:将热障层陶瓷骨料按比例称取后加入到水中,边搅拌边加入消泡剂和无机黏结剂,其中热障层陶瓷骨料与水、消泡剂、无机黏结剂的重量比为4∶1∶0.15∶8,所述无机黏结剂为模数3.3的硅酸钾水玻璃,搅拌均匀后制得热障层陶瓷浆料;
制备耐磨耐蚀层陶瓷浆料:将耐磨耐蚀层陶瓷骨料按比例称取后加入到水中,边搅拌边加入无机黏结剂,其中耐磨耐蚀层陶瓷骨料与水、无机黏结剂的重量比为4∶1∶7,所述无机黏结剂为模数3.3的硅酸钠水玻璃,搅拌均匀后制成耐磨耐蚀层陶瓷浆料;
将热障层陶瓷浆料在常温下喷涂或涂覆在过渡层上,在金属基体上形成厚度为100μm的热障层,并在常温下阴干;
将耐磨耐蚀层陶瓷浆料在常温下喷涂或涂覆在阴干后的热障层上,形成厚度为150μm的耐磨耐蚀层,并在常温下阴干制成生坯;
将制成的生坯在惰性气氛和还原性气氛保护下进行加热处理,具体处理工艺如下:首先以1.0℃/min的升温速度加热至85℃,在85℃下保温1h;然后以3℃/min的升温速度加热至300℃,在300℃下保温1h;然后以2℃/min的升温速度加热至800℃,在800℃下保温3h,自然冷却后即制得表面涂覆复合防护涂层的金属复合材料。
从图1中可以清楚看出,本发明的金属材料中过渡层与金属基体、热障层紧密结合,热障层与耐磨耐蚀层紧密结合。通过600℃高温、载荷500g摩擦副氮化硅的磨损以及二氧化硫和氯气1∶1气氛腐蚀环境下测试,复合材料工作寿命超过200h。
实施例2
一种表面涂覆防护涂层的金属复合材料,其包括铜基体、过渡层以及100μm的热障层、厚度为200μm的耐磨耐蚀层。所述热障层的陶瓷骨料粒径分别为:ZrO2 1μm、Al2O3 0.5μm、MgO 40μm和Y2O3 20μm,包括以下重量份的氧化物:ZrO2 45份、Al2O3 25份、MgO 15份和Y2O3 1份;所述耐磨耐蚀层的陶瓷骨料粒径分别为SiO2 30μm、Al2O3 0.5μm、TiO2 20μm、Cr2O320μm、ZnO 20μm、SiC 10μm和CeO2 1μm,包括以下重量份的氧化物:SiO2 50份、Al2O3 30份、TiO2 20份、Cr2O3 15份、ZnO 15份、SiC 8份和CeO2 8份;所述过渡层选用粒度为200目NiCrAlY粉末,且所述过渡层的厚度为55μm。
该表面涂覆复合防护涂层的金属复合材料的制备工艺,包括以下步骤:
金属基体的表面清洗,将金属基体进行表面打磨后,使用表面活性剂和超声波相结合进行清洗,以除去金属基体表面的灰尘、油脂和氧化物;
金属基体的表面粗化,即将表面清洗后的金属打磨进行粗化;
采用超音速火焰喷涂方法将200目NiCrAlY粉末喷涂在粗化后的金属基体表面,在金属基体表面形成厚度为55μm的过渡层,其主要工艺参数为:电流22.7A、电压103V、主气流量55m3/h、送枌气流量0.34m3/h、喷涂距离380mm;
制备热障层陶瓷浆料:将热障层陶瓷骨料按比例称取后加入到水中,边搅拌边加入消泡剂和无机黏结剂,其中热障层陶瓷骨料与水、消泡剂、无机黏结剂的重量比为4∶1∶0.15∶8,所述无机黏结剂为模数3.3的硅酸钾水玻璃,搅拌均匀后制得热障层陶瓷浆料;
制备耐磨耐蚀层陶瓷浆料:将耐磨耐蚀层陶瓷骨料按比例称取后加入到水中,边搅拌边加入无机黏结剂,其中耐磨耐蚀层陶瓷骨料与水、无机黏结剂的重量比为4∶1∶7,所述无机黏结剂为模数3.3的硅酸钠水玻璃,搅拌均匀后制成耐磨耐蚀层陶瓷浆料;
将热障层陶瓷浆料在常温下喷涂或涂覆在过渡层上,在金属基体上形成厚度为100μm的热障层,并在常温下阴干;
将耐磨耐蚀层陶瓷浆料在常温下喷涂或涂覆在阴干后的热障层上,形成厚度为200μm的耐磨耐蚀层,并在常温下阴干制成生坯;
将制成的生坯在氮气和氢气体积:4∶1的保护下进行加热处理,具体处理工艺如下:首先以1.5℃/min的升温速度加热至85℃,在85℃下保温1h;然后以3℃/min的升温速度加热至300℃,在300℃下保温1h;然后以3℃/min的升温速度加热至1000℃,在1000℃下保温2h,自然冷却后即制得表面涂覆复合防护涂层的金属复合材料。
通过600℃高温、载荷500g摩擦副氮化硅的磨损以及二氧化硫和氯气1∶1气氛腐蚀环境下测试,复合材料工作寿命超过200h。
对比例1
一种金属表面涂覆防护涂层的金属复合材料,其包括铜基体、过渡层以及陶瓷层。所述过渡层和陶瓷层的组成分别与实施例1中的过渡层和热障层与耐磨耐蚀层混合组成相同,陶瓷层厚度为热障层和耐磨耐蚀层的总和即为300μm,其制备工艺如下:
金属基体的表面清洗,将金属基体进行表面打磨后,使用表面活性剂和超声波相结合进行清洗,以除去金属基体表面的灰尘、油脂和氧化物;
金属基体的表面粗化,即将表面清洗后的金属打磨进行粗化;
采用等离子热喷涂方法将300目NiCoCrAlY粉末喷涂在粗化后的金属基体表面,在金属基体表面形成厚度为50μm的过渡层,其主要工艺参数为:主气氢气流量45L/min、辅气氢气流量0.9-1.0L/min、送粉速率40g/min、喷涂距离100mm、功率500A×70V、移动速率800mm/s;
制备耐磨耐蚀层陶瓷浆料:将耐磨耐蚀层陶瓷骨料按比例称取后加入到水中,边搅拌边加入无机黏结剂,其中耐磨耐蚀层陶瓷骨料与水、无机黏结剂的重量比为4∶1∶7,所述无机黏结剂为模数3.2的硅酸钠水玻璃,搅拌均匀后制成耐磨耐蚀层陶瓷浆料;
将耐磨耐蚀层陶瓷浆料在常温下喷涂或涂覆在过渡层上,形成厚度为200μm的耐磨耐蚀层,并在常温下阴干制成生坯;
将制成的生坯在惰性气氛和还原性气氛保护下进行加热处理,具体处理工艺如下:首先以1.5℃/min的升温速度加热至85℃,在85℃下保温1h;然后以3℃/min的升温速度加热至300℃,在300℃下保温1h;然后以3℃/min的升温速度加热至1000℃,在1000℃下保温2h,自然冷却后即制得表面涂覆复合防护涂层的金属材料,如图2所示。
从图2中可以看出,过渡层与金属基体可很好结合,但是其综合性能不高,通过600℃高温、载荷500g摩擦副氮化硅的磨损以及二氧化硫和氯气1∶1气氛腐蚀环境下测试,复合材料工作寿命低于50h。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (6)

1.一种表面涂覆防护涂层的金属复合材料,包括金属基体、过渡层以及陶瓷层,其特征在于,所述陶瓷层包括厚度为50μm-100μm的热障层和厚度为100μm-200μm的耐磨耐蚀层;
所述热障层是陶瓷骨料粒径为0.5-100μm的氧化物,所述氧化物包括以下重量份的组分:ZrO2 45-65份、Al2O3 15-30份、MgO 10-20份和Y2O3 1-10份;
所述耐磨耐蚀层是陶瓷骨料粒径为0.5-100μm的氧化物,所述氧化物包括以下重量份的组分:SiO2 20-50份、Al2O3 10-30份、TiO2 5-20份、Cr2O3 5-20份、ZnO 1-15份、SiC 1-10份和CeO2 1-10份;
所述过渡层选用粒度为200-400目的MCrAlY粉末或NiAl粉末,M为Ni、Co和NiCo中的至少一种,所述过渡层的厚度为50μm-60μm;
所述表面涂覆防护涂层的金属复合材料的制备工艺,包括以下步骤:
金属基体的表面清洗;
金属基体的表面粗化;
粗化后的金属基体表面热喷涂过渡层粉末,在金属基体表面形成厚度为50μm-60μm的过渡层;
制备热障层陶瓷浆料:将热障层陶瓷骨料按比例称取后加入到水中并混合均匀,边搅拌边加入消泡剂和无机黏结剂,其中热障层陶瓷骨料与水、消泡剂、无机黏结剂的重量比为4∶1∶0.15∶8,搅拌均匀后制得热障层陶瓷浆料;
制备耐磨耐蚀层陶瓷浆料:将耐磨耐蚀层陶瓷骨料按比例称取后加入到水中并混合均匀,边搅拌边加入无机黏结剂,其中耐磨耐蚀层陶瓷骨料与水、无机黏结剂的重量比为4∶1∶7,搅拌均匀后制成耐磨耐蚀层陶瓷浆料;
将热障层陶瓷浆料在常温下喷涂或涂覆在过渡层上,在金属基体上成厚度为50μm-100μm的热障层,并在常温下阴干;
将耐磨耐蚀层陶瓷浆料在常温下喷涂或涂覆在阴干后的热障层上,形成厚度为100μm-200μm的耐磨耐蚀层,并在常温下阴干制成生坯;
将制成的生坯在惰性气氛和还原性气氛保护下进行加热处理,具体处理工艺如下:首先以0.5-1.5℃/min的升温速度加热至85℃,在85℃下保温1h;然后以1.5-3℃/min的升温速度加热至300℃,在300℃下保温1h;然后以1.5-3℃/min的升温速度加热至400-1000℃,在400-1000℃下保温2-6h,随炉冷却后即制得表面涂覆防护涂层的金属复合材料。
2.根据权利要求1所述的表面涂覆防护涂层的金属复合材料,其特征在于,所述金属基体为铜、钢、铁、铝、铜合金或铝合金中的一种。
3.根据权利要求1所述的表面涂覆防护涂层的金属复合材料,其特征在于,所述无机黏结剂为模数为3.3的硅酸钠水玻璃、硅酸钾水玻璃或磷酸盐中的一种。
4.根据权利要求1所述的表面涂覆防护涂层的金属复合材料,其特征在于,所述消泡剂为有机硅消泡剂。
5.根据权利要求1所述的表面涂覆防护涂层的金属复合材料,其特征在于,所述惰性气氛为氮气,所述还原性气氛为氢气。
6.根据权利要求5所述的表面涂覆防护涂层的金属复合材料,其特征在于,所述氮气和氢气的体积为4∶1。
CN201910338470.1A 2019-04-25 2019-04-25 一种表面涂覆防护涂层的金属复合材料及其制备工艺 Active CN109972070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910338470.1A CN109972070B (zh) 2019-04-25 2019-04-25 一种表面涂覆防护涂层的金属复合材料及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910338470.1A CN109972070B (zh) 2019-04-25 2019-04-25 一种表面涂覆防护涂层的金属复合材料及其制备工艺

Publications (2)

Publication Number Publication Date
CN109972070A CN109972070A (zh) 2019-07-05
CN109972070B true CN109972070B (zh) 2021-07-30

Family

ID=67086313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910338470.1A Active CN109972070B (zh) 2019-04-25 2019-04-25 一种表面涂覆防护涂层的金属复合材料及其制备工艺

Country Status (1)

Country Link
CN (1) CN109972070B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760783A (zh) * 2019-12-11 2020-02-07 安徽实友电力金具有限公司 一种提高铝合金类电力金具耐磨性的方法
CN111604237B (zh) * 2020-05-11 2023-03-31 中海油常州涂料化工研究院有限公司 一种金属基材保温防护涂层结构的制备方法及金属基材保温防护涂层结构
CN112176340B (zh) * 2020-10-23 2022-10-25 饶平粤兴铜加工有限公司 一种耐高温耐侵蚀疏渣陶瓷涂层的制备方法
CN112176341A (zh) * 2020-11-02 2021-01-05 柯润森 一种金属基材的复合涂层及其施工方法
CN112853353B (zh) * 2020-12-31 2022-03-15 北京科技大学 一种纳米填料改性陶瓷涂层的制备方法
CN112876223B (zh) * 2021-03-11 2024-08-30 成都拓维高科光电科技有限公司 一种耐腐蚀梯度不锈钢表面涂层的制备方法及精密电子元件
CN115044859A (zh) * 2022-06-17 2022-09-13 中国船舶重工集团公司第七二五研究所 一种钛合金材料表面处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139620A (en) * 1978-04-21 1979-10-30 Tokyo Shibaura Electric Co Manufacture of double layered granular ceramic
CN104085153B (zh) * 2014-06-27 2017-01-11 哈尔滨工程大学 复合材料及其制备方法
CN106086765B (zh) * 2016-07-25 2019-01-15 北京航空航天大学 一种抗cmas腐蚀微纳米复合结构热障涂层及其制备方法
CN107254652A (zh) * 2017-06-28 2017-10-17 福州大学 一种多层热障涂层及其制备方法

Also Published As

Publication number Publication date
CN109972070A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN109972070B (zh) 一种表面涂覆防护涂层的金属复合材料及其制备工艺
CN103469142B (zh) 一种紫铜表面超音速火焰喷涂耐磨蚀合金的方法
Du et al. Effect of cobalt content on high-temperature tribological properties of TiC-Co coatings
CN111574206A (zh) 一种大高炉抗侵蚀铁沟浇注料
CN115160835B (zh) 一种微纳多尺度防结焦抗磨损涂料、复合材料及其制备方法
CN107141001B (zh) 复合碳纤维增强铁沟浇注料
CN101497978A (zh) 一种高铬钼合金电弧喷涂用粉芯丝材
CN101555152A (zh) 单铁口高炉出铁主沟喷补料及喷补工艺
CN101962768A (zh) 多工艺复合制备金属表面涂层技术
CN113105115B (zh) 一种具有自修复功能的耐高温搪瓷基复合涂层及其制备方法
CN111944334A (zh) 一种纳米金属陶瓷涂料
CN111575629B (zh) 一种防腐复合层及用途、以及防腐复合内衬层的制备方法
CN103510036A (zh) 用等离子喷涂铜铝合金粉对风口小套进行表面强化的方法
CN101497977A (zh) 一种高铬铝型高耐磨电弧喷涂粉芯丝材
CN102102203A (zh) 耐熔蚀FeAl金属间化合物基复合结构涂层的制备方法
CN115233136B (zh) 用于防氯腐蚀耐磨损涂层材料、复合材料及其制备方法
CN105803377A (zh) 一种含氧化铈和铼的抗高温耐磨损电弧喷涂粉芯丝材、涂层及其制备方法
CN116478564A (zh) 一种耐高温防腐蚀耐磨复合涂层及制备方法
CN101628806B (zh) 纳米复合陶瓷衬里材料及其制备方法
CN115261764B (zh) 一种航空发动机机匣涂层及其制备方法
CN115074654A (zh) 一种抗cmas腐蚀的自愈合热障涂层及其制备方法
CN118875289B (zh) 抗高温耐腐蚀涂层粉末、涂层及制备方法与应用
CN114774828A (zh) 一种接地极表面的热喷涂长效耐蚀防护涂层及其制备方法
CN113388786A (zh) 一种超强度耐磨合金及其制备工艺
CN116574397B (zh) 一种涂料组合物及其在抗冲刷耐腐蚀涂层中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant