CN112848600A - 超表面嵌入式承载吸波层合板及制备方法 - Google Patents

超表面嵌入式承载吸波层合板及制备方法 Download PDF

Info

Publication number
CN112848600A
CN112848600A CN202110028269.0A CN202110028269A CN112848600A CN 112848600 A CN112848600 A CN 112848600A CN 202110028269 A CN202110028269 A CN 202110028269A CN 112848600 A CN112848600 A CN 112848600A
Authority
CN
China
Prior art keywords
wave
absorbing
epoxy resin
super
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110028269.0A
Other languages
English (en)
Inventor
黄怿行
方岱宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Publication of CN112848600A publication Critical patent/CN112848600A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及超表面嵌入式承载吸波层合板及制备方法,属于多功能复合材料领域。本发明的超表面嵌入式承载吸波层合板由不同配比的电磁双损耗纳米复合材料与具有特定图案周期性排列的导电涂层覆盖超表面复合而成。制备方法为液态高聚物铸模工艺结合真空袋热压工艺一体化制备成型。电磁双损耗纳米复合材料采用环氧树脂、羰基铁颗粒与多壁碳纳米管复合而成。本发明通过碳纤维布复合而使层合板具备较强承载能力,通过梯度损耗吸波机理与界面损耗吸波机理的融合设计来增强‑10dB吸波带宽,并减小结构厚度。本发明能够在大入射角度下保持吸波性能不劣化。本发明制备方法简易,能够大批量生产,成本低,能够将力学承载功能与宽频吸波功能兼容于一个复合结构中。

Description

超表面嵌入式承载吸波层合板及制备方法
技术领域
本发明专利涉及超表面嵌入式承载吸波层合板及制备方法,属于多功能复合材料领域。
背景技术
随着雷达技术的发展,空-天-地一体化侦察网对水面和飞行目标的探测具有优势,常规目标容易被雷达网捕捉,从而暴露其存在性、具体位置、目标距离等关键参数,使得目标的生存概率下降。为了降低水面和飞行目标的雷达特征,通常在目标表面涂覆单层或多层雷达波吸收涂层。由于涂层材料的电磁性能调控难度较大,复介电常数和复磁导率的有效匹配往往只限于2-8GHz的带宽中,难以实现宽微波频带的吸收,使得雷达探测频率的更换能够无效化吸波涂层的作用。此外,传统吸波涂层力学强度较低,存在脆性断裂和开裂的力学性能劣化,涂层的易剥落特性大幅提高了涂层长期使用的成本。吸波涂层对于目标的雷达特征的降低效果有限,往往需要配合外型设计来进一步散射电磁波,从而增加了目标外型设计的难度。
发明内容
本发明公开的超表面嵌入式承载吸波层合板及制备方法要解决的技术问题是:基于液态注模成型-真空袋热压工艺,制备出在梯度电磁双损耗纳米复合材料平板中嵌入超表面的层合板,实现力学承载和宽频吸波集成的多功能层合板,具有作为承载结构和吸波结构的优点,用于取代吸波涂层。
本发明的目的是通过以下技术方案实现的。
超表面嵌入式承载吸波层合板由三部分组成,第一部分为具有不同电磁性能的电磁双损耗纳米复合材料制备而成的平板,第二部分为具有图案和方块阻抗的复合薄膜超表面,第三部分为碳纤维织物对结构的加强层。
所述具有不同电磁性能的电磁双损耗纳米复合材料,包括:环氧树脂、固化剂甲基四氢苯酐(MeTHPA)、加速剂N,N-二甲基苄胺(BDMA)、有机硅油、羰基铁颗粒、多壁碳纳米管混合;所述环氧树脂、固化剂甲基四氢苯酐(MeTHPA)、加速剂N,N-二甲基苄胺(BDMA)和有机硅油混合后得到环氧树脂基体,所述环氧树脂基体的总质量分数为100%。其中,所述环氧树脂质量分数为总质量分数的50-60wt%,MeTHPA质量分数为总质量分数的40-50wt%,BDMA质量分数为总质量分数的0.3-1wt%,有机硅油质量分数为总质量分数的0.3-1wt%。
所述环氧树脂基体、羰基铁颗粒和多壁碳纳米管的体积和为总体积;所述羰基铁颗粒体积分数为总体积的40-60vol%,多壁碳纳米管体积分数为总体积的0.1-5vol%。
所述环氧树脂包括:双酚A型环氧树脂E-51;
所述超表面为具有图案和方块阻抗的复合薄膜。复合薄膜由两层组成,底层为聚酰亚胺基底,顶层为碳基导电浆料涂层。在所述聚酰亚胺基底二维平面上加工出图案的形状,形状包括正方形、圆形、菱形、十字形等单连通图案。
超表面嵌入式承载吸波层合板的制备方法,包括如下步骤:
步骤一、将环氧树脂、固化剂甲基四氢苯酐(MeTHPA)、加速剂N,N-二甲基苄胺(BDMA)、羰基铁颗粒、多壁碳纳米管、有机硅油混合,形成电磁双损耗纳米复合材料浆料,用于模具浇注固化成型,使厚度达到设计值,得到具有不同电磁性能的电磁双损耗纳米复合材料制备而成的平板,制备步骤如图1所示。
步骤二、在所述超表面为具有图案和方块阻抗的复合薄膜下表面涂刷环氧树脂基体浆料,再固定在步骤一得到的平板表面,得到D;
步骤三、将D上表面用浆料B浸润,达到设计厚度;所述浆料B的原料与复合材料原料相同,组分添加量范围相同,需保证所述浆料B组分添加量与步骤一的复合材料添加量不同,超表面嵌入式承载吸波层合板所述详细结构如图2所示;
步骤四、将碳纤维织物固定在所述D的下表面;
在金属板(如铝板、钢板)上涂覆脱模剂或平铺聚四氟乙烯薄膜,用于真空袋热压工艺成型后脱模。将不含羰基铁颗粒和碳纳米管的树脂基体加热后涂覆在D下表面,然后平铺上第一层碳纤维布,再在碳纤维布上方涂覆相同的树脂基体浆料。进一步地在第一层碳纤维布上平铺第二层碳纤维布。如此类推,最终达到设计层数的碳纤维布,然后依次覆盖上脱模布、隔离膜、透气毡(或吸胶棉)、真空袋。真空袋通过密封胶牢固粘附于金属板上。在真空袋中留一个通气孔,并插入硅胶管,硅胶管另一端连接真空泵。硅胶管与真空袋之间的缝隙用密封胶密封,防止漏气。整个真空袋及其内容物置于烘箱中,按照步骤一中提及的固化手续进行抽真空固化。
步骤一所述固化方法为:在100℃中预固化0-3小时,在140℃中固化两小时0-3小时,在160℃中后固化0-3小时。
所述多壁碳纳米管为两层以上(含两层)层级嵌套的碳纳米管,外直径在30-200nm,长度在1-20μm。多壁碳纳米管为工业级气相沉积而成。
所述羰基铁颗粒为球状颗粒,由羰基铁经还原后生成的铁含量大于90%的微米级颗粒,颗粒直径为1-6μm。
有益效果
1、本发明公开的超表面嵌入式承载吸波层合板将电磁双损耗纳米复合材料与超表面进行融合设计,使梯度损耗吸波机制与界面损耗吸波机制结合起来,从而产生更宽的-10dB吸波带宽、更多的吸波峰数量以及更强的吸波峰值,解决了梯度损耗吸波机制与界面损耗吸波机制不能兼容的设计问题,相比于传统吸波涂层和吸波结构,能够获得厚度小于10mm但吸波带宽不缩窄的结构减薄效果。
2、本发明公开的超表面嵌入式承载吸波层合板,能够通过调节填充物和树脂基体比例获得复介电常数和复磁导率可调控的电磁双损耗纳米复合材料,用于梯度损耗吸波机制下阻抗匹配的调节;能够通过调节超表面图案尺寸、形状以及方块电阻值来调控超表面的界面阻抗特性,用于界面损耗吸波机制下界面阻抗的调节。通过调节电磁双损耗纳米复合材料阻抗与超表面界面阻抗的整体匹配特性,可调节吸波带宽范围以及吸波峰的频率点位置,从而根据实际需求来调整整个结构体系的参数,吸波需求覆盖面广,能够通过结构设计覆盖2-18GHz的频带需求。
3、本发明公开的超表面嵌入式承载吸波层合板,通过环氧树脂基体与碳纤维底板的复合,使超表面嵌入式承载吸波层合板具有承载性能,能够抵抗拉伸应力和三点弯应力,具有较高等效拉伸强度和三点弯强度,能够在实际使用时作为承力结构,相比于传统吸波涂层和吸波结构,本发明由于采用一体化成型,能够有效抵抗环境荷载,解决了吸波涂层易剥落、维护频次多等问题,并且有效将力学承载性能与宽频吸波性能集成在一个结构中,因此适用于水面和飞行目标外表面的大范围铺装。
4、本发明公开的超表面嵌入式承载吸波层合板,由于结合了梯度损耗吸波机制和界面损耗吸波机制,能够在入射角度较大的情况下保持-10dB吸波带宽不劣化或劣化较小,因而保证了探测微波在较大入射角度下仍能对目标的雷达特性进行缩减。
5、本发明设计制备的超表面嵌入式承载吸波层合板具备较强力学承载性能、宽频吸波等功能,能够将吸波性能和力学承载性能融合于一体。本发明提出的工艺能够批量生产性能一致的超表面嵌入式承载吸波层合板,具备低成本、易操作等特点。
附图说明
图1为超表面嵌入式承载吸波层合板制备流程;
图2为超表面嵌入式承载吸波层合板结构组成;
图3为电磁双损耗纳米复合材料微观形貌;
图4为制备后的超表面嵌入式承载吸波层合板实物;
图5为超表面嵌入式承载吸波层合板典型实测反射率曲线;
图6为超表面嵌入式承载吸波层合板在不同入射角度下典型实测反射率对比,其中图(a)为TE极化入射波,图(b)为TM极化入射波;
图7为超表面嵌入式承载吸波层合板的典型实测单轴拉伸等效应力-等效应变曲线;
图8为超表面嵌入式承载吸波层合板的典型实测三点弯荷载-位移曲线;
图9为超表面嵌入式承载吸波层合板在三点弯试验后的断裂模式。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。
另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
实施例1:
超表面嵌入式承载吸波层合板由三部分组成,第一部分为具有不同电磁性能的电磁双损耗纳米复合材料制备而成的平板,第二部分为具有图案和方块阻抗的复合薄膜超表面,第三部分为碳纤维织物对结构的加强层。
超表面嵌入式承载吸波层合板的制备方法,如图1所示,包括如下步骤:
(1)将双酚A型环氧树脂E-51、固化剂甲基四氢苯酐(MeTHPA)、加速剂N,N-二甲基苄胺(BDMA)、羰基铁颗粒、多壁碳纳米管、有机硅油混合,形成电磁双损耗纳米复合材料浆料,用于模具浇注成型。
(2)浆料由树脂基体和填充物加热混合而成。树脂基体由环氧树脂、MeTHPA、BDMA和有机硅油组成,且加入质量比例为100:85:1.05:1。
(3)将树脂基体与羰基铁颗粒、多壁碳纳米管混合后,体积分数比例为45:2:53,形成最终的电磁双损耗纳米复合材料浆料配方A,电磁双损耗纳米复合材料的典型微观形貌如图3所示,碳纳米管、羰基铁颗粒和树脂基体形成类空间电路网络。
(4)将树脂基体与羰基铁颗粒、多壁碳纳米管混合后,体积分数比例为50:0.5:49.5,形成最终的电磁双损耗纳米复合材料浆料配方B。
(5)通过数控机床加工,将亚克力平板刻铣为中间镂空长方体的模具。
(6)然后将具有配方A的电磁双损耗纳米复合材料浆料倒入模具中,直到液面到达3mm厚度刻度线。
(7)将亚克力模具以及内含浆料置于烘箱中,在100℃中预固化2小时,在140℃中固化2小时,在160℃中后固化1.5小时,获得固化的第一层电磁双损耗纳米复合材料。
(8)在涂覆有图案化导电涂层的超表面上涂抹一层薄的树脂基体后,将超表面平铺在配方A环氧树脂平板上。
(9)将具有配方B的电磁双损耗纳米复合材料浆料倒入超表面上方,使得第二层环氧树脂平板厚度为2mm。超表面的厚度为0.05mm。
(10)超表面的正方形图案中,图案周期P为15mm,导电油墨正方形边长L为14mm,碳基导电浆料涂层的方块电阻为456Ω/□。
(11)将亚克力模具及其内含物置于烘箱中,在100℃中预固化2小时,在140℃中固化2小时,在160℃中后固化1.5小时,获得固化的第二层电磁双损耗纳米复合材料。
(12)在铝板上平铺聚四氟乙烯薄膜,用于真空袋热压工艺成型后脱模。具有配方B环氧树脂平板的一面贴合在金属板上,配方A环氧树脂平板的一面暴露在自由空间中。
(13)树脂基体涂覆在配方A环氧树脂平板表面,然后平铺第一层碳纤维布,再在碳纤维布上方涂覆相同的树脂基体浆料。
(14)进一步地在第一层碳纤维布上平铺第二层碳纤维布,然后在第二层碳纤维布上涂覆相同的树脂基体浆料。
(15)如此类推,最终达到4层碳纤维布,在最后一层碳纤维布上涂覆相同的树脂基体浆料,然后依次覆盖上脱模布、隔离膜、透气毡、真空袋。
(16)真空袋通过密封胶牢固粘附于金属板上。
(17)在真空袋中留一个通气孔,并插入硅胶管,硅胶管另一端连接真空泵。硅胶管与真空袋之间的缝隙用密封胶密封,防止漏气。
(18)整个真空袋及其内容物置于烘箱中,在100℃中预固化2小时,在140℃中固化2小时,在160℃中后固化1.5小时,真空泵持续打开,最终超表面嵌入式承载吸波层合板样件的正面、背面和侧面如图4所示。
(19)将固化后的复合材料结构取出,即获得超表面嵌入式承载吸波层合板,其正入射实测反射率如图5所示,结果显示其具有2-18GH的宽频吸波性能;其在TE和TM极化下不同入射角度的实测反射率对比如图6所示,结果显示其在TM极化波大角度入射情况下,宽频吸波性能衰减较少,而在TE极化波大角度入射下,吸波性能有效角度阈值为15°;其在单轴拉伸试验下的实测等效应力-等效应变曲线如图7所示,结果说明其具有良好的抗拉伸性能;其在三点弯试验下的实测荷载-位移曲线如图8所示,结果说明其具有良好的力学承载性能;其在三点弯试验后的破坏模式如图9所示,结果说明超表面的嵌入使断裂裂纹扩展产生分叉,保护了最上层的环氧树脂复合材料平板。
(20)本实施例中的超表面嵌入式承载吸波层合板的实测-10dB吸波带宽为2GHz-4.3GHz、7.02GHz-18 GHz,其实测最大吸收峰值为-17.4dB,其实测-9dB吸波带宽为2GHz-18GHz,根据实测数据,其等效拉伸强度为75.77MPa,其最大拉伸断裂应变为24%,其弯曲强度为408MPa,其碳纤维布层实测厚度为1.2mm,层合板总厚度为6.2mm,小于10mm。
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.超表面嵌入式承载吸波层合板,其特征在于:由三部分组成,第一部分为具有不同电磁性能的电磁双损耗纳米复合材料制备而成的平板,第二部分为超表面为具有图案和方块阻抗的复合薄膜,第三部分为碳纤维织物对结构的加强层;
所述具有不同电磁性能的电磁双损耗纳米复合材料,包括:环氧树脂、固化剂甲基四氢苯酐(MeTHPA)、加速剂N,N-二甲基苄胺(BDMA)、有机硅油、羰基铁颗粒、多壁碳纳米管混合;所述环氧树脂、固化剂甲基四氢苯酐(MeTHPA)、加速剂N,N-二甲基苄胺(BDMA)和有机硅油混合后得到环氧树脂基体,所述环氧树脂基体的总质量分数为100%;其中,所述环氧树脂质量分数为总质量分数的50-60wt%,MeTHPA质量分数为总质量分数的40-50wt%,BDMA质量分数为总质量分数的0.3-1wt%,有机硅油质量分数为总质量分数的0.3-1wt%;
所述环氧树脂基体、羰基铁颗粒和多壁碳纳米管的体积和为总体积;所述羰基铁颗粒体积分数为总体积的40-60vol%,多壁碳纳米管体积分数为总体积的0.1-5vol%。
2.如权利要求1所述的超表面嵌入式承载吸波层合板,其特征在于:所述环氧树脂包括:双酚A型环氧树脂E-51。
3.如权利要求1所述的超表面嵌入式承载吸波层合板,其特征在于:所述超表面为具有图案和方块阻抗的复合薄膜;复合薄膜由两层组成,底层为聚酰亚胺基底,顶层为碳基导电浆料涂层;在所述聚酰亚胺基底二维平面上加工出图案的形状。
4.制备如权利要求1或2或3所述超表面嵌入式承载吸波层合板的方法,其特征在于:包括如下步骤:
步骤一、将环氧树脂、固化剂甲基四氢苯酐(MeTHPA)、加速剂N,N-二甲基苄胺(BDMA)、羰基铁颗粒、多壁碳纳米管、有机硅油混合,形成电磁双损耗纳米复合材料浆料,用于模具浇注固化成型,使其厚度达到设计值,得到具有不同电磁性能的电磁双损耗纳米复合材料制备而成的平板;
步骤二、在所述超表面为具有图案和方块阻抗的复合薄膜下表面涂刷环氧树脂基体浆料,再固定在步骤一得到的平板表面,得到D;
步骤三、在D上表面用浆料B浸润,达到设计厚度;所述浆料B的原料与复合材料原料相同,组分添加量范围相同,需保证所述浆料B组分添加量与步骤一的复合材料添加量不同;
步骤四、将碳纤维织物固定在所述D的下表面。
5.如权利要求4所述方法,其特征在于:步骤一所述固化方法为:在100℃中预固化0-3小时,在140℃中固化两小时0-3小时,在160℃中后固化0-3小时。
CN202110028269.0A 2021-01-04 2021-01-08 超表面嵌入式承载吸波层合板及制备方法 Pending CN112848600A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021100037805 2021-01-04
CN202110003780 2021-01-04

Publications (1)

Publication Number Publication Date
CN112848600A true CN112848600A (zh) 2021-05-28

Family

ID=76002111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110028269.0A Pending CN112848600A (zh) 2021-01-04 2021-01-08 超表面嵌入式承载吸波层合板及制备方法

Country Status (1)

Country Link
CN (1) CN112848600A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116606148A (zh) * 2023-05-12 2023-08-18 西北工业大学 一种三维梯度周期结构陶瓷基复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108790209A (zh) * 2017-04-28 2018-11-13 深圳光启高等理工研究院 吸波结构件及其制作方法
CN109640607A (zh) * 2018-10-23 2019-04-16 苏州铂韬新材料科技有限公司 一种电磁性能可灵活设计的阻燃型软磁复合材料及其制备方法
CN109957275A (zh) * 2019-03-08 2019-07-02 武汉理工大学 片状吸收剂在高填充比条件下自发取向的方法及吸波涂料
CN110385903A (zh) * 2019-08-23 2019-10-29 北京环境特性研究所 一种基于阻抗超材料的轻质宽频吸波材料及其制备方法
CN111421924A (zh) * 2020-04-28 2020-07-17 长沙科航特种织造有限公司 一种隐身防弹一体化吸波材料
CN111516340A (zh) * 2020-07-03 2020-08-11 宁波曙翔新材料股份有限公司 一种隐身抗毁屏蔽材料及其制备方法
CN111590971A (zh) * 2020-05-29 2020-08-28 北京环境特性研究所 一种超材料与磁性介质复合的吸波/结构一体化材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108790209A (zh) * 2017-04-28 2018-11-13 深圳光启高等理工研究院 吸波结构件及其制作方法
CN109640607A (zh) * 2018-10-23 2019-04-16 苏州铂韬新材料科技有限公司 一种电磁性能可灵活设计的阻燃型软磁复合材料及其制备方法
CN109957275A (zh) * 2019-03-08 2019-07-02 武汉理工大学 片状吸收剂在高填充比条件下自发取向的方法及吸波涂料
CN110385903A (zh) * 2019-08-23 2019-10-29 北京环境特性研究所 一种基于阻抗超材料的轻质宽频吸波材料及其制备方法
CN111421924A (zh) * 2020-04-28 2020-07-17 长沙科航特种织造有限公司 一种隐身防弹一体化吸波材料
CN111590971A (zh) * 2020-05-29 2020-08-28 北京环境特性研究所 一种超材料与磁性介质复合的吸波/结构一体化材料及其制备方法
CN111516340A (zh) * 2020-07-03 2020-08-11 宁波曙翔新材料股份有限公司 一种隐身抗毁屏蔽材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
赵樱等: "碳纳米管/羰基铁粉/环氧树脂复合材料的吸波性能研究", 《第二届全国隐身功能材料学术研讨会会议论文集》 *
顺特电气有限公司: "《树脂浇注干式变压器和电抗器》", 31 August 2005, 顺特电气有限公司 *
黄怿行: "薄型宽频隐身承载超结构的材料-结构-功能一体化设计、制备与表征", 《中国优秀博硕士论文全文数据库(博士) 工程科技I辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116606148A (zh) * 2023-05-12 2023-08-18 西北工业大学 一种三维梯度周期结构陶瓷基复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN111801371B (zh) 用于飞行器的多层雷达吸波层压板及其制造方法
Nam et al. Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites
Choi et al. Characteristics of silicon carbide fiber-reinforced composite for microwave absorbing structures
Wang et al. Effects of stitch on mechanical and microwave absorption properties of radar absorbing structure
JP5115675B2 (ja) プリプレグ、および繊維強化複合材料
Li et al. Curing multidirectional carbon fiber reinforced polymer composites with indirect microwave heating
CN102260378A (zh) 复合材料、用其制作的高频电路基板及其制作方法
CN107618228B (zh) 一种三向正交结构的隐身复合材料及其制备方法
CN102303432B (zh) 带通型树脂基夹层结构的透波材料及其制备方法
CN110385903B (zh) 一种基于阻抗超材料的轻质宽频吸波材料及其制备方法
CN113013635A (zh) 一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法
US20220274887A1 (en) Thermally Conductive Boron Nitride Films and Multilayered Composites Containing Them
Huang et al. Preparation and thermal properties of epoxy composites filled with negative thermal expansion nanoparticles modified by a plasma treatment
CN106273927A (zh) 一种外场测试用的低散射覆盖物及其制备方法
Xiao et al. Constructing a two-layer oblique honeycomb sandwich structure by LCD 3D printing for efficient electromagnetic wave absorbing
CN112848600A (zh) 超表面嵌入式承载吸波层合板及制备方法
CN115431605A (zh) 一种x波段隐身/防雷击蒙皮及其制备方法
Huang et al. Multifunctional carbon fiber reinforced multilayered metastructure with broadband microwave absorption and effective mechanical resistance
CN103963313B (zh) 一种具有防静电功能玻璃钢制品及制备方法
Zhou et al. Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design
Kim et al. A rational design procedure for absorbers of square-loop-shaped resistive frequency selective surface placed on glass/epoxy laminate
Zhang et al. Electromagnetic functionalization of mechanical lattice to metastructure with oblique incident broadband microwave absorption
Liang et al. BMI based composites with low dielectric loss
CN112318950A (zh) 一种高强度电磁脉冲防护结构材料
CN104029459A (zh) 一种耐海洋环境且低增重吸波复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210528