CN112853295A - 一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法 - Google Patents

一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法 Download PDF

Info

Publication number
CN112853295A
CN112853295A CN202110020147.7A CN202110020147A CN112853295A CN 112853295 A CN112853295 A CN 112853295A CN 202110020147 A CN202110020147 A CN 202110020147A CN 112853295 A CN112853295 A CN 112853295A
Authority
CN
China
Prior art keywords
thin film
ion implantation
substrate
oxygen ion
film sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110020147.7A
Other languages
English (en)
Inventor
刘豪
毛喜玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN202110020147.7A priority Critical patent/CN112853295A/zh
Publication of CN112853295A publication Critical patent/CN112853295A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法;该方法为对薄膜过渡层材料进行氧离子注入,最终形成由下往上依次为过渡层材料、富Al层、渐变过渡层和热氧化层的渐变过渡结构。本发明采用氧离子注入构建渐变过渡结构,实现由金属相到陶瓷相的渐变过渡,降低热处理温度,减小长时间高温处理对基底材料力学性能和机械性能的影响,同时将薄膜传感器的应用范围推广到中低温;本发明中采用氧离子注入构建的渐变过渡结构的表面为致密氧化层,与薄膜传感器的陶瓷绝缘层构成协同作用,进一步抑制金属基底与敏感层之间的导电电子的传输,提高绝缘层的高温绝缘效果,确保薄膜传感器电学信号的有效性和稳定性。

Description

一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法
技术领域
本发明涉及薄膜传感器的设计及制备技术领域,尤其涉及一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法。
背景技术
随着冶金行业、核力发电、航空发动机的发展,对其高温工作环境提出了更高的要求,而工作在高温环境中的部件,诸如航空发动机涡轮叶片和转轴,也越来越接近其临界工作温度。因此需要对工作在高温环境中的部件进行原位应变、温度等物理的参数测量,以避免其长时间高温工作因蠕变引起疲劳受损及超出工作临界温度而引起力学性能和机械性能减弱导致其工作失效。为了有效实时监测工作在高温环境中的涡轮叶片的疲劳受损情况以及工作温度,需要研发稳定、可靠且适用于高温极端工作环境的应变、温度测量的传感器,对有效预警高温部件的故障及高温环境的普及具有重要意义。
传统的传感器,例如箔式应变片,在使用时需要采用粘接剂粘贴,而粘接剂不耐高温导致传统的传感器不能满足高温的应用需求。而薄膜传感器具有准确高、响应快的优点;采用真空物理气相沉积方法直接制备在涡轮叶片表面不破坏其表面结构,也不需要粘接剂粘贴,因此适用于高温环境;其厚度只有几微米到几十微米不影响涡轮叶片表面气流场,易于实现与航空发动机涡轮叶片等高温部件的一体化集成。
薄膜传感器的工作原理一般是将物理信号通过电路转变为电学信号,如电阻薄膜应变计是将应变信号转变为电阻信号。而涡轮叶片(镍基合金)是良好的导电材料。因此,需要在涡轮叶片与薄膜传感器之间制备一层高电阻率的陶瓷材料(Al2O3等)作为绝缘层,以确保两者之间的电学绝缘,提高传感信号的有效性和稳定性。镍基合金的典型热膨胀系数(TCR,temperature coefficient of resistance)为15.5ppm/℃,而Al2O3陶瓷材料的TCR约为7.5ppm/℃,热失配率为51.6%。因此,较大的温差环境中易因热失配产生内应力导致薄膜传感器脱落失效。同时,金属结构(镍基合金)和陶瓷结构(Al2O3等)也存在结构失配的问题。
早在上世纪60年代,美国航空航天局(NASA,National Aeronautics and SpaceAdministration)便联合罗德岛大学(University of Rhode Island)、罗尔斯-罗伊斯(Rolls-Royce)、通用(GE)电气公司、美国空军等多家科研机构研发航空发动机用薄膜传感器,例如薄膜应变计、薄膜热电偶、薄膜热流量计。为了减小航空发动机涡轮叶片(镍基合金)与陶瓷绝缘层之间的热失配及结构失配,NASA采用电子束蒸发方法在涡轮叶片与Al2O3绝缘层之间制备了一层厚度约为150μm的NiCoCrAlY薄膜作为过渡层材料,过渡层NiCoCrAlY薄膜中的主要成分为Ni,与涡轮叶片的制备材料镍基合金具有相似的晶格结构,实现结构匹配。然后通过高温“析铝氧化”工艺,即在1300K(1027℃)分别进行真空和大气热处理4h和100h,构成“NiCoCrAlY层-富Al层-热氧化层”的三明治渐变过渡结构,实现由金属相到陶瓷相的渐变过渡,有利于释放镍基合金与陶瓷绝缘层之间由于热失配和结构失配所产生的内应力。而国内,上海交通大学的丁桂甫等人采用磁控溅射的方法制备20μm的NiCoCrAlY薄膜作为过渡层材料,通过采用先在950℃的Ar气氛热处理4h,然后在1100℃的大气环境中热氧化10h以上的方法构成渐变过渡结构。电子科技大学的张万里等人则采用厚度约为16μm的NiCrAlY作为过渡层材料,采用先在1050℃的高真空环境处理6h,随后通入高纯氧在同样的温度中氧化6h的方法构成渐变过渡结构。
以上“析铝氧化”工艺制备渐变过渡结构需要长时间(>10h)高温(>1000℃)处理,不仅严重影响着基底材料的力学性能和机械性能,而且将薄膜传感器的应用范围限定于耐高温基底材料。而同样需要原位应变、温度等物理参数测量的钛基合金、铝基合金等中低温材料则不能采用薄膜传感器进行原位物理参数的测量。
发明内容
本发明的目的是提供了一种氧离子注入构建薄膜传感器用渐变过渡结构及其制备方法,适用于大温差环境中释放金属基底与薄膜传感器陶瓷绝缘层之间因热失配和结构失配所产生的内应力,本发明的方法最终达到提高薄膜传感器附着能力的目的。
本发明是通过以下技术方案实现的:
本发明涉及一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法,该方法为对薄膜过渡层材料进行氧离子注入,最终形成由下往上依次为过渡层材料、富Al层、渐变过渡层和热氧化层的渐变过渡结构。
优选地,所述步骤具体为以下步骤:
步骤1:金属基底表面处理:采用机械或人工将镍基合金基底光至无肉眼可见划痕,用丙酮、酒精、去离子水超声清洗,并用高纯氮气吹干;
步骤2:过渡层材料的制备:将金属基底放置于镀膜机中,采用直流磁控溅射镀膜方式,以NiCrAlY合金为靶材,在本底真空优于5×10-4Pa、基底温度为400℃、溅射气压为0.31Pa、溅射功率为200W,以体积百分比纯度不低于99.999%的氩气作为反应介质,得沉积厚度为16μm NiCrAlY过渡层材料的基底;
步骤3:氧离子处理:将NiCrAlY过渡层材料的基底放置于离子注入设备中,在本底真空优于5×10-4Pa、基底温度为300℃后,通入体积百分比纯度不低于99.999%的氧气,采用氧压为2×10-2Pa、加速电流为5mA、加速电压为50kV、注入计量为1×1018ions/cm2的参数制备出具有从金属相到陶瓷相的渐变过渡结构的基底;
步骤4:绝缘层的制备:将步骤3中所得具有渐变过渡结构的基底放置于电子束蒸发设备中,采用电子束蒸发方式,以纯度优于99.99%、粒径为3-5mm的Al2O3为蒸发源,以真空5×10-4Pa、蒸发温度为300℃、蒸发速率为0.5nm/s的参数制备绝缘层。
优选地,所述过渡层材料的主要成分与金属基底的主要成分相同,确保热膨胀系数和晶格结构的匹配性。
优选地,所述过渡层材料为含Al材料。
优选地,所述离子注入为氧离子注入。
优选地,所述镍基合金基底以NiCrAlY为过渡层材料。
本发明具有以下优点:
(1)本发明中采用氧离子注入构建渐变过渡结构,实现由金属相到陶瓷相的渐变过渡,降低热处理温度,减小长时间高温处理对基底材料力学性能和机械性能的影响,同时将薄膜传感器的应用范围推广到中低温;
(2)本发明中采用氧离子注入构建的过渡结构表面为致密氧化层,与薄膜传感器的陶瓷绝缘层构成协同作用,进一步抑制金属基底与敏感层之间的导电电子的传输,提高绝缘层的高温绝缘效果,确保薄膜传感器电学信号的有效性和稳定性。
附图说明
图1为本发明中氧离子注入构建薄膜传感器渐变过渡结构的流程图;
图2为本发明中薄膜传感器渐变过渡结构的演示图;
图中:10为金属相、20为金属相到陶瓷相渐变过渡、30为陶瓷相。
具体实施方式
下面结合具体实施例对本发明进行详细说明。应当指出的是,以下的实施实例只是对本发明的进一步说明,但本发明的保护范围并不限于以下实施例。
实施例
本实施例涉及一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法,见图1所示:图1中,(a)为金属基底进行抛光处理阶段;(b)为磁控溅射方法制备过渡层材料阶段;(c)为氧离子注入构建渐变过渡结构阶段;(d)为电子束蒸发制备绝缘层阶段。该方法为对薄膜过渡层材料进行氧离子注入,最终形成由下往上依次为过渡层材料、富Al层、渐变过渡层和热氧化层的渐变过渡结构;其中,渐变过渡结构的形成过渡演示见如图2所示。
优选地,所述步骤具体为以下步骤:
步骤1:金属基底表面处理:采用机械或人工将镍基合金基底(50mm×30mm×3mm)光至无肉眼可见划痕,用丙酮、酒精、去离子水超声清洗,并用高纯氮气吹干;
步骤2:过渡层材料的制备:将金属基底放置于镀膜机中,采用直流磁控溅射镀膜方式,以NiCrAlY合金为靶材,在本底真空优于5×10-4Pa、基底温度为400℃、溅射气压为0.31Pa、溅射功率为200W,以体积百分比纯度不低于99.999%的氩气作为反应介质,得沉积厚度为16μm NiCrAlY过渡层材料的基底;
步骤3:将NiCrAlY过渡层材料的基底放置于离子注入设备中,在本底真空优于5×10-4Pa、基底温度为300℃后,通入体积百分比纯度不低于99.999%的氧气,采用氧压为2×10-2Pa、加速电流为5mA、加速电压为50kV、注入计量为1×1018ions/cm2的参数制备出具有从金属相到陶瓷相的渐变过渡结构基底;
本实施例在步骤3中,采用氧离子注入构建渐变过渡结构,实现由金属相到陶瓷相的渐变过渡,降低热处理温度,减小长时间高温处理对基底材料力学性能和机械性能的影响,同时将薄膜传感器的应用范围推广到中低温。
步骤4:将步骤3中所得具有渐变过渡结构的基底放置于电子束蒸发设备中,采用电子束蒸发方式,以纯度优于99.99%、粒径为3-5mm的Al2O3为蒸发源,以真空5×10-4Pa、蒸发温度为300℃、蒸发速率为0.5nm/s的参数制备绝缘层。
所述过渡层材料的主要成分与金属基底的主要成分相同,确保热膨胀系数和晶格结构的匹配性。
所述过渡层材料为含Al材料。
所述离子注入为氧离子注入。
所述镍基合金基底以NiCrAlY为过渡层材料。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质。

Claims (6)

1.一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法,其特征在于,该方法为对薄膜过渡层材料进行氧离子注入,最终形成由下往上依次为过渡层材料、富Al层、渐变过渡层和热氧化层的渐变过渡结构。
2.如权利要求1所述的氧离子注入构建薄膜传感器渐变过渡结构的制备方法,其特征在于,包括如下具体步骤:
步骤1:金属基底表面处理:采用机械或人工将镍基合金基底光至无肉眼可见划痕,用丙酮、酒精、去离子水超声清洗,并用高纯氮气吹干;
步骤2:过渡层材料的制备:将金属基底放置于镀膜机中,采用直流磁控溅射镀膜方式,以NiCrAlY合金为靶材,在本底真空优于5×10-4Pa、基底温度为400℃、溅射气压为0.31Pa、溅射功率为200W,以体积百分比纯度不低于99.999%的氩气作为反应介质,得沉积厚度为16μm NiCrAlY过渡层材料的基底;
步骤3:氧离子处理:将NiCrAlY过渡层材料的基底放置于离子注入设备中,在本底真空优于5×10-4Pa、基底温度为300℃后,通入体积百分比纯度不低于99.999%的氧气,采用氧压为2×10-2Pa、加速电流为5mA、加速电压为50kV、注入计量为1×1018ions/cm2的参数制备出具有从金属相到陶瓷相的渐变过渡结构的基底;
步骤4:绝缘层的制备:将步骤3中所得具有渐变过渡结构的基底放置于电子束蒸发设备中,采用电子束蒸发方式,以纯度优于99.99%、粒径为3-5mm的Al2O3为蒸发源,以真空5×10-4Pa、蒸发温度为300℃、蒸发速率为0.5nm/s的参数制备绝缘层。
3.如权利要求1所述的氧离子注入构建薄膜传感器渐变过渡结构的制备方法,其特征在于,所述过渡层材料的主要成分与金属基底的主要成分相同,确保热膨胀系数和晶格结构的匹配性。
4.如权利要求1所述的氧离子注入构建薄膜传感器渐变过渡结构的制备方法,其特征在于,所述过渡层材料为含Al材料。
5.如权利要求1所述的氧离子注入构建薄膜传感器渐变过渡结构的制备方法,其特征在于,所述离子注入为氧离子注入。
6.如权利要求2所述的氧离子注入构建薄膜传感器渐变过渡结构的制备方法,其特征在于,所述镍基合金基底以NiCrAlY为过渡层材料。
CN202110020147.7A 2021-01-07 2021-01-07 一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法 Pending CN112853295A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110020147.7A CN112853295A (zh) 2021-01-07 2021-01-07 一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110020147.7A CN112853295A (zh) 2021-01-07 2021-01-07 一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法

Publications (1)

Publication Number Publication Date
CN112853295A true CN112853295A (zh) 2021-05-28

Family

ID=76005031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110020147.7A Pending CN112853295A (zh) 2021-01-07 2021-01-07 一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法

Country Status (1)

Country Link
CN (1) CN112853295A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851300A (en) * 1988-05-09 1989-07-25 United Technologies Corporation Precoat for improving platinum thin film adhesion
US6042951A (en) * 1997-02-06 2000-03-28 Hitachi, Ltd. Ceramic-coated blade of gas turbine and method of producing same
CN102212823A (zh) * 2011-05-13 2011-10-12 电子科技大学 在合金基板上设置薄膜传感器的方法
CN104789926A (zh) * 2015-03-10 2015-07-22 电子科技大学 一种金属基薄膜传感器的制备方法
CN105274475A (zh) * 2015-11-27 2016-01-27 中山市厚源电子科技有限公司 一种膜传感器及其制备方法
CN106435430A (zh) * 2016-12-13 2017-02-22 江西省科学院应用物理研究所 一种提高热喷涂MCrAlY涂层抗氧化性能的方法
CN108315736A (zh) * 2018-05-10 2018-07-24 暨南大学 一种抗高温氧化的MCrAlY涂层及制备方法和应用
CN109341777A (zh) * 2018-11-21 2019-02-15 中国航空工业集团公司北京航空精密机械研究所 一种用于轴承温度/应变信号监测的传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851300A (en) * 1988-05-09 1989-07-25 United Technologies Corporation Precoat for improving platinum thin film adhesion
US6042951A (en) * 1997-02-06 2000-03-28 Hitachi, Ltd. Ceramic-coated blade of gas turbine and method of producing same
CN102212823A (zh) * 2011-05-13 2011-10-12 电子科技大学 在合金基板上设置薄膜传感器的方法
CN104789926A (zh) * 2015-03-10 2015-07-22 电子科技大学 一种金属基薄膜传感器的制备方法
CN105274475A (zh) * 2015-11-27 2016-01-27 中山市厚源电子科技有限公司 一种膜传感器及其制备方法
CN106435430A (zh) * 2016-12-13 2017-02-22 江西省科学院应用物理研究所 一种提高热喷涂MCrAlY涂层抗氧化性能的方法
CN108315736A (zh) * 2018-05-10 2018-07-24 暨南大学 一种抗高温氧化的MCrAlY涂层及制备方法和应用
CN109341777A (zh) * 2018-11-21 2019-02-15 中国航空工业集团公司北京航空精密机械研究所 一种用于轴承温度/应变信号监测的传感器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LONG SHI等: "influences of MCrAlY coatings and TBCs on oxidation behavior of a Ni-based single crystal superalloy", 《MATERIALS SCIENCE FORUM》 *
戴达煌等: "《功能薄膜及其沉积制备技术》", 31 January 2013, 冶金工业出版社 *
顾宝龙等: "基于镍基合金薄膜的热电偶传感器研制", 《光学与光电技术》 *

Similar Documents

Publication Publication Date Title
CN104149416B (zh) 一种金属基高温绝缘层及其制备方法
CN107267944B (zh) 具有温度自补偿的高温薄膜半桥式电阻应变计及制备方法
CN109338290B (zh) 一种用于航空发动机涡轮叶片的薄膜温度传感器
CN107574415B (zh) 一种金属基薄膜传感器用渐变过渡层及制备方法
CN105755438A (zh) 一种高温自补偿多层复合薄膜应变计及其制备方法
CN104726862B (zh) 一种带复合绝缘层的金属基薄膜传感器及其制备方法
CN102212823B (zh) 在合金基板上设置薄膜传感器的方法
CN107012425B (zh) 一种薄膜传感器用复合绝缘层及其制备方法
Liu et al. Influence of substrate temperature on the microstructure of YSZ films and their application as the insulating layer of thin film sensors for harsh temperature environments
Liu et al. Influence of a heterolayered Al2O3–ZrO2/Al2O3 ceramic protective overcoat on the high temperature performance of PdCr thin film strain gauges
CN107201502A (zh) 一种带自愈合复合防护层的高温薄膜传感器及其制备方法
CN105274475A (zh) 一种膜传感器及其制备方法
CN112853295A (zh) 一种氧离子注入构建薄膜传感器渐变过渡结构的制备方法
Liu et al. Effect of thermally grown Al2O3 on electrical insulation properties of thin film sensors for high temperature environments
CN103921500B (zh) 一种薄膜应变计及其制备方法
CN107142477B (zh) 一种抗热冲击的高温复合绝缘层及制备方法
Li et al. Effect of AlN/Al 2 O 3 Thin-Film Protective Layer on the High-Temperature Performance of ITO Thin-Film Strain Gauge
CN113755793B (zh) 一种薄膜传感器用抗氧化自修复防护层及其制备方法
Lei et al. Fabrication and performance investigation of karma alloy thin film strain gauge
CN109536892A (zh) 一种高温薄膜传感器用抗热冲击复合绝缘层及其制备方法
CN106756848B (zh) 一种金属基高温组合绝缘层及其制备方法
CN114752900A (zh) 一种薄膜传感器的制备、释放以及转移贴装方法
Zhang et al. Effect of Oxidation on Conductivity Characteristics of Tungsten-Rhenium Thin-Film Thermocouples Sensor
Wang et al. Multilayer heterogeneous electrical insulation structure of HfO2/Al2O3 for high-temperature thin-film sensor on superalloy substrate
CN113463036B (zh) 制备111晶面择优取向铂铱薄膜热电偶的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210528