CN112838144A - 一种金字塔绒面上优化均匀性化的工艺方法 - Google Patents

一种金字塔绒面上优化均匀性化的工艺方法 Download PDF

Info

Publication number
CN112838144A
CN112838144A CN202110087977.1A CN202110087977A CN112838144A CN 112838144 A CN112838144 A CN 112838144A CN 202110087977 A CN202110087977 A CN 202110087977A CN 112838144 A CN112838144 A CN 112838144A
Authority
CN
China
Prior art keywords
silicon wafer
uniformity
aluminum oxide
mode
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110087977.1A
Other languages
English (en)
Other versions
CN112838144B (zh
Inventor
陈庆敏
初仁龙
涂清华
李丙科
孙志宇
汪松柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Songyu Technology Co ltd
Original Assignee
Wuxi Songyu Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Songyu Technology Co ltd filed Critical Wuxi Songyu Technology Co ltd
Priority to CN202110087977.1A priority Critical patent/CN112838144B/zh
Publication of CN112838144A publication Critical patent/CN112838144A/zh
Application granted granted Critical
Publication of CN112838144B publication Critical patent/CN112838144B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种金字塔绒面上优化均匀性的工艺方法,包括以下步骤:步骤S1,提供太阳能电池原始硅片,对原始硅片进行制绒生长金字塔绒面,再进行绒面清洗预处理;步骤S2,对硅片进行扩散工艺处理;步骤S3,对硅片表面抛光处理;步骤S4,对硅片表面采用双向交替的气流方式沉积氧化铝膜。本发明采用了双向交替的进气方式生长氧化铝膜,可以把氧化铝膜的均匀性大幅提高,在金字塔绒面结构下氧化铝膜的均匀性同样可以控制在3%以内,可以把氧化铝膜更强的场钝化效果发挥出来,降低俄歇复合、SRH复合和表面复合,大大提高了钝化效果。

Description

一种金字塔绒面上优化均匀性化的工艺方法
技术领域
本发明涉及光伏太阳能电池技术领域,尤其是一种应用在光伏太阳能电池表面沉积中在金字塔绒面上优化均匀性的工艺方法。
背景技术
光伏太阳能电池是一种把太阳的光能直接转化为电能的半导体材料。目前通常使用的是以硅为基底的硅光伏电池,包括单晶硅、多晶硅、非晶硅、晶硅与化合物叠层光伏电池等。PERT电池(Passivated Emitter and Rear Totally-diffused Cell,钝化发射极背面全扩散电池)、PERC电池(Passivated Emitter and Rear Cell,发射极和背面钝化技术)都是新型的光伏电池技术,PERT和PERC电池与常规电池最大的区别在于正表面、背表面介质膜钝化,能有效降低背表面的电子复合速度。而在PERT电池的基础上,TOPCon(TunnelOxide Passivated Contact,隧穿氧化钝化接触)作为一种新型钝化技术已经成为研究热点,该技术是在电池表面生成一层超薄的可隧穿的氧化层和一层高掺杂的多晶硅层。此外,还有异质结(比如HJT)电池结构。这些高效电池结构的重要变化是改进正背面的复合状态,无论是P型硅片还是N型硅片,硅片表面均存在一定浓度的悬挂不饱和键,这都是导致电子空穴对复合的一个重要原因,所以需要降低该原因导致的不良电子空穴对复合。
目前较为成熟的钝化方法有:管式ALD原子层沉积钝化设备、平板式ALD原子层沉积钝化设备、管式PECVD二合一钝化设备、平板式PECVD钝化设备等,其中以管式ALD原子层沉积钝化设备为主导,特别是在当前光伏电池在大尺寸182&210等尺寸硅片和新技术路线的推动下,对于硅片表面钝化的均匀性、钝化质量要求极为苛刻。现有PERT电池正面和PERC电池背面都存在金字塔绒面结构,其作用是为了提升电池的转换效率。在对电池表面ALD原子层沉积时,现有的进气方式通常是单向进出气,其可以满足氧化铝的均匀性在片内5%以内的要求,而在金字塔绒面结构上用单向进出的气流方式,其不均匀性会达到10%以上(见图1和图2),这样会大幅影响高效电池效率的能效优势。
发明内容
本申请人针对上述现有ALD钝化设备进气方式存在的在金字塔绒面结构上氧化铝膜均匀性差等缺陷,提供了一种金字塔绒面上优化均匀性的工艺方法,通过双向交替进气的方式,改进氧化铝膜层的均匀性,最大化地发挥氧化铝钝化硅片表面悬挂不饱和键的效果,解决氧化铝膜不均匀带来的气孔问题、无场钝化问题、高耗能、EL黑点、EL黑斑等问题,且可以用于硅片的双面钝化应用。
本发明所采用的技术方案如下:
一种金字塔绒面上优化均匀性的工艺方法,包括以下步骤:
步骤S1,提供太阳能电池原始硅片,对原始硅片进行制绒生长金字塔绒面,再进行绒面清洗预处理;
步骤S2,对硅片进行扩散工艺处理,
步骤S3,对硅片表面抛光处理;
步骤S4,对硅片表面采用双向交替的气流方式沉积氧化铝膜。
作为上述技术方案的进一步改进:
步骤S4进一步包括:在炉腔内使用双向交替的进出气方式沉积氧化铝薄膜,先采用炉口进气、炉尾出气方式,再改为炉尾进气、炉口出气方式,以此交替进行。
步骤S4进一步包括:先采用炉口进气、炉尾出气方式,通入TMA气体2~10秒,氮气吹扫5~20秒,通入臭氧或者气态水2~10秒,氮气吹扫2~10秒,以此为一个周期;再改为炉尾进气、炉口出气方式,通入TMA 气体2~10秒,氮气吹扫5~20秒,通入臭氧或者气态水2~10秒,氮气吹扫2~10秒,以此为第二个周期;这两种进出气方式等周期间隔交替进行。
步骤S4进一步包括:气流双向交替进行构成至少一个循环。
步骤S4进一步包括:氧化铝厚度控制在5±3nm范围内,折射率控制在1.5~1.7范围内;在各种表面微观结构下,氧化铝的均匀性在3%以内。
步骤S4进一步包括:镀氧化铝的方法为通过ALD、PEALD设备镀氧化铝膜中的一种。
步骤S4进一步包括:通过ALD或PEALD对硅片的镀氧化铝膜,参与镀氧化铝膜的反应气体包括TMA、臭氧以及辅助气体;通过调节TMA和臭氧比例进行反应制备氧化铝膜,镀膜速率控制在1.7Å/循环,膜厚控制在5±3nm范围内,折射率为1.5~1.7;辅助气体为氩气、氮气中的一种或多种。
步骤S4进一步包括:与TMA一起生成氧化铝膜的反应物包括水、O2、O3中的一种或多种。
步骤S2进一步包括:对硅片进行扩散工艺处理采用PERC电池的磷扩散或PERT电池的硼扩散。
步骤S3进一步包括:
步骤3a:对硅片背面及侧面碱抛刻蚀和酸洗;
步骤3b:将碱抛刻蚀后的硅片PN结推进。
本发明的有益效果如下:
为了更好的解决上述现有问题,本发明采用了双向交替的进气方式生长氧化铝膜,可以把氧化铝膜的均匀性大幅提高,在金字塔绒面结构下氧化铝膜的均匀性同样可以控制在3%以内,可以把氧化铝膜更强的场钝化效果发挥出来,降低俄歇复合、SRH复合(Shockley-Read-Hall),非平衡载流子复合)和表面复合,大大提高了钝化效果。对于N型TOPCon的PERT电池硼面钝化效果提升尤为显著,可以把该面少子寿命提升30%,iVoc提升3mV以上。(iVoc中文名:模拟开路电压,英文全称:imitation open-circuit voltage)。
本发明在沉积氧化铝薄膜时采用双向交替的进出气方式,改进氧化铝膜的均匀性,最大化地发挥氧化铝钝化硅片表面的悬挂不饱和键,具有良好的场钝化和化学钝化效果,解决氧化铝膜不均匀带来的气孔问题、无场钝化问题、无场钝化问题、高耗能等问题,优于只有单向进出气流方式下氧化铝膜的钝化效果,解决其存在的不均匀钝化缺陷。高均匀性的氧化铝膜能进一步增强化学钝化、场钝化的效果,本发明具有经济性好、环保性好、大规模批量生产可行性高等优点,可广泛应用于PERT、PERC、TOPCon、异质结等电池结构。
附图说明
图1为现有进出气方式的示意图。
图2为现有工艺下的微观示意图。
图3为本发明进出气方式的示意图。
图4为本发明工艺下的微观示意图。
其中:①是方向一;②是方向二。
具体实施方式
参照图3和图4,本发明所述的金字塔绒面上优化均匀性的工艺方法,包括以下步骤S1~S4:
步骤S1:提供太阳能电池原始硅片,对原始硅片进行制绒生长金字塔绒面,再进行绒面清洗预处理;进一步包括以下步骤1a~1b:
步骤1a:提供太阳能电池原始硅片。本实施例所述硅片为多晶硅片,电阻率为0~6欧姆·米(Ω·m),厚度为120um~230um,本发明还适用于各种尺寸类型的单晶硅片。
步骤1b:对原始硅片制绒清洗。利用碱异向腐蚀特点,加入适当的添加剂如碱制绒液,在硅片上刻蚀出金字塔结构的绒面。碱制绒液的质量分数为1.5%,反应时间为4分钟左右。制绒后的硅片利用氢氟酸、盐酸、水混合溶液清洗,其比例为1:3:6,清洗时间为5分钟。然后用纯水清洗后吹干。制绒减薄量控制在0.4~0.5g,反射率控制在9%~11%。
步骤S2:对硅片进行扩散工艺处理,例如PERC电池的磷扩散或PERT电池的硼扩散;进一步包括以下步骤2a~2b:
步骤2a:在P型硅片上进行磷扩散,将硅片置于管式扩散炉内,通过磷扩散工艺在硅片表面形成一次均匀的PN结。磷扩散工艺的温度为800~860℃,扩散时间为40分钟左右,方块电阻控制在80~160Ω。PN结的深度控制在0.3um左右,表面浓度控制在(2~6)×1020/cm3
或者,在N型硅片上进行硼扩散,将硅片置于管式扩散炉内,通过硼扩散工艺在硅片表面形成一次均匀的PN结。磷扩散工艺的温度为900~960℃,扩散时间为40分钟左右,方块电阻控制在80~160Ω。PN结的深度控制在0.3um左右,表面浓度控制在(2~6)×1020/cm3
步骤2b:对硅片去除背面及侧面的磷硅玻璃。将扩散后的硅片扩散面向上,用浓度为4%的氢氟溶液对硅片的背面及侧面漂洗,去除背面及侧面PSG(磷硅玻璃)或BSG(硼硅玻璃),时间为5分钟左右。保留硅片正面的磷硅玻璃和PN结,或正面的硼硅玻璃和PN结。为下一步碱抛做铺垫。
步骤S3,对硅片表面抛光处理;进一步包括以下步骤3a~3b:
步骤3a:对硅片背面及侧面碱抛刻蚀和酸洗。硅片在浓度为10%~20%的氢氧化钾溶液里抛光,时间为5分钟。其中氢氧化钾溶液中添加了适量的添加剂,比如过抛剂。添加剂作用在于保护硅片正面的PN结不被刻蚀,同时帮助硅片侧面背面脱泡加速反应,进而达到抛光效果。得到的硅片具有平整的背面,表面积小,悬挂键少,界面态好。同时也有利于后面PECVD镀膜沉积。碱抛后过酸洗溶液,反应时间为6分钟,酸洗溶液为氢氟酸、盐酸、水混合溶液,其比例为1:2:7。酸洗后用纯水清洗10分钟后烘干。
步骤3b:将碱抛刻蚀后的硅片PN结推进。将硅片在扩散管内无氧无磷无硼源条件下扩散结推进30分钟,反应温度为600~800℃。PN结推进工艺在硅片表面有限源下活化推进磷或硼,降低表面磷(P)或硼(B)浓度,推进结深,得到更均匀的PN结,同时高温钝化体内杂质。将硅片表大量间隙式扩散的磷活化成有替位式磷,或硼活化成有替位式硼,形成有效掺杂。
步骤S4:对硅片表面采用双向交替的气流方式沉积氧化铝膜;进一步包括:在炉腔内使用双向交替的进出气方式沉积氧化铝薄膜,先采用炉口进气、炉尾出气方式,通入TMA气体2~10秒,氮气吹扫5~20秒,通入臭氧或者气态水2~10秒,氮气吹扫2~10秒,以此为一个周期;再改为炉尾进气、炉口出气方式,通入TMA 气体2~10秒,氮气吹扫5~20秒,通入臭氧或者气态水2~10秒,氮气吹扫2~10秒,以此为第二个周期。这两种进出气方式等周期间隔交替进行。氧化铝厚度控制在5±3nm范围内,折射率控制在1.5~1.7范围内;在各种表面微观结构下,氧化铝均匀性均可控制在3%以内。参与与TMA(Al(CH3)3)一起制备氧化铝生成Al2O3膜的反应物可选包括水、O2、O3其中的任一种或多种。
作为一种举例,本实施例通过ALD或PEALD方式对硅片的背面镀氧化铝膜,参与镀氧化铝膜的反应气体包括TMA、臭氧(O3)以及辅助气体。通过调节TMA和臭氧(O3)比例进行反应制备Al2O3,镀膜速率控制在1.7Å/循环,化学反应式为[Al(CH3)3+O3→Al2O3+CO2↑+H2O↑]。膜厚控制在5±2nm范围内,折射率为1.5~1.7。辅助气体中氩气:TMA比例在2:1 ~ 10:1之间。辅助气体还可以是氮气。
本发明采用了双向交替的进气方式生长氧化铝膜,可以把氧化铝膜的均匀性大幅提高,在金字塔绒面结构下氧化铝膜的均匀性同样可以控制在3%以内,可以把氧化铝膜更强的场钝化效果发挥出来,最大化地发挥氧化铝钝化硅片表面的悬挂不饱和键,具有良好的场钝化和化学钝化效果,解决氧化铝膜不均匀带来的气孔问题、无场钝化问题、无场钝化问题、高耗能等问题。

Claims (10)

1.一种金字塔绒面上优化均匀性的工艺方法,其特征在于:包括以下步骤:
步骤S1,提供太阳能电池原始硅片,对原始硅片进行制绒生长金字塔绒面,再进行绒面清洗预处理;
步骤S2,对硅片进行扩散工艺处理,
步骤S3,对硅片表面抛光处理;
步骤S4,对硅片表面采用双向交替的气流方式沉积氧化铝膜。
2.根据权利要求1所述的金字塔绒面上优化均匀性的工艺方法,其特征在于:步骤S4进一步包括:在炉腔内使用双向交替的进出气方式沉积氧化铝薄膜,先采用炉口进气、炉尾出气方式,再改为炉尾进气、炉口出气方式,以此交替进行。
3.根据权利要求2所述的金字塔绒面上优化均匀性的工艺方法,其特征在于:步骤S4进一步包括:先采用炉口进气、炉尾出气方式,通入TMA气体2~10秒,氮气吹扫5~20秒,通入臭氧或者气态水2~10秒,氮气吹扫2~10秒,以此为一个周期;再改为炉尾进气、炉口出气方式,通入TMA 气体2~10秒,氮气吹扫5~20秒,通入臭氧或者气态水2~10秒,氮气吹扫2~10秒,以此为第二个周期;这两种进出气方式等周期间隔交替进行。
4.根据权利要求1所述的金字塔绒面上优化均匀性的工艺方法,其特征在于:步骤S4进一步包括:气流双向交替进行构成至少一个循环。
5.根据权利要求1所述的金字塔绒面上优化均匀性的工艺方法,其特征在于:步骤S4进一步包括:氧化铝厚度控制在5±3nm范围内,折射率控制在1.5~1.7范围内;在各种表面微观结构下,氧化铝的均匀性在3%以内。
6.根据权利要求1所述的金字塔绒面上优化均匀性的工艺方法,其特征在于:步骤S4进一步包括:镀氧化铝的方法为通过ALD、PEALD设备镀氧化铝膜中的一种。
7.根据权利要求1所述的金字塔绒面上优化均匀性的工艺方法,其特征在于:步骤S4进一步包括:通过ALD或PEALD对硅片的镀氧化铝膜,参与镀氧化铝膜的反应气体包括TMA、臭氧以及辅助气体;通过调节TMA和臭氧比例进行反应制备氧化铝膜,镀膜速率控制在1.7Å/循环,膜厚控制在5±3nm范围内,折射率为1.5~1.7;辅助气体为氩气、氮气中的一种或多种。
8.根据权利要求7所述的金字塔绒面上优化均匀性的工艺方法,其特征在于:步骤S4进一步包括:与TMA一起生成氧化铝膜的反应物包括水、O2、O3中的一种或多种。
9.根据权利要求1所述的金字塔绒面上优化均匀性的工艺方法,其特征在于:步骤S2进一步包括:对硅片进行扩散工艺处理采用PERC电池的磷扩散或PERT电池的硼扩散。
10.根据权利要求1所述的金字塔绒面上优化均匀性的工艺方法,其特征在于:步骤S3进一步包括:
步骤3a:对硅片背面及侧面碱抛刻蚀和酸洗;
步骤3b:将碱抛刻蚀后的硅片PN结推进。
CN202110087977.1A 2021-01-22 2021-01-22 一种金字塔绒面上优化均匀性化的工艺方法 Active CN112838144B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110087977.1A CN112838144B (zh) 2021-01-22 2021-01-22 一种金字塔绒面上优化均匀性化的工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110087977.1A CN112838144B (zh) 2021-01-22 2021-01-22 一种金字塔绒面上优化均匀性化的工艺方法

Publications (2)

Publication Number Publication Date
CN112838144A true CN112838144A (zh) 2021-05-25
CN112838144B CN112838144B (zh) 2024-03-19

Family

ID=75930883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110087977.1A Active CN112838144B (zh) 2021-01-22 2021-01-22 一种金字塔绒面上优化均匀性化的工艺方法

Country Status (1)

Country Link
CN (1) CN112838144B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045512A (zh) * 2021-06-24 2022-02-15 有研工程技术研究院有限公司 多孔高比表面积电解水制氢一体化电极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172452A (ja) * 1997-12-12 1999-06-29 Canon Inc プラズマcvd法による堆積膜形成装置及び形成方法
US6399510B1 (en) * 2000-09-12 2002-06-04 Applied Materials, Inc. Bi-directional processing chamber and method for bi-directional processing of semiconductor substrates
KR20040099891A (ko) * 2003-05-20 2004-12-02 삼성전자주식회사 균일한 두께의 박막을 형성하기 위한 방법 및 이를 위한장치
US20120085278A1 (en) * 2010-06-09 2012-04-12 Solexel Inc. High productivity thin film deposition method and system
CN102421934A (zh) * 2009-02-25 2012-04-18 晶阳股份有限公司 高产量多晶片外延反应器
CN109994553A (zh) * 2019-04-30 2019-07-09 通威太阳能(成都)有限公司 一种三层介电钝化膜perc太阳电池及制作工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172452A (ja) * 1997-12-12 1999-06-29 Canon Inc プラズマcvd法による堆積膜形成装置及び形成方法
US6399510B1 (en) * 2000-09-12 2002-06-04 Applied Materials, Inc. Bi-directional processing chamber and method for bi-directional processing of semiconductor substrates
KR20040099891A (ko) * 2003-05-20 2004-12-02 삼성전자주식회사 균일한 두께의 박막을 형성하기 위한 방법 및 이를 위한장치
CN102421934A (zh) * 2009-02-25 2012-04-18 晶阳股份有限公司 高产量多晶片外延反应器
US20120085278A1 (en) * 2010-06-09 2012-04-12 Solexel Inc. High productivity thin film deposition method and system
CN109994553A (zh) * 2019-04-30 2019-07-09 通威太阳能(成都)有限公司 一种三层介电钝化膜perc太阳电池及制作工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114045512A (zh) * 2021-06-24 2022-02-15 有研工程技术研究院有限公司 多孔高比表面积电解水制氢一体化电极材料及其制备方法

Also Published As

Publication number Publication date
CN112838144B (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
EP4027395A1 (en) Efficient back passivation crystalline silicon solar cell and manufacturing method therefor
CN112309849A (zh) 一种硅片单面刻蚀抛光的方法
CN110265497B (zh) 一种选择性发射极的n型晶体硅太阳电池及其制备方法
CN110459642B (zh) 钝化接触电池及其制备方法
CN111106183A (zh) 利用管式pecvd制备背面全钝化接触太阳电池的方法及背面全钝化接触太阳电池
CN110620159B (zh) 一种P-TOPCon光伏太阳能电池结构的制备方法
CN102437238A (zh) 一种用于晶体硅太阳电池硼掺杂的方法
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
CN115000246B (zh) P型钝化接触电池制备方法及钝化接触电池
CN109065643A (zh) 一种基于掺杂多晶硅锗薄膜的n型晶体硅太阳电池及其制备方法
CN112687761A (zh) 太阳能电池表面多层钝化方法
CN112921302A (zh) 光伏电池双向进气钝化沉积装置
CN105226114A (zh) 一种黑硅钝化结构及其制备方法
CN113948611A (zh) 一种p型ibc电池及其制备方法、组件、光伏系统
CN115020546A (zh) 双面钝化接触太阳电池及其制备方法
CN115101627A (zh) 双面钝化接触太阳电池及其制备方法
CN114823969A (zh) 一种提升钝化接触结构性能的低温氢等离子体辅助退火方法和TOPCon太阳能电池
CN112838144B (zh) 一种金字塔绒面上优化均匀性化的工艺方法
Jeong et al. Preparation of born-doped a-SiC: H thin films by ICP-CVD method and to the application of large-area heterojunction solar cells
CN112349802B (zh) 一种铸锭单晶或多晶非晶硅异质结太阳电池的制作方法
CN112687762A (zh) 太阳能电池表面钝化方法
CN210778615U (zh) 一种topcon钝化结构
CN114335237A (zh) 一种晶体硅太阳能电池的制备方法及晶体硅太阳能电池
CN111883617A (zh) 一种准单晶电池片生产工艺
CN214193447U (zh) 光伏电池双向进气钝化沉积装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant