CN112853287A - 一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法 - Google Patents

一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法 Download PDF

Info

Publication number
CN112853287A
CN112853287A CN202011618645.3A CN202011618645A CN112853287A CN 112853287 A CN112853287 A CN 112853287A CN 202011618645 A CN202011618645 A CN 202011618645A CN 112853287 A CN112853287 A CN 112853287A
Authority
CN
China
Prior art keywords
equal
protective coating
long
steam oxidation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011618645.3A
Other languages
English (en)
Other versions
CN112853287B (zh
Inventor
黄峰
李朋
刘海勇
葛芳芳
孟凡平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN202011618645.3A priority Critical patent/CN112853287B/zh
Publication of CN112853287A publication Critical patent/CN112853287A/zh
Application granted granted Critical
Publication of CN112853287B publication Critical patent/CN112853287B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及核电防护涂层领域,公开了一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法,该防护涂层包括陶瓷层和合金层,所述的合金层组成表示为CraMe100‑a,Me为Al、Ni中的一种,84.6≤a≤100;陶瓷层组成表示为(CrxAlySi100‑x‑y)zT100‑z,T选自C、N中的一种,其中40.7≤x≤61.2,29.8≤y≤45.3,78.5≤z≤89.5;其中a、x、y、z都为原子比。该防护涂层通过物理气相磁控溅射法制备,在高温水蒸气(1200℃)氧化过程中可形成连续、致密且无开裂、拱起等缺陷的Cr2O3防护层,进而显著提高耐高温水蒸气氧化时间(8~12h),可用于核电中锆合金包壳管的防护。

Description

一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法
技术领域
本发明涉及核电防护涂层领域,特别涉及一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法。
背景技术
锆合金具有耐辐照、低热中子吸收截面等优点,是目前主流轻水反应堆燃料的包壳材料,其性能稳定和寿命提升是保证核反应堆芯安全性和可靠性的关键。然而,在冷却剂失效(LOCA)的情况下,锆合金易与高温水蒸汽发生反应而产生大量氢气,进而引起爆炸,这也是日本福岛核电站爆炸导致核泄漏的主要原因。因此,防止或者缓解锆合金与高温水蒸汽反应,提高其事故容错能力在核安全领域至关重要。
在包壳锆合金表面镀防护涂层,以阻止其与高温水蒸气的反应,是提高锆合金事故容错能力行之有效的方法之一。这种方案能继续沿用现有的核用系统和锆合金加工技术,具有研发周期短、性价比高等特点,让涂层防护技术更具有实际应用价值。Wei T等(WeiT,Zhang R,Yang H,et al.Microstructure,corrosion resistance and oxidationbehavior of Cr-coatings on Zircaloy-4prepared by vacuum arc plasma deposition[J].Corrosion Science,2019,158:108077;)、Hu X等(Hu X,Dong C,Wang Q,et al.High-temperature oxidation of thick Cr coating prepared by arc deposition foraccident tolerant fuel claddings[J].Journal of Nuclear Materials,2019,519:145-156;)、Dorcheh A S等(Dorcheh A S,Schütze M,Galetz M C.Factors affectingisothermal oxidation of pure chromium in air[J].Corrosion Science,2018,130:261-269.)多项研究表明Cr涂层由于在高温水蒸气氧化下可生成一层致密的氧化膜,该致密氧化膜可以起到隔离水蒸气或高温水对锆合金的化学腐蚀作用,从而起到对锆合金基体的保护。但长时间氧化后,由Cr生成厚的Cr2O3氧化膜,体积变化而导致涂层产生较大的应力,致使Cr2O3氧化膜发生开裂、拱起等缺陷,破坏了氧化膜的连续性,使Cr涂层的抗高温水蒸气氧化的能力大幅度降低,起不到保护锆合金的作用或者保护效果差,不能满足工业应用。
因此,使得Cr涂层在长时间(>8h)高温水蒸气(1200℃)氧化下,能够形成连续致密且无开裂、拱起等缺陷的氧化膜(即Cr2O3),是提高Cr涂层具有长时间耐高温水蒸气氧化能力的关键。该问题的解决可进一步推进防护涂层技术在锆合金包壳材料上的实际应用。
发明内容
本发明目的在于提供一种具有长时间(>8h)抗高温水蒸气(1200℃)氧化的防护涂层,该防护涂层通过成分与结构设计,抑制了Cr在氧化中的扩散速度,通过Cr原子的缓慢氧化来形成连续、致密且无开裂、拱起等缺陷的Cr2O3防护层。
为实现上述发明目的,本发明采用的技术方案如下:
一种具有长时间耐高温水蒸汽氧化的防护涂层,包括:包括陶瓷层和合金层,所述的合金层组成表示为CraMe100-a,Me为Al、Ni中的一种,84.6≤a≤100;陶瓷层组成表示为(CrxAlySi100-x-y)zT100-z,T选自C、N中的一种,其中40.7≤x≤61.2,29.8≤y≤45.3,78.5≤z≤89.5;其中a、x、y、z都为原子比。
所述的防护涂层总厚度为6~12μm。
作为优选,所述的具有长时间耐高温水蒸汽氧化的防护涂层沿基体向外依次为(CrxAlySi100-x-y)zT100-z陶瓷层,CraMe100-a合金层或以该双层为周期,交替沉积2~4个周期。
作为优选,所述的(CrxAlySi100-x-y)zT100-z陶瓷层为非晶涂层,整个涂层无贯穿性的裂纹、空隙或其它缺陷,其密度为5.8~6.5g/cm3
作为优选,所述的(CrxAlySi100-x-y)zT100-z陶瓷层厚度为3~5μm。
作为优选,所述的CraMe100-a合金层的涂层晶体结构为体心立方(BCC),Me元素与Cr元素形成固溶体结构。
作为优选,所述的CraMe100-a合金层的密度为6.2~7.2g/cm3
作为优选,所述的CraMe100-a合金层的厚度为4~8μm。
实验表明,通过形成上层Cr-Me金属层与下层Cr-Al-Si-C或Cr-Al-Si-N陶瓷层的双层结构防护涂层,在高温(1200℃)水蒸气腐蚀下会形成一层致密且连续的Cr2O3防护涂层。首先Cr-Me金属层中的Me元素,在高温水蒸气腐蚀下,Me元素会优先与氧气反应形成对应的氧化物,该氧化物会限制Cr在其里面的扩散速度,让Cr缓慢氧化进而形成应力较小、致密且连续的Cr2O3氧化层。
Cr-Al-Si-C或Cr-Al-Si-N陶瓷层由于其成分设计和特殊的制备方法,可以形成致密、且无贯穿空隙的非晶结构涂层。一方面,这种致密、无贯穿空隙的涂层结构可以阻碍氧进一步向Zr基体内扩散,起到隔离作用。另一方面,在高温情况下,该非晶结构局部会发生结晶相变,可以吸收部分能量,防止热冲击对涂层造成开裂而失效。
第二方面,本发明提供了上述具有长时间耐高温水蒸汽氧化防护涂层的制备方法,采用物理气相沉积法制备。
所述物理气相沉积法优选为磁控溅射法。
所述的防护涂层采的CrmAlnSi100-m-n靶和CrpMe100-p靶均采用射频辅助直流电源的方式进行溅射;其中m、n为原子比,40≤m≤60,30≤n≤45;Me为Al、Ni中的一种,p为原子比,85≤p≤100。
先沉积Cr-Al-Si-C或Cr-Al-Si-N陶瓷层,接着再沉积Cr-Me合金层。
作为优选,采用三靶磁控溅射法制备双层防护涂层的步骤如下,当背底真空低于6×10-5Pa,利用CrmAlnSi100-m-n靶与C靶共溅射制备Cr-Al-Si-C陶瓷层或利用CrmAlnSi100-m-n靶与N2反应溅射制备Cr-Al-Si-N陶瓷层。
作为优选,CrmAlnSi100-m-n靶的纯度为99.9%,其中m、n为原子比,40≤m≤60,30≤n≤45,C靶的纯度为99.9%,密度大于等于理论密度的90%。
作为优选,在制备Cr-Al-Si-N陶瓷层时,通入N2与Ar气比为1/16~1/8的混合气体作为气源并调整气源气压为0.6~1Pa,在该气氛中通过溅射CrmAlnSi100-m-n得到Cr-Al-Si-N陶瓷层。
当沉积完Cr-Al-Si-C或Cr-Al-Si-N陶瓷层后,开启CrpMe100-p靶,沉积Cr-Me合金层。
作为优选,CrpMe100-p靶的纯度为99.9%,Me为Al、Ni中的一种,p为原子比,85≤p≤100。
作为优选,所述的CrmAlnSi100-m-n靶和CrpMe100-p靶均采用射频辅助直流电源的方式进行溅射,其中,CrmAlnSi100-m-n靶的功率密度为4.9~6.2W/cm2,CrpMe100-p靶的功率密度为5.9~6.7W/cm2,若制备Cr-Al-Si-C层,C靶的功率密度为1.8~2.5W/cm2
作为优选,采用磁控溅射法沉积制备这种具有长时间耐高温水蒸汽氧化防护涂层过程中施加了偏压,偏压为-5~-10V。
作为优选,采用磁控溅射法沉积制备这种具有长时间耐高温水蒸汽氧化防护涂层过程中进行了加热,加热温度为450~550℃。
第三方面,本发明提供了一种锆合金包壳器件,包括锆合金和权利要求1-6任一项所述的防护涂层。
作为优选,所述的锆合金基体经过镜面抛光,Ra<10nm。
与现有技术相比,本发明具有如下优点:
提供了一种全新的核包壳防护涂层,可显著延长锆合金抵抗高温水蒸汽(1000~1200℃)氧化时间,为事故留下更多的容错时间。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本领域技术人员在理解本发明的技术方案基础上进行修改或等同替换,而未脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围内。
涂层的制备是在一个三靶共溅射的磁控镀膜装置上进行。当背底真空≤6×10- 5Pa,开始对样品进行加热至450~550℃并保温2h,基体施加-5V~-10V的偏压,通入Ar气作为溅射气体和N2作为反应气源。利用CrmAlnSi100-m-n靶与C靶共溅射2h制备Cr-Al-Si-C陶瓷层,或利用CrmAlnSi100-m-n靶与N2的反应溅射制备Cr-Al-Si-N陶瓷层。
其中,在制备Cr-Al-Si-N陶瓷层时,通入N2与Ar气比为1/16~1/8的混合气体作为工作气体,并调整工作气压为0.6~1Pa,在该气氛中通过溅射CrmAlnSi100-m-n靶3h得到Cr-Al-Si-N陶瓷层。之后立刻开启CrpMe100-p靶,并关闭其余两个靶和N2气,只留Ar气通入,沉积3h得到Cr-Me合金层。
另外可以通过改变沉积时间来控制Cr-Al-Si-C或Cr-Al-Si-N层和Cr-Me合金层各层的厚度,或交替制备Cr-Al-Si-C或Cr-Al-Si-N层与Cr-Me合金层,获得周期性重复涂层结构,来应对不同的工况需求。溅射过程中均采用了射频辅助直流的电源施加方式,并通过控制各靶的溅射功率密度得到各层特定的晶体结构与密度,具体实施例参数和结果如表1和2所示。
表1各实施例的制备参数
Figure BDA0002875549540000061
涂层结构表征
1、涂层成分
利用FEI QuantaTM 250FEG的X射线能谱仪(EDAX)分析涂层成分及其分布,对高温水蒸气腐蚀后的涂层截面进行SEM观察和EDAX线扫,确定水蒸气氧化后的涂层形貌特征和氧化产物,判断涂层抵抗高温水蒸气腐蚀的时间。
涂层性能测试
2、涂层的耐高温水蒸汽氧化
耐高温水蒸汽氧化实验在一台一端连接有水蒸汽发生器的氧化铝管式炉中进行。管式炉温度设置为1200℃。达到设定温度后,开启水蒸汽发生器,向炉管中通入流速均匀的水蒸汽。待水蒸汽流速稳定,将样品片送入炉管中部。开放一端炉口并用刚玉炉管塞封堵保温。高温水蒸汽环境中持续氧化8h~14h后,样品取出空冷至室温。氧化后的样品经环氧树脂封装、打磨抛光后分析截面形貌及成分,判断涂层耐高温水蒸汽氧化性能的好坏。
3.涂层硬度测试
采用MTS NANO G200纳米压痕仪、Berkovich金刚石压头,为了消除基片效应和表面粗糙度的影响,最大压入深度为涂层厚度的1/10,每个样品测量10个测试点后取平均值。
表2为耐高温水蒸汽氧化防护涂层各实施例的结构特征和性能测试。可以看出,当Cr-Al-Si-C或Cr-Al-Si-N层为非晶结构和Cr-Me为体心立方晶体结构(BCC)且各层都比较致密时,该种结构的涂层可以较长时间耐高温水蒸气氧化8小时以上,给核包壳事故的发生留下足够的容错时间。
表2各实施例的结构特征与性能
Figure BDA0002875549540000071
Figure BDA0002875549540000081

Claims (10)

1.一种具有长时间耐高温水蒸汽氧化的防护涂层,其特征在于,包括陶瓷层和合金层,所述的合金层组成表示为CraMe100-a,Me为Al、Ni中的一种,84.6≤a≤100;陶瓷层组成表示为(CrxAlySi100-x-y)zT100-z,T选自C、N中的一种,其中40.7≤x≤61.2,29.8≤y≤45.3,78.5≤z≤89.5;其中a、x、y、z都为原子比。
2.如权利要求1所述的具有长时间耐高温水蒸汽氧化的防护涂层,其特征在于,所述的防护涂层沿基体向外依次为(CrxAlySi100-x-y)zT100-z陶瓷层和CraMe100-a合金层组成的双层结构或以该双层结构为周期,交替沉积2~4个周期。
3.如权利要求1所述的具有长时间耐高温水蒸汽氧化的防护涂层,其特征在于,所述的陶瓷层为非晶涂层,涂层无贯穿性的裂纹、空隙或其它缺陷,密度为5.8~6.5g/cm3
4.如权利要求1所述的具有长时间耐高温水蒸汽氧化的防护涂层,其特征在于,所述的合金层的涂层晶体结构为体心立方,Me元素与Cr元素形成固溶体结构。
5.如权利要求1或4所述的具有长时间耐高温水蒸汽氧化的防护涂层,其特征在于,所述的合金层的密度为6.2~7.2g/cm3
6.如权利要求1或3或4所述的具有长时间耐高温水蒸汽氧化的防护涂层,其特征在于,所述的防护涂层总厚度为6~12μm,所述的陶瓷层厚度为3~5μm;所述的合金层的厚度为4~8μm。
7.如权利要求1-6任一项所述的具有长时间耐高温水蒸汽氧化的防护涂层制备方法,其特征在于,所述的防护涂层采用物理气相沉积法制备。
8.如权利要求7所述的具有长时间耐高温水蒸汽氧化的防护涂层制备方法,其特征在于,所述物理气相沉积法为磁控溅射法。
9.如权利要求7或8所述的具有长时间耐高温水蒸汽氧化的防护涂层制备方法,其特征在于,所述的防护涂层采的CrmAlnSi100-m-n靶和CrpMe100-p靶均采用射频辅助直流电源的方式进行溅射;
其中,CrmAlnSi100-m-n靶的功率密度为4.9~6.2W/cm2,纯度为99.9%;CrpMe100-p靶的功率密度为5.9~6.7W/cm2,纯度为99.9%;当制备Cr-Al-Si-C层时,C靶的功率密度为1.8~2.5W/cm2,纯度为99.9%m、n为原子比,40≤m≤60,30≤n≤45;Me为Al、Ni中的一种,p为原子比,85≤p≤100。
10.一种锆合金包壳器件,包括锆合金和权利要求1-6任一项所述的防护涂层。
CN202011618645.3A 2020-12-31 2020-12-31 一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法 Active CN112853287B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011618645.3A CN112853287B (zh) 2020-12-31 2020-12-31 一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011618645.3A CN112853287B (zh) 2020-12-31 2020-12-31 一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN112853287A true CN112853287A (zh) 2021-05-28
CN112853287B CN112853287B (zh) 2022-12-06

Family

ID=75998908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011618645.3A Active CN112853287B (zh) 2020-12-31 2020-12-31 一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN112853287B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116516291A (zh) * 2023-05-10 2023-08-01 重庆文理学院 一种核用锆合金表面Cr-Si系涂层及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171520A (en) * 1990-09-04 1992-12-15 Combustion Engineering, Inc. Wear resistant coating for fuel cladding
US20060177679A1 (en) * 2005-02-04 2006-08-10 Hiroyuki Anada Method for manufacturing a Ni-based alloy article and product therefrom
CN102400099A (zh) * 2011-11-04 2012-04-04 四川大学 核裂变堆燃料包壳表面CrAlSiN梯度涂层制备工艺
CN103757597A (zh) * 2014-02-07 2014-04-30 上海理工大学 一种TiN/CrAlSiN纳米复合多层涂层及其制备方法
KR20140125002A (ko) * 2013-04-17 2014-10-28 한국원자력연구원 금속-세라믹 하이브리드 피복관 및 그 제조방법
CN106756838A (zh) * 2016-09-22 2017-05-31 常熟理工学院 一种γ‑TiAl合金表面纳米梯度结构高温防护涂层及其制备方法
CN108486537A (zh) * 2018-03-09 2018-09-04 中国科学院宁波材料技术与工程研究所 一种用于锆合金的非晶防护涂层及其制备方法和应用
WO2019098665A1 (ko) * 2017-11-14 2019-05-23 한국원자력연구원 고온 내산화성이 향상된 지르코늄 합금 피복관 및 이의 제조방법
CN110484889A (zh) * 2019-09-24 2019-11-22 中国科学院宁波材料技术与工程研究所 一种具有耐高温水蒸汽氧化和耐热水腐蚀的多层防护涂层及制备方法和应用
CN111826616A (zh) * 2020-07-23 2020-10-27 北京市辐射中心 一种核燃料包壳涂层及其制备方法
CN112164479A (zh) * 2020-08-21 2021-01-01 上海核工程研究设计院有限公司 一种锆合金包壳管耐高温蒸汽腐蚀涂层

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171520A (en) * 1990-09-04 1992-12-15 Combustion Engineering, Inc. Wear resistant coating for fuel cladding
US20060177679A1 (en) * 2005-02-04 2006-08-10 Hiroyuki Anada Method for manufacturing a Ni-based alloy article and product therefrom
CN102400099A (zh) * 2011-11-04 2012-04-04 四川大学 核裂变堆燃料包壳表面CrAlSiN梯度涂层制备工艺
KR20140125002A (ko) * 2013-04-17 2014-10-28 한국원자력연구원 금속-세라믹 하이브리드 피복관 및 그 제조방법
CN103757597A (zh) * 2014-02-07 2014-04-30 上海理工大学 一种TiN/CrAlSiN纳米复合多层涂层及其制备方法
CN106756838A (zh) * 2016-09-22 2017-05-31 常熟理工学院 一种γ‑TiAl合金表面纳米梯度结构高温防护涂层及其制备方法
WO2019098665A1 (ko) * 2017-11-14 2019-05-23 한국원자력연구원 고온 내산화성이 향상된 지르코늄 합금 피복관 및 이의 제조방법
CN108486537A (zh) * 2018-03-09 2018-09-04 中国科学院宁波材料技术与工程研究所 一种用于锆合金的非晶防护涂层及其制备方法和应用
CN110484889A (zh) * 2019-09-24 2019-11-22 中国科学院宁波材料技术与工程研究所 一种具有耐高温水蒸汽氧化和耐热水腐蚀的多层防护涂层及制备方法和应用
CN111826616A (zh) * 2020-07-23 2020-10-27 北京市辐射中心 一种核燃料包壳涂层及其制备方法
CN112164479A (zh) * 2020-08-21 2021-01-01 上海核工程研究设计院有限公司 一种锆合金包壳管耐高温蒸汽腐蚀涂层

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《IRENA KRATOCHVÍLOVÁ》: "Zr alloy protection against high-temperature oxidation: Coating by a doublelayered structure with active and passive functional properties", 《CORROSION SCIENCE》 *
CHONGCHONG TANG等: "Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings", 《CORROS REV.》 *
HAN ZHU等: "Effect of Cr/Al Atomic Ratio on the Oxidation Resistance in 1200℃ Steam for the CrAlSiN Coatings Deposited on Zr Alloy Substrates", 《CERAMIC MATERIALS FOR NUCLEAR ENERGY APPLICATIONS》 *
王来森等: "[CrAlSiN/Si_3N_4]_n多层膜的性能和抗氧化行为的研究", 《金属功能材料》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116516291A (zh) * 2023-05-10 2023-08-01 重庆文理学院 一种核用锆合金表面Cr-Si系涂层及其制备方法

Also Published As

Publication number Publication date
CN112853287B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
Liu et al. Transient experiments on oxidation and degradation of Cr-coated Zircaloy in steam up to 1600℃
Yang et al. High temperature Cr-Zr interaction of two types of Cr-coated Zr alloys in inert gas environment
Zhang et al. Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding
Yeom et al. Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated LWR fuel claddings
Li et al. A high oxidation resistance Ti2AlC coating on Zirlo substrates for loss-of-coolant accident conditions
KR102117411B1 (ko) 원자력 환경에서 내산화성인 다층 물질
Huang et al. Preparation and properties of FeAl/Al2O3 composite tritium permeation barrier coating on surface of 316L stainless steel
CN108486537B (zh) 一种用于锆合金的非晶防护涂层及其制备方法和应用
CN110484889B (zh) 一种具有耐高温水蒸汽氧化和耐热水腐蚀的多层防护涂层及制备方法和应用
CN111172503A (zh) 一种锆合金包壳表面多层复合涂层及其制备方法
KR101393327B1 (ko) 초고온 내산화성 증진을 위한 지르코늄 합금 및 이의 제조방법
Zeng et al. Influence of Al content on the oxidation behavior of CrAl coating on Zry-4 alloys in 1200° C steam
Meng et al. Control of the preferential orientation Cr coatings deposited on zircaloy substrates and study of their oxidation behavior
CN109207953A (zh) 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺
CN115305443B (zh) 一种锆基非晶多组元氧化物涂层的制备方法及应用
CN112853287B (zh) 一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法
Zeng et al. Oxidation behavior of CrSi coatings on Zry-4 substrates in 1200 C steam environment
Zhang et al. High temperature steam oxidation behavior of textured Cr coatings with different grain structures
Li et al. Microstructure and oxidation behavior of CrCN/TiSiCN nano-multilayer coatings on Zircaloy in high-temperature steam
CN110499494A (zh) 一种以Zr为基底的Cr/Al单层膜及其制备方法
He et al. Microstructure, mechanical properties and high temperature corrosion of [AlTiCrNiTa/(AlTiCrNiTa) N] 20 high entropy alloy multilayer coatings for nuclear fuel cladding
Wei et al. Direct experimental evidence of the reduction of Cr2O3 by Zr at high temperature
Li et al. High-temperature steam oxidation resistance of CrSi substitutional solid solution coating on Zr-4
JP2024522104A (ja) ジルコニウム合金製核燃料クラッドへのカソードアークによるランダムな粒子構造コーティング
Starosta et al. Studies on magnetron-sputtered zirconium-silicide coatings deposited on zirconium alloy for the enhancement of their high-temperature oxidation resistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant