CN113013635A - 一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法 - Google Patents
一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法 Download PDFInfo
- Publication number
- CN113013635A CN113013635A CN202110181161.5A CN202110181161A CN113013635A CN 113013635 A CN113013635 A CN 113013635A CN 202110181161 A CN202110181161 A CN 202110181161A CN 113013635 A CN113013635 A CN 113013635A
- Authority
- CN
- China
- Prior art keywords
- honeycomb
- superstructure
- layer
- loss
- vacuum bag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title abstract description 17
- 239000003822 epoxy resin Substances 0.000 claims abstract description 56
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 36
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 26
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 26
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 239000002131 composite material Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000010521 absorption reaction Methods 0.000 claims abstract description 17
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 15
- 239000002518 antifoaming agent Substances 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 13
- 238000013329 compounding Methods 0.000 claims abstract description 12
- 238000003756 stirring Methods 0.000 claims abstract description 12
- 230000008569 process Effects 0.000 claims abstract description 11
- 238000005266 casting Methods 0.000 claims abstract description 5
- 229920000642 polymer Polymers 0.000 claims abstract description 5
- 239000003365 glass fiber Substances 0.000 claims description 60
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 44
- 239000004917 carbon fiber Substances 0.000 claims description 44
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 44
- 239000004744 fabric Substances 0.000 claims description 37
- 239000002002 slurry Substances 0.000 claims description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 21
- 239000000741 silica gel Substances 0.000 claims description 21
- 229910002027 silica gel Inorganic materials 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 20
- 239000000565 sealant Substances 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000000945 filler Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 8
- 238000002955 isolation Methods 0.000 claims description 8
- 238000003892 spreading Methods 0.000 claims description 8
- 230000007480 spreading Effects 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- 229920002972 Acrylic fiber Polymers 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims description 5
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical group C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 claims description 4
- 238000013461 design Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 239000002048 multi walled nanotube Substances 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 4
- 239000002985 plastic film Substances 0.000 claims description 4
- 229920006255 plastic film Polymers 0.000 claims description 4
- -1 polytetrafluoroethylene Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 229920002545 silicone oil Polymers 0.000 claims description 4
- 239000002109 single walled nanotube Substances 0.000 claims description 4
- 238000004512 die casting Methods 0.000 claims description 3
- 230000008595 infiltration Effects 0.000 claims description 3
- 238000001764 infiltration Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 239000002114 nanocomposite Substances 0.000 claims description 3
- 230000010355 oscillation Effects 0.000 claims description 3
- 238000003825 pressing Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 230000015556 catabolic process Effects 0.000 abstract description 3
- 238000006731 degradation reaction Methods 0.000 abstract description 3
- 230000010354 integration Effects 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 230000007246 mechanism Effects 0.000 abstract description 3
- 230000002787 reinforcement Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 66
- 230000010287 polarization Effects 0.000 description 11
- 239000011152 fibreglass Substances 0.000 description 10
- 238000001514 detection method Methods 0.000 description 7
- 239000011268 mixed slurry Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
- H01Q17/008—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/38—Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
- B29C33/3842—Manufacturing moulds, e.g. shaping the mould surface by machining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/003—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/02—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C39/028—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles having an axis of symmetry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/34—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
- B29C70/342—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D24/00—Producing articles with hollow walls
- B29D24/002—Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled
- B29D24/005—Producing articles with hollow walls formed with structures, e.g. cores placed between two plates or sheets, e.g. partially filled the structure having joined ribs, e.g. honeycomb
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
- B32B3/12—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0081—Electromagnetic shielding materials, e.g. EMI, RFI shielding
- H05K9/0083—Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
Abstract
本发明公开了属于多功能复合材料制备技术领域的一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法。其蜂窝损耗超结构由材料层、结构层、结构加强层共三个层级共同组成;其材料层由碳纳米管、羰基铁颗粒、环氧树脂、固化剂和消泡剂经过加热混合,充分搅拌,获得纳米双损耗复合材料;然后通过高聚物铸模与真空袋复合的材料成型工艺对蜂窝损耗超结构进行结构加强,制备出蜂窝结构状的损耗超结构;本发明实现了大角度入射情况下的宽频吸波性能,结构共振吸波机制在入射角度增大时的劣化程度较弱,使蜂窝超结构能够实现斜入射下的有效微波吸收。本发明实现大批量快速生产、制备过程简易、低成本、双功能集成等优点。
Description
技术领域
本发明属于多功能复合材料制备技术领域,特别涉及一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法。
背景技术
微波吸收材料和结构在国防技术、电磁兼容、电磁屏蔽、电磁防护等领域具有重要应用价值和研究意义。常用微波频段为2-40GHz,这个频段内的微波在5G通讯、目标探测、目标锁定、目标跟踪、微波雷达、高精度扫描等军用和民用领域均有重要应用实例。常规微波探测技术涉及单站雷达探测、多站雷达探测等空间雷达网,被探测目标会对入射探测微波进行多角度散射,从而形成雷达目标肖像。为了降低目标的微波探测特性,传统技术路径为在目标表面涂覆一层电磁损耗涂层,以降低反射微波的电磁强度。但受限于电磁损耗材料的阻抗匹配问题、复介电常数-复磁导率参数匹配问题以及涂层强度问题,传统吸波涂层具有吸波带宽窄、吸波峰值低、涂层强度弱、涂层易剥落等劣势,严重制约了目标微波吸收能力的提高,从而使目标的雷达肖像难以削弱。此外,吸波涂层性能随着微波入射角度的增加而迅速劣化,对于大角度入射的微波探测情景,吸波涂层难以发挥有效作用,且传统的蜂窝结构与外喷涂层的组合难以实现2-40GHz的超宽频吸波性能,只能对入射电磁波进行各个方向的散射,而不能真正吸收电磁能量,其制备方法繁琐,成本高,难以快速大规模制备,不能与纤维增强面板如玻璃纤维和碳纤维面板一体化成型,结构在力学工况下容易分层失效。
发明内容
本发明的目的是提供一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法,其特征在于,所述力学承载超宽频吸波的蜂窝损耗超结构由材料层、结构层、结构加强层共三个层级共同组成;通过高聚物铸模与真空袋复合的材料成型工艺,制备出蜂窝结构状的损耗超结构;
所述材料层由碳纳米管、羰基铁颗粒、环氧树脂、固化剂和消泡剂经过加热混合,充分搅拌,获得纳米双损耗复合材料;其中,环氧树脂、固化剂和消泡剂按照质量配比为3:1:0.04混合成为无填料环氧树脂;所述环氧树脂为双酚A型环氧树脂;固化剂为甲基四氢邻苯二甲酸酐;消泡剂为有机硅油;
所述结构层为蜂窝超结构,由平板层和蜂窝结构相连接组成;
所述结构加强层由玻璃纤维板和碳纤维板复合而成。
所述力学承载超宽频吸波的蜂窝损耗超结构的制备方法,其特征在于,三个层级通过制备纳米复合材料来作为蜂窝损耗超结构的材料基体,然后再通过易脱模铸模工艺来制备出周期蜂窝形状的超结构,最后通过真空袋加热紧压工艺来对蜂窝损耗超结构进行结构加强;具体步骤如下:
步骤1,材料层中纳米双损耗复合材料的制备:
(1)按碳纳米管、羰基铁颗粒、无填料环氧树脂浆料的质量分数配比为:碳纳米管的质量分数为0.56wt%,羰基铁颗粒的质量分数为69.73wt%,无填料环氧树脂浆料的质量分数为29.71wt%。
(2)将碳纳米管置于无水乙醇中进行超声振荡0-60分钟,然后将混合物中的无水乙醇蒸发干净,并烘干混合物,获得分散的碳纳米管;
(3)取上述(2)得到的碳纳米管、羰基铁颗粒、无填料环氧树脂浆料按照上述(1)比例加热混合,并充分搅拌,获得电磁损耗浆料待用;
步骤2,蜂窝超结构的制备:
用数控机床将丙烯酸塑料或有机玻璃模具板加工成具有具体设计尺寸的蜂窝超结构模具;将液态硅胶与固化剂混合搅拌后,倒入蜂窝超结构模具中,固化后获得蜂窝超结构的硅胶反模,将硅胶反模取出后,置于水平平台上,并向硅胶反模倒入步骤1获得的纳米双损耗复合材料,然后在60℃-120℃中加热固化1.5-4小时,浆料固化后,将蜂窝超结构取出;即得到蜂窝结构与平板层相连接的蜂窝超结构;
步骤3,结构加强层的制备:
(1)取多张玻璃纤维预浸料,直接垂直拼合成多层玻璃纤维预浸料软板,将玻璃纤维预浸料软板平铺在喷涂了相应的市售脱模剂的金属平板上,然后依次覆盖脱模布、隔离膜、透气毡和真空袋,真空袋通过密封胶与金属平板粘接,使真空袋不漏气,在真空袋中打开一个洞,插入导气管,导气管另一端与真空泵相连接,导气管与真空袋之间的空隙用密封胶填充,以防止漏气;将真空袋置于及内含物置于烘箱中,抽真空使其受到一个大气压的压力作用,在120℃-140℃中加热1-3小时,待玻璃纤维预浸料软板固化为硬质平板后,撕除真空袋和辅料后备用;
(2)结构加强层中玻璃纤维板/碳纤维板的复合:
在金属平板上喷涂脱模剂或平铺聚四氟乙烯薄膜,作为脱模层,将步骤3-(1)中制得的玻璃纤维平板平铺在脱模层上,将步骤1中提及的无填料环氧树脂浆料涂覆在玻璃纤维平板上,将步骤2制得的蜂窝超结构置于玻璃纤维平板上,平板层朝上,蜂窝结构朝下与玻璃纤维平板相接触,使蜂窝表面与无填料环氧树脂浆料压紧接触浸润;在蜂窝超结构平板层上涂覆步骤1中提及的无填料环氧树脂浆料,然后将第一层碳纤维布平铺在蜂窝超结构平板层上,再涂覆步骤1中提及的无填料环氧树脂浆料于第一层碳纤维布上,浸润碳纤维布,然后将第二层碳纤维布平铺于第一层碳纤维布上,如此类推直至达到设计层数的碳纤维布;然后依次在最后一层碳纤维布上平铺脱模布、隔离膜、透气毡和真空袋,真空袋通过密封胶与金属板粘接。在真空袋中打开一个孔洞,插入导气管,导气管另一端与真空泵相连,导气管与真空袋之间的缝隙用密封胶填充。将真空袋与内容物置于烘箱中,抽真空在60℃-120℃中加热固化1.5-4小时,固化后取出真空袋,撕除真空袋与辅料;即得到玻璃纤维/碳纤维增强蜂窝超结构。
所述碳纳米管指单壁碳纳米管和多壁碳纳米管;所述羰基铁颗粒指羰基铁经过还原后获得的铁含量90%以上的颗粒。
所述环氧树脂指固化温度在20℃-60℃之间的常温固化的环氧树脂;固化后形成硬质固体。
所述真空袋为具有一定强韧性的塑料薄膜。
本发明的有益效果是通过高聚物铸模-真空袋复合材料成型工艺制备出的一种力学承载超宽频吸波的蜂窝损耗超结构,对电磁损耗材料进行结构化设计,成型为平板蜂窝超结构,将材料电磁损耗特性和结构损耗特性进行融合设计,获得材料-结构-功能一体化的超宽频吸波超结构,并通过结构共振原理对入射电磁波进行电磁场集中和扭曲,从而使电磁能量更多集中于结构损耗材料中,实现了大角度入射情况下的宽频吸波性能,结构共振吸波机制在入射角度增大时的劣化程度较弱,使蜂窝超结构能够实现斜入射下的有效微波吸收。本发明实现大批量快速生产、制备过程简易、低成本、双功能集成等优点。
附图说明
图1为力学承载超宽频吸波的蜂窝损耗超结构示意图,
图2为玻璃纤维板、碳纤维板与蜂窝结构的复合模具示意图。
图3为电磁损耗复合材料的表面形貌;
图4为电磁损耗复合材料的电磁参数及单层涂层反射率分布;
图5为蜂窝超结构构外观示意图。
图6为蜂窝超结构入射方向示意图。
图7为覆盖和移除玻璃纤维面板的蜂窝超结构在X和Y入射方向下的实测反射率。
图8为覆盖和移除玻璃纤维面板的蜂窝超结构在水平极化和垂直极化方向下的不同入射角度的实测反射率;包括(a)垂直极化、(b)水平极化、(c)垂直极化、(d)水平极化四个入射角度。
图9为覆盖和移除玻璃纤维面板的蜂窝超结构的单轴拉伸实测等效应力-等效应变曲线。
图10为覆盖和移除玻璃纤维面板的蜂窝超结构的三点弯实测荷载-位移曲线。
具体实施方式
本发明提供一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法,下面结合附图和实施例对本发明予以说明。
图1为力学承载超宽频吸波的示意图,图1所示蜂窝损耗超结构由玻璃纤维板1、蜂窝结构2和碳纤维板3复合而成。具体蜂窝损耗超结构包括材料层、结构层、结构加强层共三个层级共同组成;所述力学承载超宽频吸波的蜂窝损耗超结构由材料层、结构层、结构加强层共三个层级共同组成;通过高聚物铸模与真空袋复合的材料成型工艺,制备出蜂窝结构状的损耗超结构;
所述材料层由碳纳米管、羰基铁颗粒、环氧树脂、固化剂和消泡剂经过加热混合,充分搅拌,获得纳米双损耗复合材料;其中,环氧树脂、固化剂和消泡剂按照质量配比为3:1:0.04混合成为无填料环氧树脂;固化剂为甲基四氢邻苯二甲酸酐;消泡剂为有机硅油;所述碳纳米管指单壁碳纳米管和多壁碳纳米管;所述羰基铁颗粒指羰基铁经过还原后获得的铁含量90%以上的颗粒。所述环氧树脂指固化温度在20℃-60℃之间的常温固化的环氧树脂;固化后形成硬质固体,本发明所采用的环氧树脂为双酚A型环氧树脂。所述结构层为蜂窝超结构,由平板层和蜂窝结构相连接组成;所述结构加强层由玻璃纤维板和碳纤维板复合而成。
图2所示为玻璃纤维板、碳纤维板与蜂窝结构的复合模具示意图。复合模具包括在铝板4上面依次叠放碳纤维板3、蜂窝结构2、玻璃纤维板1、脱模布8、隔离膜7、透气毡6和真空袋5,真空袋5通过密封胶9与铝板4粘接。其中真空袋为具有一定强韧性的塑料薄膜。
所述力学承载超宽频吸波的蜂窝损耗超结构的制备方法,以三个层级通过制备纳米复合材料来作为蜂窝损耗超结构的材料基体,然后再通过易脱模铸模工艺来制备出周期蜂窝形状的超结构,最后通过真空袋加热紧压工艺来对蜂窝损耗超结构进行结构加强;具体步骤如下:
步骤1,材料层中纳米双损耗复合材料的制备:
(1)按碳纳米管、羰基铁颗粒、无填料环氧树脂浆料的质量分数配比为:碳纳米管的质量分数为0.56wt%,羰基铁颗粒的质量分数为69.73wt%,无填料环氧树脂浆料的质量分数为29.71wt%。无填料环氧树脂浆料包括环氧树脂、固化剂和消泡剂,其质量配比为3:1:0.04。环氧树脂为双酚A型环氧树脂;固化剂为甲基四氢邻苯二甲酸酐;消泡剂为有机硅油;
(2)将碳纳米管置于无水乙醇中进行超声振荡0-60分钟,然后将混合物中的乙醇蒸发干净,并烘干混合物,获得分散的碳纳米管;所述碳纳米管指单壁碳纳米管和多壁碳纳米管;所述羰基铁颗粒指羰基铁经过还原后获得的铁含量90%以上的颗粒。所述环氧树脂指固化温度在20℃-60℃之间的常温固化的环氧树脂;固化后形成硬质固体
(3)取步骤1-(2)的碳纳米管、羰基铁颗粒、无填料环氧树脂浆料按照上述步骤1-(1)的比例加热混合,并充分搅拌,获得电磁损耗浆料待用;
步骤2,蜂窝超结构的制备:
用数控机床将丙烯酸塑料或有机玻璃模具板加工成具有具体设计尺寸的蜂窝超结构模具;将液态硅胶与固化剂混合搅拌后,倒入蜂窝超结构模具中,固化后获得蜂窝超结构的硅胶反模,将硅胶反模取出后,置于水平平台上,并向硅胶反模倒入步骤1获得的纳米双损耗复合材料,然后在60℃-120℃中加热固化1.5-4小时,浆料固化后,将蜂窝超结构取出;即得到蜂窝结构与平板层相连接的蜂窝超结构(如图5、6所示);
步骤3,结构加强层的制备:
(1)取多张玻璃纤维预浸料,直接垂直拼合成多层玻璃纤维预浸料软板,按照如图2所示结构,将玻璃纤维预浸料软板平铺在喷涂了相应的市售脱模剂的金属平板上,然后依次覆盖脱模布、隔离膜、透气毡和真空袋,真空袋通过密封胶与金属平板粘接,使真空袋不漏气,在真空袋中打开一个洞,插入导气管,导气管另一端与真空泵相连接,导气管与真空袋之间的空隙用密封胶填充,以防止漏气;将真空袋置于及内含物置于烘箱中,抽真空使其受到一个大气压的压力作用,在120℃-140℃中加热1-3小时,待玻璃纤维预浸料软板固化为硬质平板后,撕除真空袋和辅料后备用;
(2)结构加强层中玻璃纤维板/碳纤维板的复合:
在金属平板上喷涂脱模剂或平铺聚四氟乙烯薄膜,作为脱模层,将步骤3-(1)中制得的玻璃纤维平板平铺在脱模层上,将步骤1中提及的无填料环氧树脂浆料涂覆在玻璃纤维平板上,将步骤2制得的蜂窝超结构置于玻璃纤维平板上,平板层朝上,蜂窝结构朝下与玻璃纤维平板相接触,使蜂窝表面与无填料环氧树脂浆料压紧接触浸润;在蜂窝超结构平板层上涂覆步骤1中提及的无填料环氧树脂浆料,然后将第一层碳纤维布平铺在蜂窝超结构平板层上,再涂覆步骤1中提及的无填料环氧树脂浆料于第一层碳纤维布上,浸润碳纤维布,然后将第二层碳纤维布平铺于第一层碳纤维布上,如此类推直至达到设计层数的碳纤维布;然后依次在最后一层碳纤维布上平铺脱模布、隔离膜、透气毡和真空袋,真空袋通过密封胶与金属板粘接。在真空袋中打开一个孔洞,插入导气管,导气管另一端与真空泵相连,导气管与真空袋之间的缝隙用密封胶填充。将真空袋与内容物置于烘箱中,抽真空在60℃-120℃中加热固化1.5-4小时,固化后取出真空袋,撕除真空袋与辅料;即得到玻璃纤维/碳纤维增强蜂窝超结构。所述真空袋为具有一定强韧性的塑料薄膜。
以下通过实施例对本发明的内容作进一步说明:
实施例1:
步骤(1)材料层级中纳米双损耗复合材料的制备:
碳纳米管-乙醇混合物装于玻璃器皿中,在60℃水浴下进行超声波振动,持续时间为20分钟。然后将混合溶液通过旋转蒸发仪蒸干乙醇,并烘干所得干燥物,获得超声振松的碳纳米管。取环氧树脂与固化剂混合,质量配比为3:1:0.04,消泡剂为环氧树脂质量的1wt%,获得环氧树脂混合浆料。取碳纳米管、羰基铁颗粒、环氧树脂混合浆料混合,并充分搅拌,获得电磁损耗浆料,其中碳纳米管的质量分数为0.56wt%,羰基铁颗粒的质量分数为69.73wt%,环氧树脂混合浆料的质量分数为29.71wt%,固化后,其表面形貌如图3所示,其电磁参数如图4所示。
步骤(2)结构层级中周期蜂窝超结构的制备:
用数控机床将丙烯酸塑料或有机玻璃模具板加工成具有具体设计尺寸的蜂窝超结构模具。将液态模具硅胶与固化剂混合搅拌后,倒入蜂窝超结构的丙烯酸塑料或有机玻璃模具中,固化后获得蜂窝超结构的硅胶反模。将硅胶反模取出后,置于水平平台上,并向硅胶反模倒入在步骤(1)中制备的加热电磁损耗浆料,然后在90℃中加热固化2小时。浆料固化后,将蜂窝超结构取出。蜂窝超结构由两部分组成,一部分为平板层,另一部分为蜂窝结构(如图5所示),蜂窝结构与平板层相连接。平板层厚度为1.84mm,蜂窝结构厚度为5.61mm,镂空蜂窝边长为5.44mm,外蜂窝边长为6mm。
步骤(3)结构加强层级中玻璃纤维板的制备:
取多张玻璃纤维预浸料,直接垂直拼合成多层玻璃纤维预浸料软板,将玻璃纤维预浸料软板平铺在喷涂了脱模剂的金属平板上,然后依次覆盖脱模布、隔离膜、透气毡和真空袋,真空袋通过密封胶与金属平板粘接(如图2所示),使真空袋不漏气,在真空袋中打开一个洞,插入导气管,导气管另一端与真空泵相连接,导气管与真空袋之间的空隙用密封胶填充,以防止漏气。将真空袋置于及内含物置于烘箱中,在120℃中加热2小时,待玻璃纤维预浸料软板固化为硬质平板后,撕除真空袋和辅料后备用。
步骤(4)结构加强层级中玻璃纤维板/碳纤维板的复合:
在金属平板上喷涂脱模剂或平铺聚四氟乙烯薄膜,作为脱模层,将步骤(3)中制得的玻璃纤维平板平铺在脱模层上,将步骤(1)中提及的无填料的环氧树脂浆料涂覆在玻璃纤维平板上,将步骤(2)制得的蜂窝超结构置于玻璃纤维平板上,平板层朝上,蜂窝结构朝下与玻璃纤维平板相接触,使蜂窝表面与无填料的环氧树脂浆料压紧接触浸润。在蜂窝超结构平板层上涂覆步骤(1)中提及的无填料的环氧树脂浆料,然后将第一层碳纤维布平铺在蜂窝超结构平板层上,再涂覆步骤(1)中提及的无填料的环氧树脂浆料与第一层碳纤维布上,浸润碳纤维布,然后将第二层碳纤维布平铺于第一层碳纤维布上,如此类推直至达到设计层数的碳纤维布。然后依次在最后一层碳纤维布上平铺脱模布、隔离膜、透气毡和真空袋,真空袋通过密封胶与金属板粘接。在真空袋中打开一个孔洞,插入导气管,导气管另一端与真空泵相连,导气管与真空袋之间的缝隙用密封胶填充。将真空袋与内容物置于烘箱中,抽真空在90℃中加热固化2小时,固化后取出玻璃纤维/碳纤维增强蜂窝超结构,撕除真空袋与辅料。蜂窝超结构的阵列结构和单胞尺寸如图5所示。蜂窝超结构横观各向异性的入射面方向(如图6所示)。其覆盖玻璃纤维面板的蜂窝超结构在正入射方向下的实测反射率如图7所示,其覆盖玻璃纤维面板的蜂窝超结构在X和Y入射方向下的不同入射角度的实测反射率(如图8所示为覆盖和移除玻璃纤维面板的蜂窝超结构在水平极化和垂直极化方向下的不同入射角度的实测反射率;包括(a)垂直极化、(b)水平极化、(c)垂直极化、(d)水平极化四个入射角度)。其覆盖和移除玻璃纤维面板的蜂窝超结构的单轴拉伸实测等效应力-等效应变曲线如图9所示,其覆盖和移除玻璃纤维面板的蜂窝超结构的三点弯实测荷载-位移曲线如图10所示。
本实施例中的力学承载-超宽频吸波功能一体化的三维蜂窝损耗超结构的实测-10dB吸波带宽为2.76GHz-40GHz(去除玻璃纤维面板)、2GHz-20.37GHz(覆盖玻璃纤维面板),其实测最大吸收峰值为-45.9dB(覆盖玻璃纤维面板),根据实测数据,其等效拉伸强度为59.59MPa(去除玻璃纤维面板)和80.03MPa(覆盖玻璃纤维面板),其弯曲强度为22.40MPa(去除玻璃纤维面板)和34.66MPa(覆盖玻璃纤维面板),其实测总厚度为9.12mm(去除玻璃纤维面板)和9.49mm(覆盖玻璃纤维面板),其实测面密度为9.51kg/m2(去除玻璃纤维面板)和10.70kg/m2(覆盖玻璃纤维面板)。
综上所述,本发明将材料电磁损耗特性和结构损耗特性进行融合设计,获得材料-结构-功能一体化的超宽频吸波超结构,并通过结构共振原理对入射电磁波进行电磁场集中和扭曲,从而使电磁能量更多集中于结构损耗材料中,实现了大角度入射情况下的宽频吸波性能,结构共振吸波机制在入射角度增大时的劣化程度较弱,使蜂窝超结构能够实现斜入射下的有效微波吸收。本发明实现大批量快速生产、制备过程简易、低成本、双功能集成等优点。
Claims (5)
1.一种力学承载超宽频吸波的蜂窝损耗超结构,其特征在于,所述力学承载超宽频吸波的蜂窝损耗超结构由材料层、结构层、结构加强层共三个层级共同组成;通过高聚物铸模与真空袋复合的材料成型工艺,制备出蜂窝结构状的损耗超结构;
所述材料层由碳纳米管、羰基铁颗粒、环氧树脂、固化剂和消泡剂经过加热混合,充分搅拌,获得纳米双损耗复合材料;其中,环氧树脂、固化剂和消泡剂按照质量配比为3:1:0.04混合成为无填料环氧树脂;所述环氧树脂为双酚A型环氧树脂;固化剂为甲基四氢邻苯二甲酸酐;消泡剂为有机硅油;
所述结构层为蜂窝超结构,由平板层和蜂窝结构相连接组成;
所述结构加强层由玻璃纤维板和碳纤维板复合而成。
2.一种力学承载超宽频吸波的蜂窝损耗超结构的制备方法,其特征在于,三个层级通过制备纳米复合材料来作为蜂窝损耗超结构的材料基体,然后再通过易脱模铸模工艺来制备出周期蜂窝形状的超结构,最后通过真空袋加热紧压工艺来对蜂窝损耗超结构进行结构加强;具体步骤如下:
步骤1,材料层中纳米双损耗复合材料的制备:
(1)按碳纳米管、羰基铁颗粒、无填料环氧树脂浆料的质量分数配比为:碳纳米管的质量分数为0.56wt%,羰基铁颗粒的质量分数为69.73wt%,无填料环氧树脂浆料的质量分数为29.71wt%。
(2)将碳纳米管置于无水乙醇中进行超声振荡0-60分钟,然后将混合物中的无水乙醇蒸发干净,并烘干混合物,获得分散的碳纳米管;
(3)取上述(2)得到的碳纳米管、羰基铁颗粒、无填料环氧树脂浆料按照上述(1)比例加热混合,并充分搅拌,获得电磁损耗浆料待用;
步骤2,蜂窝超结构的制备:
用数控机床将丙烯酸塑料或有机玻璃模具板加工成具有具体设计尺寸的蜂窝超结构模具;将液态硅胶与固化剂混合搅拌后,倒入蜂窝超结构模具中,固化后获得蜂窝超结构的硅胶反模,将硅胶反模取出后,置于水平平台上,并向硅胶反模倒入步骤1获得的纳米双损耗复合材料,然后在60℃-120℃中加热固化1.5-4小时,浆料固化后,将蜂窝超结构取出;即得到蜂窝结构与平板层相连接的蜂窝超结构;
步骤3,结构加强层的制备:
(1)取多张玻璃纤维预浸料,直接垂直拼合成多层玻璃纤维预浸料软板,将玻璃纤维预浸料软板平铺在喷涂了相应的市售脱模剂的金属平板上,然后依次覆盖脱模布、隔离膜、透气毡和真空袋,真空袋通过密封胶与金属平板粘接,使真空袋不漏气,在真空袋中打开一个洞,插入导气管,导气管另一端与真空泵相连接,导气管与真空袋之间的空隙用密封胶填充,以防止漏气;将真空袋置于及内含物置于烘箱中,抽真空使其受到一个大气压的压力作用,在120℃-140℃中加热1-3小时,待玻璃纤维预浸料软板固化为硬质平板后,撕除真空袋和辅料后备用;
(2)结构加强层中玻璃纤维板/碳纤维板的复合:
在金属平板上喷涂脱模剂或平铺聚四氟乙烯薄膜,作为脱模层,将步骤3-(1)中制得的玻璃纤维平板平铺在脱模层上,将步骤1中提及的无填料环氧树脂浆料涂覆在玻璃纤维平板上,将步骤2制得的蜂窝超结构置于玻璃纤维平板上,平板层朝上,蜂窝结构朝下与玻璃纤维平板相接触,使蜂窝表面与无填料环氧树脂浆料压紧接触浸润;在蜂窝超结构平板层上涂覆步骤1中提及的无填料环氧树脂浆料,然后将第一层碳纤维布平铺在蜂窝超结构平板层上,再涂覆步骤1中提及的无填料环氧树脂浆料于第一层碳纤维布上,浸润碳纤维布,然后将第二层碳纤维布平铺于第一层碳纤维布上,如此类推直至达到设计层数的碳纤维布;然后依次在最后一层碳纤维布上平铺脱模布、隔离膜、透气毡和真空袋,真空袋通过密封胶与金属板粘接。在真空袋中打开一个孔洞,插入导气管,导气管另一端与真空泵相连,导气管与真空袋之间的缝隙用密封胶填充。将真空袋与内容物置于烘箱中,抽真空在60℃-120℃中加热固化1.5-4小时,固化后取出真空袋,撕除真空袋与辅料;即得到玻璃纤维/碳纤维增强蜂窝超结构。
3.根据权利要求2所述的力学承载超宽频吸波的蜂窝损耗超结构的制备方法,其特征在于,所述碳纳米管指单壁碳纳米管和多壁碳纳米管;所述羰基铁颗粒指羰基铁经过还原后获得的铁含量90%以上的颗粒。
4.根据权利要求2所述的力学承载超宽频吸波的蜂窝损耗超结构的制备方法,其特征在于,所述环氧树脂指固化温度在20℃-60℃之间的常温固化的环氧树脂;固化后形成硬质固体。
5.根据权利要求2所述的力学承载超宽频吸波的蜂窝损耗超结构的制备方法,其特征在于,真空袋为具有一定强韧性的塑料薄膜。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110181161.5A CN113013635A (zh) | 2021-02-09 | 2021-02-09 | 一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110181161.5A CN113013635A (zh) | 2021-02-09 | 2021-02-09 | 一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113013635A true CN113013635A (zh) | 2021-06-22 |
Family
ID=76401997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110181161.5A Pending CN113013635A (zh) | 2021-02-09 | 2021-02-09 | 一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113013635A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113858656A (zh) * | 2021-09-24 | 2021-12-31 | 成都佳驰电子科技股份有限公司 | 一种锯齿型中空结构复合材料吸波部件的一体成型工艺 |
CN114571711A (zh) * | 2022-02-15 | 2022-06-03 | 哈尔滨工程大学 | 一种用于加强水火箭外壳的方法 |
CN115304307A (zh) * | 2022-08-19 | 2022-11-08 | 北京环境特性研究所 | 一种宽频吸波材料及其制备方法 |
CN113580415B (zh) * | 2021-08-02 | 2023-05-09 | 浙江省林业科学研究院 | 一种溶液悬浮装置及制备竹纤维玻璃纤维网预制体的方法 |
CN117944204A (zh) * | 2024-03-26 | 2024-04-30 | 成都飞机工业(集团)有限责任公司 | 一种环形夹芯吸波结构制造模具及制造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101059198A (zh) * | 2007-05-22 | 2007-10-24 | 浙江理工大学 | 蜂窝状三维立体整体空芯机织增强复合材料的成型方法 |
CN105751590A (zh) * | 2016-03-01 | 2016-07-13 | 武汉理工大学 | 一种具有吸波功能的蜂窝夹芯复合材料及其制备方法 |
CN108749229A (zh) * | 2018-04-23 | 2018-11-06 | 西北工业大学 | 一种三明治结构吸波复合材料及制备方法 |
CN111186201A (zh) * | 2018-11-15 | 2020-05-22 | 航天特种材料及工艺技术研究所 | 双层蒙皮吸波蜂窝夹心结构及其制备方法 |
US20200376798A1 (en) * | 2019-05-29 | 2020-12-03 | Qingdao university of technology | Embedded co-cured composite material with large-damping and electromagnetic wave absorbing properties and preparation method and application thereof |
-
2021
- 2021-02-09 CN CN202110181161.5A patent/CN113013635A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101059198A (zh) * | 2007-05-22 | 2007-10-24 | 浙江理工大学 | 蜂窝状三维立体整体空芯机织增强复合材料的成型方法 |
CN105751590A (zh) * | 2016-03-01 | 2016-07-13 | 武汉理工大学 | 一种具有吸波功能的蜂窝夹芯复合材料及其制备方法 |
CN108749229A (zh) * | 2018-04-23 | 2018-11-06 | 西北工业大学 | 一种三明治结构吸波复合材料及制备方法 |
CN111186201A (zh) * | 2018-11-15 | 2020-05-22 | 航天特种材料及工艺技术研究所 | 双层蒙皮吸波蜂窝夹心结构及其制备方法 |
US20200376798A1 (en) * | 2019-05-29 | 2020-12-03 | Qingdao university of technology | Embedded co-cured composite material with large-damping and electromagnetic wave absorbing properties and preparation method and application thereof |
Non-Patent Citations (1)
Title |
---|
黄怿行: "薄型宽频隐身承载超结构的材料—结构—功能一体化设计、制备与表征", 《中国博士学位论文全文数据库》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113580415B (zh) * | 2021-08-02 | 2023-05-09 | 浙江省林业科学研究院 | 一种溶液悬浮装置及制备竹纤维玻璃纤维网预制体的方法 |
CN113858656A (zh) * | 2021-09-24 | 2021-12-31 | 成都佳驰电子科技股份有限公司 | 一种锯齿型中空结构复合材料吸波部件的一体成型工艺 |
CN114571711A (zh) * | 2022-02-15 | 2022-06-03 | 哈尔滨工程大学 | 一种用于加强水火箭外壳的方法 |
CN115304307A (zh) * | 2022-08-19 | 2022-11-08 | 北京环境特性研究所 | 一种宽频吸波材料及其制备方法 |
CN115304307B (zh) * | 2022-08-19 | 2023-04-11 | 北京环境特性研究所 | 一种宽频吸波材料及其制备方法 |
CN117944204A (zh) * | 2024-03-26 | 2024-04-30 | 成都飞机工业(集团)有限责任公司 | 一种环形夹芯吸波结构制造模具及制造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113013635A (zh) | 一种力学承载超宽频吸波的蜂窝损耗超结构及制备方法 | |
CN108749229B (zh) | 一种三明治结构吸波复合材料及制备方法 | |
CN101352926B (zh) | 一种大型夹芯复合材料制件的真空辅助成型工艺方法 | |
Chen et al. | Mechanical properties in glass fiber PVC-foam sandwich structures from different chopped fiber interfacial reinforcement through vacuum-assisted resin transfer molding (VARTM) processing | |
CN102848622B (zh) | 一种具有pmi泡沫芯材的夹芯材料及其制备方法 | |
CN114589979B (zh) | 一种兼具抗高速冲击和吸波隐身功能的蜂窝夹芯复合材料及其制备方法 | |
CN109648952B (zh) | 一种梯度型氧化石墨烯基结构吸波材料及其制备方法 | |
CN109638445A (zh) | 一种耐高温泡沫a夹层复合材料天线罩及其制备方法 | |
CN105563964B (zh) | 一种机载天线罩用复合材料及其制备方法 | |
KR101500036B1 (ko) | 샌드위치 패널용 심재 및 이의 제조방법, 이를 포함하는 샌드위치 패널 | |
JP6862002B2 (ja) | 複合構造体の製造方法 | |
CN106967276B (zh) | 纳米吸收剂-碳化硅纤维多尺度增强体增强树脂基结构吸波材料及其制备方法 | |
CN105131827B (zh) | 一种改性氰酸酯树脂表面膜及其制备方法 | |
CN106739192A (zh) | 一种全碳纤维复合材料反射镜基底及其制备方法 | |
CN109624428A (zh) | 一种高剥离强度高导热蜂窝夹层结构板及其制备方法 | |
CN102930862A (zh) | Z向增强水下吸声夹芯复合材料及其制备方法 | |
CN105802136A (zh) | 一种三维织物增强多孔复合材料的制备方法 | |
CN114030268B (zh) | 具备高强胶接性能的蜂窝夹层结构复合材料的制备方法 | |
CN104029459B (zh) | 一种耐海洋环境且低增重吸波复合材料的制备方法 | |
CN108908961A (zh) | 玻璃钢复合结构吸波材料及制备方法 | |
CN105965983B (zh) | 碳纤维复合板的制作方法及碳纤维复合板 | |
CN112318950A (zh) | 一种高强度电磁脉冲防护结构材料 | |
CN114484153B (zh) | 一种可塑形的纳米隔热板材及其制备方法 | |
CN112848600A (zh) | 超表面嵌入式承载吸波层合板及制备方法 | |
CN102316711B (zh) | 一种活性碳毡电路屏结构吸波隐身材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210622 |
|
RJ01 | Rejection of invention patent application after publication |