CN112831507A - 一种引起棉花花冠颜色变化的基因及其鉴定方法 - Google Patents

一种引起棉花花冠颜色变化的基因及其鉴定方法 Download PDF

Info

Publication number
CN112831507A
CN112831507A CN202011512884.0A CN202011512884A CN112831507A CN 112831507 A CN112831507 A CN 112831507A CN 202011512884 A CN202011512884 A CN 202011512884A CN 112831507 A CN112831507 A CN 112831507A
Authority
CN
China
Prior art keywords
gene
cotton
seq
expression
corolla
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011512884.0A
Other languages
English (en)
Inventor
柴启超
赵军胜
高明伟
陈莹
王秀丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Academy of Agricultural Sciences
Original Assignee
Shandong Cotton Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Cotton Research Center filed Critical Shandong Cotton Research Center
Priority to CN202011512884.0A priority Critical patent/CN112831507A/zh
Publication of CN112831507A publication Critical patent/CN112831507A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • C12N9/1088Glutathione transferase (2.5.1.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8231Male-specific, e.g. anther, tapetum, pollen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01018Glutathione transferase (2.5.1.18)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/9116Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • G01N2333/91165Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5) general (2.5.1)
    • G01N2333/91171Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5) general (2.5.1) with definite EC number (2.5.1.-)
    • G01N2333/91177Glutathione transferases (2.5.1.18)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Botany (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Reproductive Health (AREA)
  • Pregnancy & Childbirth (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供一种引起棉花花冠颜色变化的基因及其鉴定方法,属于生物技术领域,引起棉花花冠颜色变化的基因是棉花的GST基因,其编码谷胱甘肽S转移酶(GST)。利用野生二倍体比克氏棉与陆地棉远缘杂交得到的红花品种HB118,与白花品种陆地棉遗传标准系TM‑1杂交或得遗传群体,通过图位克隆技术得到该基因。通过调控该基因的表达,可以控制棉花花冠颜色的变化。本发明在棉花的基因工程研究中以及棉花的育种方面具有指导意义。

Description

一种引起棉花花冠颜色变化的基因及其鉴定方法
技术领域
本发明涉及生物技术领域,具体地说是一种引起棉花花冠颜色变化的基因及其鉴定方法。
背景技术
一般的,花冠颜色是棉花的一个重要形态标记,生产上棉花主要栽培品种的花冠为白色,因此花色标记在棉花生产中具有重要的应用价值。比克氏棉是野生的二倍体棉种,具有红色花冠、花瓣底部具有深色基斑的表型。花青素是植物次级代谢产物,是类黄酮的一个亚类。花青素可以在植物的花、果实、叶片等器官由于积累使其呈现出不同的颜色。花青素在植物的花器官中积累,可以吸引昆虫,有助于传粉。花青素还能保护植物免受紫外线和强光的伤害。并且由于花青素具有清除自由基和抗氧化的性质,人们在饮食中摄入花青素可以有效减少癌症、心血管疾病、糖尿病的发病风险,还可以延缓衰老。因此花青素的研究具有很强的应用价值。但是,棉花花冠颜色的表达在基因水平上具体是由什么控制,并且利用基因工程手段是否能直接对棉花花冠颜色控制表达是现阶段针对棉花进行研究的重要课题。
发明内容
本发明的技术任务是解决现有技术的不足,提供一种引起棉花花冠颜色变化的基因及其鉴定方法。
花青素是在内质网中合成的,之后运输到液泡中进行储存和显色。花青素的合成需要通过一系列的酶促反应,包括查尔酮合成酶(CHS)、查尔酮异构酶(CHI)、黄烷酮3羟化酶(F3H)、二羟基黄酮醇还原酶(DFR)、花青素合酶(ANS)和类黄酮3-O-糖基转移酶(UFGT)。花青素合成之后转运到液泡中。花青素的转运主要是通过囊泡运输、膜转运蛋白(ABC转运蛋白,MATE转运蛋白)和谷胱甘肽S转移酶。花青素的合成和积累收到多种环境调节,如紫外光、寒冷、干旱和渗透胁迫。花青素的合成还受到茉莉酸、赤霉素等激素的调节。这种调节是通过MBW(MYB、bHLH、WD40)模型的调控。拟南芥中MYB转录因子PAP1,苜蓿中的LAP1能够直接激活花青素合成基因来影响花青素的合成和积累。GST基因的表达同样受到MYB转录因子的调控。如拟南芥TT19、猕猴桃的AcGST1、苹果的MdGSTF6均受到MYB转录因子的调控。有研究证明,bZIP转录因子HY5能够调控MYB转录因子,从而影响花青素的合成。但是bZIP转录因子能够调控GST的表达来调节花青素的积累还没有报道。
本发明涉及一种棉花的GST基因,其编码谷胱甘肽S转移酶(GST)。利用野生二倍体比克氏棉与陆地棉远缘杂交得到的红花品种HB118,与白花品种陆地棉遗传标准系TM-1杂交或得遗传群体,通过图位克隆技术得到该基因。通过调控该基因的表达,可以控制棉花花冠颜色的变化。
本发明的技术方案是:
控制棉花花冠颜色变化的基因是棉花的GST基因,该基因编码谷胱甘肽S转移酶GST。
控制棉花花冠颜色变化的基因的基因序列是SEQ ID NO.10。
用于鉴定控制棉花花冠颜色变化的基因的候选基因是SEQ ID NO.9、SEQ IDNO.10、SEQ ID NO.11、SEQ ID NO.12或SEQ ID NO.13。
控制棉花花冠颜色变化的基因是谷胱甘肽S转移酶GST蛋白的基因,该基因所编码GST蛋白的氨基酸序列是SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、或SEQ ID NO.8。
用于鉴定控制棉花花冠颜色变化的基因的候选基因所编码蛋白的氨基酸序列是SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、或SEQ ID NO.8。
一种基因工程体,该基因工程体的基因中至少含有如权利要求1所述棉花的GST基因,该基因的基因序列是SEQ ID NO.10;或该基因工程体的中至少含有编码谷胱甘肽S转移酶GST的蛋白,所编码GST蛋白的氨基酸序列是SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、或SEQ ID NO.8。
一种控制棉花花冠颜色变化的方法是:利用野生二倍体比克氏棉与陆地棉远缘杂交得到的红花品种HB118,与白花品种陆地棉遗传标准系TM-1杂交或得遗传群体,通过图位克隆技术得到棉花的GST基因,其编码谷胱甘肽S转移酶GST,通过调控该基因的表达,控制棉花花冠颜色的变化。
一种引起棉花花冠颜色变化的基因的鉴定方法,该方法的过程是:
(1)定位筛选除花色表现性状不同之外其他形性状均相同的同源或近源的红花系棉种和白花系棉种,选定:
红花系棉种:HB118
白花系棉种:118
针对上述两种棉花通过HPLC-MS/MS检测分析HB118和118中色素成分及含量,并用比色法检测验证;
(2)红花基因的精细定位和图位克隆:
以118为母本,HB118为父本,杂交得到F1代,F1代通过严格自交得到F2遗传群体,统计F2遗传群体总株数,以及其中的红色花瓣植株的株数、白色花瓣植株的株数,分析孟德尔遗传定律分离比,确定是否为单基因控制的显性形状;
定位红花基因的染色体区间;
在染色体区间中的候选基因中确定与植物色素相关的基因;
用于鉴定控制棉花花冠颜色变化的基因的候选基因有SEQ ID NO.1、SEQ IDNO.2、SEQ ID NO.3、或SEQ ID NO.4;
鉴定候选基因在红花系棉种和白花系棉种的花瓣中的差异表达,分析候选基因,通过图位克隆分析基因差异,验证定位结果;
(3)定位基因特征分析:
对定位基因的编码蛋白进行分析;
关联花青素进行分析,定位基因的编码蛋白在HB118和118中对比是否影响其与花青素结合的能力;
结合定位基因的编码蛋白氨基酸序列的影响因素,对比分析在HB118和118中定位基因的编码蛋白的表达量的差异;
综合判断红色花瓣的差异因素的决定性因素;
(4)判断定位基因在HB118和118中差异表达是否由于启动子活性变化所导致:
针对定位基因在HB118和118的花瓣、花丝、根、茎、叶不同组织进行差异表达检测;
将定位基因-HB118与定位基因-118基因的启动子活性检测:将定位基因-HB118与定位基因-118基因的启动子进行克隆,将两个启动子与GUS连接后进行启动子活性检测瞬时转化烟草,对比二者启动子的启动活性,判断启动子活性差异;
对两个启动子序列进行原件分析:利用NewPLACE对两个启动子序列进行原件分析,判断二者与转录因子的因素关联性;判断两个启动子的原件是否具有转录因子结合位点,
(5)判断定位基因的表达调控机制:
对比定位基因-HB118与定位基因-118二者的启动子上的转录因子结合位点的差异,并调查所差异的转录因子的组织特异表达热图,进行对比分析;
序列分析相关的转录因子差异在HB118和118中的表达的差异性;
分析二者转录因子在棉花中的同源基因,分析同源基因在调控花青素合成通路基因的表达方式,并在在HB118和118棉种中进行转录因子ORF克隆,序列分析二者转录因子的差异性;
针对二者转录因子所调控表达的同源基因,在棉花中提取该转录因子,并进行聚类分析及序列对比,分析相关转录因子同源基因参与红花基因的基因调控的相关性;
推测红花基因的基因调控由哪一个同源基因所参与基因调控;
验证推测结果,针对二者的转录因子同源基因分别与定位基因-HB118和定位基因-118的启动子进行酵母单杂实验,分析和验证转录因子和启动子同源基因的结合性;
(6)外界生长环境因素的变化对红花表型的干扰:
试验和分析不同光照强度条件下,对定位基因-HB118与定位基因-118的表达差异;
(7)结合花青素合成通路相关基因及其他调控相关基因的表达分析相关基因在HB118和118花瓣中的表达差异;
(8)综合分析关于HB118红花近等基因系的特异基因表达的分子机制。
HB118棉种是陆地棉白花品种118的近等基因系棉种,HB118棉种是由陆地棉与比克氏棉远缘杂交得到,表现出红色花冠、花瓣底部具有深色基斑的性状。
棉花的GST基因,或棉花中编码谷胱甘肽S转移酶GST的蛋白,在控制棉花花冠颜色变化的基因工程中的应用。
本发明与现有技术相比所产生的有益效果是:
本发明的一种引起棉花花冠颜色变化的基因及其鉴定方法,引起棉花花冠颜色变化的基因是棉花的GST基因,其编码谷胱甘肽S转移酶(GST)。利用野生二倍体比克氏棉与陆地棉远缘杂交得到的红花品种HB118,与白花品种陆地棉遗传标准系TM-1杂交或得遗传群体,通过图位克隆技术得到该基因。通过调控该基因的表达,可以控制棉花花冠颜色的变化。
本发明确定了红花材料HB118花冠花青素种类。通过液质联用方法,确定了HB118花瓣中花青素种类:只含有一种花青素,为矢车菊素-3-氧葡萄糖苷(Cy3G)。
本发明完成了HB红花基因图位克隆及精细定位。通过图位克隆鉴定HB红花基因R3 bic编码谷胱甘肽-S-转移酶(GST),是拟南芥TT19的同源基因,定位于棉花的A07染色体上,将其命名为GoBRPa。
本发明明确了HB118和118花冠颜色是由于GoBRPA表达量的差异引起的。GoBRPa在HB118花瓣中具有较高的基因表达,而在118的花瓣中基本不表达。HB118和118的GoBRP蛋白具有3个氨基酸差异,但是两个基因都能够回复拟南芥tt19突变表型,具有与矢车菊素-3-氧葡萄糖苷结合的能力。
本发明揭示了GoBRPa基因在HB118和118花瓣中的表达差异原因。HB118启动子上具有bZIP及MYB转录因子结合位点,使其启动子活性升高从而导致GoBRPa基因表达提高。
本发明揭示了GoBRPa基因上游调控分子机理。酵母单杂发现,GhHY5D和GhPAP1D能够直接结合到GoBRPA-HB118启动子上从而使启动子活性提高,而GoBRPa-118启动子既不能与GhHY5D结合,而且与GhPAP1D结合能力仅仅是GoBRPa-HB118启动子的1/5,最终导致GoBRPa-HB118启动子活性明显高于GoBRPa-118启动子。
本发明的一种引起棉花花冠颜色变化的基因及其鉴定方法通过调控该基因的表达,可以控制棉花花冠颜色的变化,在棉花的育种方面具有指导意义。
附图说明
图1:HB118和118表型;
a、118和HB118大田植株表型。b、118和HB118开花前2天,开花前1天,开花当天的花瓣及花丝表型。
图2:HB118和118花瓣中花青素种类及含量测定;
a、HB118中主要含有1中花青素,118中基本没有花青素存在。b、HB118花瓣中花青素种类检测为Cy3G。c、HB118和118中总花青素含量检测。
图3:HB红花基因R3 bic的精细定位。
图4:候选基因在HB118和118中差异表达
a、候选基因在TM-1中组织表达模式。b、候选基因在HB118和118花瓣中差异表达。
图5:HB118和118中GoBRP基因ORF序列克隆。
图6:红花特异SNP分子标记设计;
a、红花SNP引物设计。b、SNP引物在F2群体中扩增情况。
图7:棉花中GST蛋白与已报到的拟南芥TT19同源基因进化树。
图8:不同物种中TT19同源基因氨基酸序列对比。
图9:GoBRPa-118和GoBRPa-HB118回复拟南芥tt19突变体表型。
图10:原核表达GoBRPa-HB118与GoBRPa-118蛋白;
a、SDS-PAGE检测。b、Westin blot检测。
图11:GoBRPa-HB118与GoBRPa-118蛋白与Cy3G结合能力检测。
图12:GoBRPa在HB118和118中组织表达模式;
a、不同组织中GoBRPa表达模式。b、不同光照强度下GoBRPA的表达模式。
图13:GoBRPa-HB118与GoBRPa-118启动子活性鉴定;
a、烟草GUS染色。b、GUS基因相对表达量。
图14:启动子原件分析。
图15:bZIP转录因子的组织特异表达热图。
图16:bZIP转录因子进化树。
图17:GhHY5基因序列分析。
图18:MYB转录因子序列对比及聚类分析;
a、MYB转录因子序列对比。b、MYB转录因子聚类分析。
图19:酵母单杂;
a、对照试验。
b、GhPAP1D能与GoBRPA-HB118和GoBRPA-118启动子结合。
c、GhHY5D能与GoBRPA-HB118和GhPAP1D启动子结合但不能与GoBRPA-118启动子结合。
图20:不同光照条件下HB118花的表型。
图21:GhHY5和GhPAP1的组织差异表达。
图22:GhHY5和GhPAP1在不同光照条件下表达。
图23:花青素合成及调控通路相关基因差异表达。
图24:GoBRPa参与花瓣显色的分子机理。
具体实施方式
下面结合附图对本发明的一种引起棉花花冠颜色变化的基因及其鉴定方法作以下详细说明。
控制棉花花冠颜色变化的基因是棉花的GST基因,该基因编码谷胱甘肽S转移酶GST。
控制棉花花冠颜色变化的基因的基因序列是SEQ ID NO.10。
用于鉴定控制棉花花冠颜色变化的基因的候选基因是SEQ ID NO.9、SEQ IDNO.10、SEQ ID NO.11、SEQ ID NO.12或SEQ ID NO.13。
控制棉花花冠颜色变化的基因是谷胱甘肽S转移酶GST蛋白的基因,该基因所编码GST蛋白的氨基酸序列是SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、或SEQ ID NO.8。
用于鉴定控制棉花花冠颜色变化的基因的候选基因所编码蛋白的氨基酸序列是SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、或SEQ ID NO.8。
红色花冠棉花的四个亚族,及其引起棉花花冠颜色变化的基因序列是:
GoBRPa-118,SEQ ID NO.1
GoBRPd-118,SEQ ID NO.2
GoBRPa-HB118,SEQ ID NO.3
GoBRPd-HB118,SEQ ID NO.4。
红色花冠棉花的四个亚族,及其引起棉花花冠颜色变化的蛋白序列是:
118-A,SEQ ID NO.5
HB118-A,SEQ ID NO.6
118-D,SEQ ID NO.7
HB118-D,SEQ ID NO.8。
本发明的一种引起棉花花冠颜色变化的基因及其鉴定方法:
(一)HB118花瓣呈现红色是由于Cy3G的积累导致的
比克氏棉(Gossypium bickii)是野生的二倍体棉种(2n=2x=26,G1),原产于澳洲,具有许多优异性状,如抗黄萎病、种子无腺体而植株有腺体、多毛、抗棉蚜等特点。此外,比克氏棉有红色花冠,花冠底部具有深色基斑。HB118是由陆地棉与比克氏棉远缘杂交所得红花系与黄河流域棉区主推品种鲁棉研21号(编号为118)多次回交后获得的近等基因系。HB118与118除了花瓣及花丝颜色不同外其他性状未表现出差异。118的花瓣及花丝与普通陆地棉花色一致,均为白色,HB118花瓣、花丝均表现为红色,且带有深红色基斑(如图1)。
通过HPLC-MS/MS检测分析发现,HB118中只含有一种色素,而118中没有检测到色素(如图2a)。进一步分析发现,HB118中花色苷分子量449,母核为287矢车菊素(449-287=162为一个葡萄糖分子量),判断花色苷结构为矢车菊素葡萄糖苷(Cy3G),所以推断出HB118花瓣呈现红色是由于Cy3G的积累所导致的(如图2b)。用比色法检测了HB118和118中花青素的含量(花青素的最大吸收波长为530nm),结果显示HB118中花青素含量较高,而118中基本不含花青素,这与HPLC-MS/MS检测结果一致(如图2c)。
(二)HB红花基因R3 bic的精细定位和图位克隆
以118为母本,HB118为父本,杂交得到F1代,F1代通过严格自交得到F2遗传群体共352株,其中红色花瓣植株共252株,白色花瓣植株共100株。其F1代表现为红色花瓣,(x2=2.0<x2 0.05,1=3.84),符合孟德尔遗传定律3:1分离比,因此认为HB118红色花瓣性状为单基因控制的显性质量性状。根据前人的报道,比克氏棉红色花瓣记为R3 bic。对2672对引物进行了多态性筛选,共得到差异引物236对。利用BSA方法,对差异引物进一步筛选,得到了5对多态性明显的引物,将HB红花基因R3 bic定位在棉花的A07染色体,位于A07-0594和A07-0592标记之间,其物理距离为33.2kb(如图3)。该区间共包括5个ORF(表1)。
表1、定位区间内候选基因
Figure BDA0002846960840000081
候选基因Gh_A07G0666
候选基因Gh_A07G0667
候选基因Gh_A07G0668
候选基因Gh_A07G0669
候选基因Gh_A07G0670
5个ORF的候选基因的序列如:SEQ ID NO.9、SEQ ID NO.10、SEQ ID NO.11、SEQ IDNO.12、SEQ ID NO.13。
其中:
ORF1是未知功能蛋白,
ORF2为谷胱甘肽S转移酶,
ORF3为八氢番茄红素合成酶,
ORF4为类谷氨酰胺转酰胺酶类家族蛋白,
ORF5是MT-A70家族蛋白甲基转移酶。
五个候选基因中与植物色素相关基因有2个:
ORF2参与花青素从内质网到液泡的运输,
ORF3是类胡萝卜素合成的关键酶。
通过对比TM-1转录组测序结果发现ORF1在各个组织中没有表达(如图4a)。对区间内候选基因在HB118和118花瓣中的差异表达进行了鉴定。结果显示,ORF2在HB118花瓣中表达量极高,而在118花瓣中基本不表达;而另一色素相关基因ORF3在HB118和118的花瓣中均不表达。此外,ORF4和ORF5在两个材料的花瓣中表达量没有差异(如图4b)。花青素是从内质网中合成并通过转运蛋白及囊泡运输等方式进入液泡存储,通过液泡中的pH改变从而显色。ORF2编码GST蛋白,将ORF2命名为GoBRP(Gossypium Bickii Red Petal gene)。图位克隆结果表明GoBRPa-HB118与GoBRPa-118共有8个核苷酸的差异,造成了3个氨基酸的变化;GoBRPd-HB118与GoBRPd-118序列完全相同(如图5)。
在HB118中,未克隆到GoBRPa-118序列。因此,推测HB118是比克氏棉的片段置换系。利用第288bp处的核苷酸差异,设计SNP引物,其中HB118的A能够扩增条带,而118的G不能扩增出条带(如图6a)。
在扩大的F2群体中进行了检测,发现在1191个F2群体中,868个红花单株均有扩增条带,而323个白花单株均没有扩增条带,没有分离,这进一步验证了的定位结果(图6b)。
(三)GoBRP基因特征分析
GoBRP的编码区共642bp,编码214个氨基酸,有2个结构域:Pfam02798:GST_N,Pfam00043:GST_C。对陆地棉中同时包含两个结构的基因进行了挖掘,在陆地棉TM-1中共有25个GST基因家族成员同时包含两个结构域。通过与已经报道过的15条GST蛋白序列聚类分析,发现GoBRP蛋白与拟南芥的TT19相似性最高,为59%(如图7)。氨基酸序列比对发现,GST蛋白序列相对保守,且GoBRPa-HB118与GoBRPa-118三个差异氨基酸并不处于关键位置(如图8)。`
为了进一步验证3氨基酸的变化能否影响其基因功能。将GoBRPa-118和GoBRPa-HB118通过花粉管通道法回复拟南芥tt19突变体(拟南芥tt19突变体在3%的蔗糖培养基中,下胚轴和子叶边缘不能变红)。实验发现,GoBRPa-118和GoBRPa-HB118都能够回复拟南芥tt19的表型(如图9)。
利用原核表达技术将GoBRPa-HB118与GoBRPa-118构建到pET-30a原核表达载体,在大肠杆菌中表达并纯化得到了GoBRPa-HB118与GoBRPa-118蛋白,并进行了Western blot检测。实验结果显示,两个蛋白均能够在上清中正常表达,其蛋白分子量均为24.6Kd(如图10)。
利用Biacore 8k对两个蛋白与矢车菊素葡萄糖苷的结合能力进行了检测,结果显示GoBRPa-HB118与GoBRPa-118蛋白均能够与矢车菊素葡萄糖苷相结合。体外结合实验表明,GoBRP能够作为转运蛋白直接与花青素相结合,其结合能力分别为7.01×10-5和3.45×10-5处于相同数量级(如图11),因此推断GoBRPa蛋白在HB118和118中氨基酸序列差异并不影响其与花青素结合的能力。因此所以认为引起HB118红色花瓣的原因是GoBRPa基因表达量的差异造成的,而不是由于氨基酸序列变化引起的。
(四)GoBRPa在HB118和118中差异表达是由于启动子活性变化所导致
对GoBRP基因在HB118和118不同组织进行了差异表达检测。结果发现,在HB118中,GoBRP基因在花瓣中极优势表达,其次是花丝。HB118花瓣和花丝中的表达量分别是118的240和12余倍。GoBRP基因在根茎叶中表达量比较低,并且与118没有显著差异并且,该基因在强光照条件下,表达量更高。
对GoBRPa-HB118与GoBRPa-118基因的启动子进行了克隆,分别克隆到了1694bp和1652bp。将两个启动子与GUS连接后进行启动子活性检测瞬时转化烟草。结果发现与GoBRPa-118启动子相比,GoBRPa-HB118启动子具有更强的启动活性,在注射的烟草中HB118启动子启动的GUS基因的表达量比118启动子高9倍(如图13)。启动子序列分析发现GoBRPa-HB118与GoBRPa-118基因的启动子差异非常大,具有很多SNP变异及缺失以及大片段的插入缺失(如图14)。
利用NewPLACE对两个启动子序列进行了原件分析。在GoBRPa-HB118启动子上发现了两个ACGT-box(AACGTT)和两个ACT原件(ACTCAT),这两个原件是bZIP转录因子的结合位点。此外在GoBRPa-HB118启动子上还发现两个MYB转录因子结合位点AC原件和EEC原件。但是在GoBRPa-118启动子上均未发现以上转录因子结合原件。
(五)GhHY5和GhPAP1能够直接调控GoBRPa-HB118基因表达
由于在GoBRPa-HB118启动子上发现了GoBRPa-118启动子上所没有的两个bZIP转录因子结合位点,因此调查了棉花中bZIP转录因子,共有88个。根据TM-1转录组测序分析完成了88个bZIP转录因子的组织特异表达热图(如图15),发现Gh_D08G2461和Gh_A08G2092转录因子与GoBRPa-HB118的基因表达模式十分接近,都是在花瓣中表达最高,其次是花丝,在根茎叶中表达量非常少。
Gh_D08G2461和Gh_A08G2092转录因子是拟南芥AtHY5基因的同源基因(如图16)。有研究报道,HY5基因在拟南芥中调控花青素合成通路基因的表达,参与花青素的积累。因此分别在HB118和118中进行了Gh_D08G2461(GhHY5D)Gh_A08G2092(GhHY5A)转录因子ORF克隆,序列分析发现,GhHY5D和GhHY5A在HB118和118中没有差异(如图17)。
在多个物种中研究报道MYB转录因子能够直接调控TT19同源基因的表达,如拟南芥的AtPAP1。提取了棉花中AtPAP1转录因子同源基因,并进行了聚类分析及序列对比(如图18)。棉花中AtPAP1转录因子同源基因包括GhPAP1和GhPAP2基因,其结构相对保守,具有较高的同源性,且棉花中组成型过表达GhPAP1能够引起棉花全株呈现红色。因此,推测GhPAP1和GhHY5参与HB红花基因GoBRPA的基因调控。
为了验证推测,对GhHY5D和GhPAP1D分别与GoBRPa-HB118和GoBRPa-118启动子进行了酵母单杂实验。结果显示,GhHY5D能够与GoBRPa-HB118启动子直接结合,但是不能与GoBRPa-118启动子结合;GhPAP1D能够与GoBRPa-HB118直接结合,且强度较高,而与GoBRPa-118启动子结合较弱。有研究发现,bZIP转录因子能够调控MYB基因的表达,所以研究了GhHY5D与GhPAP1转录因子的结合能力。酵母单杂显示,GhHY5D能够直接结合GhPAP1的启动子(如图19)。
(六)外界生长环境因素的变化对红花表型的干扰:
还发现,HB118花冠颜色在不同的光照条件下红色表型有差异。在大田条件下(光强为80000LX)较温室中(光强为3200LX)花瓣红色更鲜艳(如图20),组织差异表达分析发现在高光强下GoBRPa-HB118基因表达更高,GhHY5基因和GhPAP1基因的组织表达模式同GoBRP基因类似,都是在花瓣中表达较高,其次是花丝,在根茎叶表达较低(如图21),并且它们都受到光照信号的调控,在高光强条件下表达更高(如图22)。
因此推测,GoBRPa基因受到GhHY5和GhPAP1的调控,且由于二者都受到光照强度的调控,导致GoBRPa在低光照强度条件下表达较低,花瓣中花青素积累较少,所以花冠红色程度较高光照条件下不鲜艳。
(七)结合花青素合成通路相关基因及其他调控相关基因的表达分析相关基因在HB118和118花瓣中的表达差异:
研究花青素合成通路相关基因及其他调控相关基因的表达发现,合成通路基因GhPAL1、GhCHS1、GhCHS2、GhFLS1、GhDFR1、GhDFR2、GhANS1的表达及转录调控基因GhWD40、GhTT8-1、GhGL3的表达在HB118和118花瓣中均没有差异,只有GhANS2和GhUFGT在HB118花瓣中表达更高(如图23)。
通过一系列分析研究,关于HB红花近等基因系的特异基因表达的分子机制最终得出以下结论:红花品种HB118中,在高光照条件下GhHY5启动GhPAP1基因的表达,而且GhHY5和GhPAP1直接结合到GoBRPa-HB118启动子上,从而启动GoBRPa基因的表达,产生的GoBRP蛋白进而将从内质网合成的花青素Cy3G转运到液泡中储藏,并由于pH的改变在酸性条件下呈现出红色;在低光照条件下GhHY5和GhPAP1基因表达较弱,使GoBRP基因表达减弱,花瓣红色变弱。而在白花品种118中,虽然GoBRPa-118也能够与花青素Cy3G相结合,但是由于启动子的差异,GhHY5不能结合到GoBRPa-118启动子,且GhPAP1与GoBRPa-118启动子较弱结合,导致GoBRPa-118基因表达极低,不能将花青素转运到液泡,因此花瓣呈白色(如图24)。
序列表
<110> 山东棉花研究中心
<120> 一种引起棉花花冠颜色变化的基因及其鉴定方法
<160> 87
<170> SIPOSequenceListing 1.0
<210> 1
<211> 645
<212> DNA
<213> GoBRPa-118
<400> 1
atggtagtga aagtgtatgg tccaatcaag gcagcttgcc ctcaaagggt attggcatgc 60
cttcttgaga aagaggttga atttcagatc gtcgacgtcg atctcgaagc cggcgatcat 120
aaaaaacccg atttcctcct ccgtcaaccg tttggacaag tcccagctat agaggatggc 180
gacttcaaac tttttgagtc tagggcaatc ataaggtact atgcagccaa atatgaaaag 240
caaggtacaa acctacttgg aaactcattg gaagaacgag caatggtgga tcaatggcta 300
gaagtagaag cccacaactt caacgatttg gcctacactt tggtgtttca actgttgatc 360
ctcccacgaa tgggcaagca gggtgatacg gccttagtgc tcagctgcca acaaaagctg 420
gaaaaagtgt tggacatcta cgagcaacgc ttgtccacca ccgcctatct tgctggagat 480
tcattcacct tggccgacct tagccatcta cccgctcttc gatacttggt cgacgatgtt 540
gggatgtggc acatggtgtc tcaacggaag catgtaaatg catggtggga gaccatttct 600
aaccgagctg cttggaagaa actcatgaag ctcgctaatt attga 645
<210> 2
<211> 645
<212> DNA
<213> GoBRPd-118
<400> 2
atggtagtga aagtgtacgg tccaatcaag gcagcttgcc ctcaaagggt attggcatgc 60
cttcttgaga aagaggttga atttcagatc gtccatgtcg atctcgaagc cggcgatcat 120
aaaaaacccg atttcctcct tcgtcaaccg tttggacaag tcccagctat agaggatggt 180
gacttcaaac tttttgagtc tagggcaatc ataaggtact atgcagccaa atatgaaaag 240
caaggtacaa acctacttgg aaactcgttg gaagaacgag caatggtgga tcaatggcta 300
gaagtagaag cccacaactt caacgatttg gtctacactt tggtgtttca actgttgatc 360
ctcccacgaa tgggcaagca gggtgatacg gccttagtgc tcagctgcca acaaaagctg 420
gaaaaagtgt tggacatcta cgagaaacgc ttgtccacca ccgcctatct tgctggagat 480
tcattcacct tggccgacct tagccatcta cccgctcttc gatacttggt cgacgatgtt 540
gggatgtggc acatggtgtc tcaacggaag catgtgaatg catggtggga gaccatttct 600
aaccgagctg cttggaagaa actcatgaag ctcgctaatt attga 645
<210> 3
<211> 645
<212> DNA
<213> GoBRPa-HB118
<400> 3
atggtagtga aagtgtatgg tgcaatcaag gcagcttgcc ctcaaagggt attggcatgc 60
cttcttgaga aagaggttga atttcagatc gtcgacgtcg atctcgaagc cggcgatcat 120
aaaaaacccg atttcctcct ccgtcaaccg tttggacaag tcccagctat agaggatggc 180
gacttcaaac tttttgagtc tagggcaatc ataaggtact atgcagccaa atatgaaaag 240
caaggtacaa acctacttgg aaactcattg gaagaacgag caatggtaga tcaatggcta 300
gaagtagaag cccacaactt caacgatttg gtctacactt tggtgtttca actgttgatc 360
ctcccacgaa tgggcaagca gggtgatacg gccttagtgc tcagctgcca acaaaagctg 420
gaaaaagtgt tggacatcta cgagcaacgc ttatccacca ccgcctatct tgctggggat 480
tcattcacct tggccgacct tagccattta cccgctcttc gatacttggt cgacgatgtt 540
gggatgtggc acatggtgtc tcaacggaag catgtgaatg catggtggga gaccatttct 600
aaccgagctg cttggaagaa actcatgatg ctcgctaatt attga 645
<210> 4
<211> 645
<212> DNA
<213> GoBRPd-HB118
<400> 4
atggtagtga aagtgtacgg tccaatcaag gcagcttgcc ctcaaagggt attggcatgc 60
cttcttgaga aagaggttga atttcagatc gtccatgtcg atctcgaagc cggcgatcat 120
aaaaaacccg atttcctcct tcgtcaaccg tttggacaag tcccagctat agaggatggt 180
gacttcaaac tttttgagtc tagggcaatc ataaggtact atgcagccaa atatgaaaag 240
caaggtacaa acctacttgg aaactcgttg gaagaacgag caatggtgga tcaatggcta 300
gaagtagaag cccacaactt caacgatttg gtctacactt tggtgtttca actgttgatc 360
ctcccacgaa tgggcaagca gggtgatacg gccttagtgc tcagctgcca acaaaagctg 420
gaaaaagtgt tggacatcta cgagaaacgc ttgtccacca ccgcctatct tgctggagat 480
tcattcacct tggccgacct tagccatcta cccgctcttc gatacttggt cgacgatgtt 540
gggatgtggc acatggtgtc tcaacggaag catgtgaatg catggtggga gaccatttct 600
aaccgagctg cttggaagaa actcatgaag ctcgctaatt attga 645
<210> 5
<211> 214
<212> PRT
<213> 118-A
<400> 5
Met Val Val Lys Val Tyr Gly Pro Ile Lys Ala Ala Cys Pro Gln Arg
1 5 10 15
Val Leu Ala Cys Leu Leu Glu Lys Glu Val Glu Phe Gln Ile Val Asp
20 25 30
Val Asp Leu Glu Ala Gly Asp His Lys Lys Pro Asp Phe Leu Leu Arg
35 40 45
Gln Pro Phe Gly Gln Val Pro Ala Ile Glu Asp Gly Asp Phe Lys Leu
50 55 60
Phe Glu Ser Arg Ala Ile Ile Arg Tyr Tyr Ala Ala Lys Tyr Glu Lys
65 70 75 80
Gln Gly Thr Asn Leu Leu Gly Asn Ser Leu Glu Glu Arg Ala Met Val
85 90 95
Asp Gln Trp Leu Glu Val Glu Ala His Asn Phe Asn Asp Leu Ala Tyr
100 105 110
Thr Leu Val Phe Gln Leu Leu Ile Leu Pro Arg Met Gly Lys Gln Gly
115 120 125
Asp Thr Ala Leu Val Leu Ser Cys Gln Gln Lys Leu Glu Lys Val Leu
130 135 140
Asp Ile Tyr Glu Gln Arg Leu Ser Thr Thr Ala Tyr Leu Ala Gly Asp
145 150 155 160
Ser Phe Thr Leu Ala Asp Leu Ser His Leu Pro Ala Leu Arg Tyr Leu
165 170 175
Val Asp Asp Val Gly Met Trp His Met Val Ser Gln Arg Lys His Val
180 185 190
Asn Ala Trp Trp Glu Thr Ile Ser Asn Arg Ala Ala Trp Lys Lys Leu
195 200 205
Met Lys Leu Ala Asn Tyr
210
<210> 6
<211> 214
<212> PRT
<213> HB118-A
<400> 6
Met Val Val Lys Val Tyr Gly Ala Ile Lys Ala Ala Cys Pro Gln Arg
1 5 10 15
Val Leu Ala Cys Leu Leu Glu Lys Glu Val Glu Phe Gln Ile Val Asp
20 25 30
Val Asp Leu Glu Ala Gly Asp His Lys Lys Pro Asp Phe Leu Leu Arg
35 40 45
Gln Pro Phe Gly Gln Val Pro Ala Ile Glu Asp Gly Asp Phe Lys Leu
50 55 60
Phe Glu Ser Arg Ala Ile Ile Arg Tyr Tyr Ala Ala Lys Tyr Glu Lys
65 70 75 80
Gln Gly Thr Asn Leu Leu Gly Asn Ser Leu Glu Glu Arg Ala Met Val
85 90 95
Asp Gln Trp Leu Glu Val Glu Ala His Asn Phe Asn Asp Leu Val Tyr
100 105 110
Thr Leu Val Phe Gln Leu Leu Ile Leu Pro Arg Met Gly Lys Gln Gly
115 120 125
Asp Thr Ala Leu Val Leu Ser Cys Gln Gln Lys Leu Glu Lys Val Leu
130 135 140
Asp Ile Tyr Glu Gln Arg Leu Ser Thr Thr Ala Tyr Leu Ala Gly Asp
145 150 155 160
Ser Phe Thr Leu Ala Asp Leu Ser His Leu Pro Ala Leu Arg Tyr Leu
165 170 175
Val Asp Asp Val Gly Met Trp His Met Val Ser Gln Arg Lys His Val
180 185 190
Asn Ala Trp Trp Glu Thr Ile Ser Asn Arg Ala Ala Trp Lys Lys Leu
195 200 205
Met Met Leu Ala Asn Tyr
210
<210> 7
<211> 214
<212> PRT
<213> 118-D
<400> 7
Met Val Val Lys Val Tyr Gly Pro Ile Lys Ala Ala Cys Pro Gln Arg
1 5 10 15
Val Leu Ala Cys Leu Leu Glu Lys Glu Val Glu Phe Gln Ile Val His
20 25 30
Val Asp Leu Glu Ala Gly Asp His Lys Lys Pro Asp Phe Leu Leu Arg
35 40 45
Gln Pro Phe Gly Gln Val Pro Ala Ile Glu Asp Gly Asp Phe Lys Leu
50 55 60
Phe Glu Ser Arg Ala Ile Ile Arg Tyr Tyr Ala Ala Lys Tyr Glu Lys
65 70 75 80
Gln Gly Thr Asn Leu Leu Gly Asn Ser Leu Glu Glu Arg Ala Met Val
85 90 95
Asp Gln Trp Leu Glu Val Glu Ala His Asn Phe Asn Asp Leu Val Tyr
100 105 110
Thr Leu Val Phe Gln Leu Leu Ile Leu Pro Arg Met Gly Lys Gln Gly
115 120 125
Asp Thr Ala Leu Val Leu Ser Cys Gln Gln Lys Leu Glu Lys Val Leu
130 135 140
Asp Ile Tyr Glu Lys Arg Leu Ser Thr Thr Ala Tyr Leu Ala Gly Asp
145 150 155 160
Ser Phe Thr Leu Ala Asp Leu Ser His Leu Pro Ala Leu Arg Tyr Leu
165 170 175
Val Asp Asp Val Gly Met Trp His Met Val Ser Gln Arg Lys His Val
180 185 190
Asn Ala Trp Trp Glu Thr Ile Ser Asn Arg Ala Ala Trp Lys Lys Leu
195 200 205
Met Lys Leu Ala Asn Tyr
210
<210> 8
<211> 214
<212> PRT
<213> HB118-D
<400> 8
Met Val Val Lys Val Tyr Gly Pro Ile Lys Ala Ala Cys Pro Gln Arg
1 5 10 15
Val Leu Ala Cys Leu Leu Glu Lys Glu Val Glu Phe Gln Ile Val His
20 25 30
Val Asp Leu Glu Ala Gly Asp His Lys Lys Pro Asp Phe Leu Leu Arg
35 40 45
Gln Pro Phe Gly Gln Val Pro Ala Ile Glu Asp Gly Asp Phe Lys Leu
50 55 60
Phe Glu Ser Arg Ala Ile Ile Arg Tyr Tyr Ala Ala Lys Tyr Glu Lys
65 70 75 80
Gln Gly Thr Asn Leu Leu Gly Asn Ser Leu Glu Glu Arg Ala Met Val
85 90 95
Asp Gln Trp Leu Glu Val Glu Ala His Asn Phe Asn Asp Leu Val Tyr
100 105 110
Thr Leu Val Phe Gln Leu Leu Ile Leu Pro Arg Met Gly Lys Gln Gly
115 120 125
Asp Thr Ala Leu Val Leu Ser Cys Gln Gln Lys Leu Glu Lys Val Leu
130 135 140
Asp Ile Tyr Glu Lys Arg Leu Ser Thr Thr Ala Tyr Leu Ala Gly Asp
145 150 155 160
Ser Phe Thr Leu Ala Asp Leu Ser His Leu Pro Ala Leu Arg Tyr Leu
165 170 175
Val Asp Asp Val Gly Met Trp His Met Val Ser Gln Arg Lys His Val
180 185 190
Asn Ala Trp Trp Glu Thr Ile Ser Asn Arg Ala Ala Trp Lys Lys Leu
195 200 205
Met Lys Leu Ala Asn Tyr
210
<210> 9
<211> 381
<212> DNA
<213> 人工序列(候选基因Gh_A07G0666)
<400> 9
atgtttaatc tcttgaagaa gaaaatggtg cccaagaaat tgtggaagaa cttagtttta 60
ctatttcaac ccaaagtaaa aatcaaacgt cttacaaaat cccaaaatcg aaaaaaaaaa 120
accttcataa accatacagc ttatgtcgaa cctcttccag ttattggaaa agaagttgtt 180
catacaatta catcagagat ggagtttttt aacaacaacg atgaaatatg ggaggatcca 240
agtgacgaag agggcattcc actgtcaagg gaagttgatg tgaaagcaga ggaatttatc 300
aatcggtgca aggaaatttg gaggcttgaa agacaaaaat ccgaagagga atttcgagag 360
aggttggctc gtagtgcatg a 381
<210> 10
<211> 645
<212> DNA
<213> 人工序列(候选基因Gh_A07G0667)
<400> 10
atggtagtga aagtgtatgg tccaatcaag gcagcttgcc ctcaaagggt attggcatgc 60
cttcttgaga aagaggttga atttcagatc gtcgacgtcg atctcgaagc cggcgatcat 120
aaaaaacccg atttcctcct ccgtcaaccg tttggacaag tcccagctat agaggatggc 180
gacttcaaac tttttgagtc tagggcaatc ataaggtact atgcagccaa atatgaaaag 240
caaggtacaa acctacttgg aaactcattg gaagaacgag caatggtgga tcaatggcta 300
gaagtagaag cccacaactt caacgatttg gcctacactt tggtgtttca actgttgatc 360
ctcccacgaa tgggcaagca gggtgatacg gccttagtgc tcagctgcca acaaaagctg 420
gaaaaagtgt tggacatcta cgagcaacgc ttgtccacca ccgcctatct tgctggagat 480
tcattcacct tggccgacct tagccatcta cccgctcttc gatacttggt cgacgatgtt 540
gggatgtggc acatggtgtc tcaacggaag catgtgaatg catggtggga gaccatttct 600
aaccgagctg cttggaagaa actcatgaag ctcgctaatt attga 645
<210> 11
<211> 1257
<212> DNA
<213> 人工序列(候选基因Gh_A07G0668)
<400> 11
atgtctttaa agttgctttg gtttgtatct tcccaatcaa acttggggtt ccttcatcat 60
gggaaccggt ccttgccatg tcccaatttg ttgttccaac acagagcagg taaaggtaag 120
aaccagagat ggaaacccca tttttgttct tcaaggactc atgttcctgg ttcagaaggg 180
ttaagaagaa gcaaggtgaa ggtcactgtt gtgtcaacca tggcagccac tagctcagca 240
ggtgaaatag ctatgtcatc agaggagaag gtttacaatg tggtgttgaa acaggcagct 300
ttggttaata agcaattgag atcacctcgt gtggatgtcg ttgtacctgg tgatttgagc 360
ttgttaaatg aagcatatga tcgttgtggt gaaatttgtg ccgagtatgc aaaaaccttt 420
tatttgggaa ctttgctgat gacccctgaa agacgtaggg ctatatgggc tatctatgta 480
tggtgtcgga ggaccgatga gctcgttgac ggaccaaatg caccgcatat aactcccact 540
gctttagata ggtgggaatc caggttggaa gatctattca acggtcgtcc gtttgatatg 600
ctcgatgccg ctttagccaa cacggttaat aaatttccag tcgatattca gcctttcaaa 660
gacatgatag aaggaatgag gatggactta aggaaatcca gatacaaaaa cttcgacgaa 720
ctatatctct attgttatta tgtagccggc actgtcgggt tgatgagtgt gcctgtgatg 780
ggcattgcac ctgaatcttt agctagcaca gagagtgtgt ataatgctgc attagcatta 840
gggatagcta atcaactcac taatatactc agagatgttg gggaagatgc gcaaagggga 900
agaatttatc taccacaaga tgagttagca caggaaggac tatcagatga ggatattttt 960
agtggaaaag taacagataa gtggaggaac ttcatgaaga aacaaataaa gagggcaaga 1020
atgttgtttc atgaggcaga aaaaggaatt aaagagctaa atgtatcgag tcgatggccg 1080
gtatcggcat cattgatgct atataagcag atattagatg agatagaggc caatgattat 1140
aacaacttta caaagagagc ttatgtaagc aaagcaaaga aattaattgc cctccctgtt 1200
gcatatgtta gatctctcgt ggctccatca acaattcgtt cttctcatcg gacttaa 1257
<210> 12
<211> 1179
<212> DNA
<213> 人工序列(候选基因Gh_A07G0669)
<400> 12
atggcgactt cagccatgtc ggaaaaacgg gtcgtcctgc tctgcggcga ctatgccgag 60
gactatgagg ttatggtccc tttccaggct ctgttggctt atggtatatc agtggacgct 120
gtttgtcccg gcaagaaggc cggcgaaact tgccgcaccg ctattcatca actttccggc 180
catcagacct ataccgagat ccgtggtcac aatttcacac taaatgcatc atttgaagat 240
atagaccata ctaaatatga tggtttagtt atagccggag gacgagctcc tgaatatctt 300
gctatggatg catttgtatt gaacatggtt cgcaattttg ttaattctgg aaagcctgtt 360
gcttcaattt gtcatggtca attgatatta gctgctgccg gggcagttgg tggtctaaaa 420
tgtactggtt tccctgctgt tggacctaca cttattgctg ctggtgcatt gtggattgaa 480
cctgatactt tggcagcttg tgttgttgat ggtaatatca ttactgcagc tacttatatt 540
ggtcatcccg agtttatcag gttgtttgtg aaagcattag ggggcaccat atccgaatcg 600
aacaaaagga tcctatttct ttgtggggat tatatggaag attatgaagt aactgtgcct 660
ttccaatcac ttcaagctct aggctgccat gtagatgcag tttgtcctaa gaagaaggct 720
ggcgatttgt gtccaactgc tgtccatgat ttcgaaggtg accaaactta cagcgagaag 780
ccaggtcatg attttactct aacagccaac tttgaggaca tagatgcctc aagttatgat 840
gctcttgtca tccctggggg tcgagcacca gaatatttag cgttagatgg gaaagtgatt 900
gatatagcga agcattttat ggagtccgag aaaccggttg catccatttg ccatggacag 960
cagattttag ctgctgctgg cgttctcaag gggaagaaat gtaccgcata cccagctgtg 1020
aaactgaacg tggtgttggc cggagcaact tggttagaac ctgagcctat agatcgatgc 1080
ttcactcatg gaaatttggt tactggagca gcttggccag gacaccctga gttcatttct 1140
caattaatgg atttgctggg tattaaggtt tccttctag 1179
<210> 13
<211> 3561
<212> DNA
<213> 人工序列(候选基因Gh_A07G0670)
<400> 13
atggattctc ctgagcgtag cagtcgtagt catgtacgac gtgatagaga ggatagttca 60
gacttgaaaa gtgatagggc agttggggat gaagaggaat gtgaggcaat tgatagtaag 120
aggaagcata agtgtagtaa gtctagaaag agtagcaatg tcgaagaagg tgagggagtt 180
gaaagcggta gtagtggaag gaggaggagt tctggggata gaagtgagag ccgtaaaagg 240
tcaagtgctt ccactagagc tgatactgat gaagatgatt gcgatacccc taaatcgtcc 300
cgtcccaagc agatcaggag aaaacaagag gaaagttcct tggagaaatt gagtagttgg 360
taccaggacg gagaaattga aagcagacaa gatggtactg agaaatccgg tggtaaagga 420
catgcttggg ccgatgagac tgacagaaag aaggtggcct ctaaactaag taaaagcaaa 480
gaagaaaggt cccatgatgg agaactagag aagtcactcg atagagattc taggtattca 540
gaaaggaggg aaagcagccg tgataagggt catagctctt ctgaattatc aaggaactcc 600
agaagaagat gggatgaatc agatgcttct aggaaagccg aagaaaatac ttatgaaaag 660
cctgatttga tcagtgggaa agcttccgat ctgaagtatg acagtgctag agagaatagt 720
gcttctgcta gaaatgagcc tagtgagagt aaaagcattg ctgctgattc aaacaatgag 780
aagggtgcca aatccagcag cagggaagag agaagagttg atgctgagaa gagtaagagc 840
aaaggtcggt cagatgcctt agaagaagac aataggtcta gtccattgac tcgtgaagac 900
agatcaggta gggagaaaat tgagaagcac agacagcaga gaactccctc tggtcgagat 960
gttgatagtc gagaaagggc atcatccaat gtcgatgatg atggaataac atggacaagg 1020
gataaaagtt caagagaagt agggcaaaca aacaggtcta ggacccctga gagaagtagt 1080
aggcgttatc aagactcaga tcccactgag atggattttg aaagaagctc agaacgcaaa 1140
acaaaagaaa tcgaaaggga tgacagatcc aaaagcaggg gtgataattg gagcgacagg 1200
actagggatc gagaaggttc aaaggaaaac tggaaaagga ggcaattgag taataatgag 1260
aaagagtcca aagatgggga cagtgcatat gaccgtgtta gggaatggga tttgccaagg 1320
catggccggg agaggaatga aaatgaaagg cctcatggtc ggccaggcaa tagaaaagat 1380
ggaaaccgag gtgaagctgt caagacatca tcaaattttg gaatctcaaa ttataattat 1440
gatgtcatag agatccaaac caagcctctt gattatttaa gggcagagtc tggatccaac 1500
tttccccgga gaactgaaag tggtcagcag tctgacatga agtcaacccc aaatgaggaa 1560
gagtgggcat atttgctaga aaatagagga aggaggagtg atgcgtatgg ttctggaccc 1620
ttggatgaag attcaaggga caaatatact gagcaaagta actcaacacg agatccaaat 1680
gtaccaaatg atgagcttga ttacagcgga gggaaaggga gaggccagaa acttactgca 1740
tctgggcggg gctttgttgg ccaaaattct agtgctggat ctcaaccacc ttatgggaac 1800
caagatgtag ggaggagttt tggccgtgtt cctcctcaag gtatgaaagg gagtaggatg 1860
ggcagaggag gaagggggag gccttcaggg agggacaatc aacagatggg cctcccaatg 1920
cctatgatgg gatctccttt tgctcatctc gggatgccac cacctggacc catgcaacaa 1980
attaacccta gtatgtcacc tgctcctggc cctccaatat ctccaggtgt cttcattcca 2040
ccgttttccc cacctgtggt ctggcctgga cctcgagctg ttgatatgaa tatgcttggt 2100
gttccacctg gtctctctcc tgtccctcct ggccccaggt ttcctccaaa tatgggaggt 2160
ctgccaaacc ctggtatgga ctttaatcag tcaggtcctg gaagaggacc ttcaaatgtt 2220
tcattgtcta actttaatgg ggcagggcca atggcacgag gaacaccgcc tgaaagaaca 2280
tctgggggtt ggattcctcc tagaactggg ggtcctcctg gtaaagcacc ttccagagga 2340
gaacaaaatg attattctca aaactttgtt gatactggta tgcgaccgca gaacttcatc 2400
agggagctag agcttaccaa tgttgtggag gactatccaa agctaaggga gcttatacag 2460
aaaaaggatg agattgtagc taaatctgct tctcctccca tgtatatgaa gtgtgacctc 2520
cgtgaatttg aattgtctcc ggatttcttt gggacaaagt tcgatgttat tcttatagat 2580
cccccttggg aagaatatgt tcaccgggct cctggagttg ctgaccatat tgaatactgg 2640
acatttgaag agatcatgaa tctaaagatt gaggcaatag ctgatacacc atcctttatc 2700
ttcctttggg tgggtgatgg tgtgggcctc gagcagggtc ggcaatgctt aaagaagtgg 2760
ggtttccgga gatgtgagga tatatgctgg gtgaagacca acaaaacaaa tgctactcca 2820
ggtctacgac atgattctca ttctatattt cagcactcaa aggaacactg cctgatgggt 2880
ataaaaggaa cagttcgtcg tagtactgac ggtcacataa ttcatgccaa catcgacact 2940
gatgtaatta ttgcggagga accttcttat ggatcaactc aaaagcccga agatatgtat 3000
cgaatcattg agcattttgc tcttggtcgc agaaggcttg agctatttgg tgaagaccac 3060
aatattcgat caggttggct tactgttggt aaaggactgt cttcatcgaa ttttaatgca 3120
gaggcatatg ttagaaactt tgcggacaag gatggtaaag tgtggcaagg tgggggagga 3180
cgaaatccac ccccagatgc acctcatttg gtgaagacaa cctcagatat agaagcactg 3240
cgtcccaagt caccggtcaa gaaccagcag cagatgcaac aacagcagtc aacatctatt 3300
tctctaacgt ccaattccgc caacagaaga cctgctggaa attcacccca gaacccaacc 3360
gtccttggtt tgaatcaaga agggtcaagc tcaaacccat caacgcctgc tgcttgggct 3420
tcaccgatgg aagccttcag aggacgagaa ggcatgaaca tgtcttcaga tgataggatg 3480
tttgatatat atggatatgg tagccaggca aatggggaat atctggattt tgagtctcat 3540
agaccaatga atttaatgta g 3561
<210> 14
<211> 23
<212> DNA
<213> 人工序列(引物A07-0646 F 精细定位)
<400> 14
acttttcacc actttactgc tgc 23
<210> 15
<211> 26
<212> DNA
<213> 人工序列(引物A07-0646 R 精细定位)
<400> 15
atcatagttg aaggaccaaa attgga 26
<210> 16
<211> 20
<212> DNA
<213> 人工序列(引物A07-0592 F 精细定位)
<400> 16
cttcccggtc gatgtagacg 20
<210> 17
<211> 20
<212> DNA
<213> 人工序列(引物A07-0592 R 精细定位)
<400> 17
ccttcgggtg gcctaagttt 20
<210> 18
<211> 20
<212> DNA
<213> 人工序列(引物A07-0594 F 精细定位)
<400> 18
ttgtgcccat tccgcgtata 20
<210> 19
<211> 20
<212> DNA
<213> 人工序列(引物A07-0594 R 精细定位)
<400> 19
ccgttgtgga aaggactcga 20
<210> 20
<211> 22
<212> DNA
<213> 人工序列(引物CH07-44 F 精细定位)
<400> 20
ggaatatgtt tcatggaatg gc 22
<210> 21
<211> 23
<212> DNA
<213> 人工序列(引物CH07-44 R 精细定位)
<400> 21
cttcctttcc tatctaccca tgc 23
<210> 22
<211> 20
<212> DNA
<213> 人工序列(引物CH07-53 F 精细定位)
<400> 22
tgtgaaccag gaccctatct 20
<210> 23
<211> 20
<212> DNA
<213> 人工序列(引物CH07-53 R 精细定位)
<400> 23
tcaaacgcca caaaattaag 20
<210> 24
<211> 20
<212> DNA
<213> 人工序列(引物S49F 定量引物- GoBRPa)
<400> 24
ttcaccttgg ccgaccttag 20
<210> 25
<211> 22
<212> DNA
<213> 人工序列(引物S49R 定量引物- GoBRPa)
<400> 25
gcgagcttca tgagtttctt cc 22
<210> 26
<211> 21
<212> DNA
<213> 人工序列(引物S59F 定量引物- Gh_A07G0668)
<400> 26
ggagaagatg cacaaagggg a 21
<210> 27
<211> 21
<212> DNA
<213> 人工序列(引物S59R 定量引物- Gh_A07G0668)
<400> 27
tgaaacaaca ttctggccct c 21
<210> 28
<211> 23
<212> DNA
<213> 人工序列(引物S42F 定量引物- Gh_A07G0669)
<400> 28
tgctgggtat taaggtttcc ttc 23
<210> 29
<211> 20
<212> DNA
<213> 人工序列(引物S42R 定量引物- Gh_A07G0669)
<400> 29
ccatctcttc ggcacacaga 20
<210> 30
<211> 22
<212> DNA
<213> 人工序列(引物S54F 定量引物- Gh_A07G0670)
<400> 30
atatggtagc caggcaaatg gg 22
<210> 31
<211> 21
<212> DNA
<213> 人工序列(引物S54R 定量引物- Gh_A07G0670)
<400> 31
aattggctgt tgtccagtga t 21
<210> 32
<211> 20
<212> DNA
<213> 人工序列(引物S209F 定量引物- GhPAL1(Gh_D09G1401))
<400> 32
cacagctatg tgccaaggga 20
<210> 33
<211> 23
<212> DNA
<213> 人工序列(引物S209R 定量引物- GhPAL1(Gh_D09G1401))
<400> 33
ggaaattcca acaacaaatg cga 23
<210> 34
<211> 20
<212> DNA
<213> 人工序列(引物S189F 定量引物- GhCHS1 (Gh_D02G0304))
<400> 34
gacttggaac cacgggtgaa 20
<210> 35
<211> 20
<212> DNA
<213> 人工序列(引物S189R 定量引物- GhCHS1 (Gh_D02G0304))
<400> 35
tgggctagcc aacatgaaca 20
<210> 36
<211> 20
<212> DNA
<213> 人工序列(引物S191F 定量引物- GhCHS2 (Gh_A10G1079))
<400> 36
ggagtgggga gtgctctttg 20
<210> 37
<211> 21
<212> DNA
<213> 人工序列(引物S191R 定量引物- GhCHS2 (Gh_A10G1079))
<400> 37
aaaactgcaa gccaagtgga g 21
<210> 38
<211> 20
<212> DNA
<213> 人工序列(引物S206F 定量引物- GhFLS1( Gh_A05G3400))
<400> 38
gggcctcatc ctaagctcgt 20
<210> 39
<211> 20
<212> DNA
<213> 人工序列(引物S206R 定量引物- GhFLS1( Gh_A05G3400))
<400> 39
agctggccat ggaagcttgt 20
<210> 40
<211> 20
<212> DNA
<213> 人工序列(引物S196F 定量引物- GhDFR1(Gh_A05G1647))
<400> 40
acatgccgag aaaagggact 20
<210> 41
<211> 21
<212> DNA
<213> 人工序列(引物S196R 定量引物- GhDFR1(Gh_A05G1647))
<400> 41
ggaagacatg ggtaggcact c 21
<210> 42
<211> 22
<212> DNA
<213> 人工序列(引物S197F 定量引物- GhDFR2(Gh_A06G0066))
<400> 42
agggttaatt gcacctccaa ca 22
<210> 43
<211> 20
<212> DNA
<213> 人工序列(引物S197R 定量引物- GhDFR2(Gh_A06G0066))
<400> 43
gcccttaaca ccaaagccct 20
<210> 44
<211> 20
<212> DNA
<213> 人工序列(引物S199F 定量引物- GhANS1(Gh_D08G1902))
<400> 44
tctgagaccg aacctccact 20
<210> 45
<211> 20
<212> DNA
<213> 人工序列(引物S199R 定量引物- GhANS1(Gh_D08G1902))
<400> 45
agacagacgc cacaaccaag 20
<210> 46
<211> 20
<212> DNA
<213> 人工序列(引物S202F 定量引物- GhANS2(Gh_A12G2045))
<400> 46
ggctctaggt gtggaagctc 20
<210> 47
<211> 20
<212> DNA
<213> 人工序列(引物S202R 定量引物- GhANS2(Gh_A12G2045))
<400> 47
gcggtaatcc acttgccttc 20
<210> 48
<211> 20
<212> DNA
<213> 人工序列(引物S239F 定量引物- GhUFGT(Gh_A02G1341))
<400> 48
cagttggagc aaacggaagc 20
<210> 49
<211> 23
<212> DNA
<213> 人工序列(引物S239R 定量引物- GhUFGT(Gh_A02G1341))
<400> 49
acctcatgat tccacactaa cga 23
<210> 50
<211> 20
<212> DNA
<213> 人工序列(引物S227F 定量引物- GhWD40 (Gh_D08G1130))
<400> 50
cagtggtctg ctactcagcc 20
<210> 51
<211> 22
<212> DNA
<213> 人工序列(引物S227R 定量引物- GhWD40 (Gh_D08G1130))
<400> 51
ccacctaatt acaagcgtga gc 22
<210> 52
<211> 20
<212> DNA
<213> 人工序列(引物S245F 定量引物- GhTT8-1 (Gh_D11G1273))
<400> 52
agggaagggt tgttggttga 20
<210> 53
<211> 20
<212> DNA
<213> 人工序列(引物S245R 定量引物- GhTT8-1 (Gh_D11G1273))
<400> 53
ccacttcacc tccgttatgc 20
<210> 54
<211> 21
<212> DNA
<213> 人工序列(引物S248F 定量引物- GhGL3( Gh_D08G1966))
<400> 54
tgccactcag ttcagtcatc t 21
<210> 55
<211> 21
<212> DNA
<213> 人工序列(引物S248R 定量引物- GhGL3( Gh_D08G1966))
<400> 55
caatgcttgc tcgattggtc c 21
<210> 56
<211> 20
<212> DNA
<213> 人工序列(引物S295F 定量引物- GhPAP1D)
<400> 56
gctaacgacg gtaataacga 20
<210> 57
<211> 20
<212> DNA
<213> 人工序列(引物S295R 定量引物- GhPAP1D)
<400> 57
ctggctatgg gttgaacaca 20
<210> 58
<211> 21
<212> DNA
<213> 人工序列(引物S307F 定量引物- GhHY5(Gh_D08G2461))
<400> 58
atgcagctga tggaaccctt t 21
<210> 59
<211> 24
<212> DNA
<213> 人工序列(引物S307R 定量引物- GhHY5(Gh_D08G2461))
<400> 59
gagagaacca aagttccaat tgtc 24
<210> 60
<211> 22
<212> DNA
<213> 人工序列(引物Y8991F 定量引物- (Histone-3))
<400> 60
cggtggtgtg aagaagcctc at 22
<210> 61
<211> 24
<212> DNA
<213> 人工序列(引物Y8991R 定量引物- (Histone-3))
<400> 61
aatttcacga acaagcctct ggaa 24
<210> 62
<211> 22
<212> DNA
<213> 人工序列(引物S213F 定量引物- GUS)
<400> 62
atccggtcag tggcagtgaa gg 22
<210> 63
<211> 20
<212> DNA
<213> 人工序列(引物S213R 定量引物- GUS)
<400> 63
cagcgtaagg gtaatgcgag 20
<210> 64
<211> 20
<212> DNA
<213> 人工序列(引物S214F 烟草内标引物- EF1a)
<400> 64
acaagatgga tgctaccacc 20
<210> 65
<211> 20
<212> DNA
<213> 人工序列(引物S214R 烟草内标引物- EF1a)
<400> 65
aaccagagat ggggacaaag 20
<210> 66
<211> 25
<212> DNA
<213> 人工序列(引物S173F CDS 序列克隆-GoBRPa-118)
<400> 66
atggtagtga aagtgtatgg tccaa 25
<210> 67
<211> 23
<212> DNA
<213> 人工序列(引物S173R CDS 序列克隆-GoBRPa-118)
<400> 67
ggtgatcaat aattagcgag ctt 23
<210> 68
<211> 24
<212> DNA
<213> 人工序列(引物S176F CDS 序列克隆-GoBRPa-HB118)
<400> 68
agaatggtag tgaaagtgta tggt 24
<210> 69
<211> 24
<212> DNA
<213> 人工序列(引物S176R CDS 序列克隆-GoBRPa-HB118)
<400> 69
agctacatgg taacttttaa ttcg 24
<210> 70
<211> 20
<212> DNA
<213> 人工序列(引物R5F CDS 序列克隆-Gh_A07G0669)
<400> 70
aatcattggg ccggcatcta 20
<210> 71
<211> 20
<212> DNA
<213> 人工序列(引物R5F CDS 序列克隆-Gh_A07G0669)
<400> 71
ccatctcttc ggcacacaga 20
<210> 72
<211> 23
<212> DNA
<213> 人工序列(引物S289F CDS 序列克隆-GhPAP1)
<400> 72
acagctttta tatggaaggc tca 23
<210> 73
<211> 21
<212> DNA
<213> 人工序列(引物S289R CDS 序列克隆-GhPAP1)
<400> 73
tttctggcta tgggttgaac a 21
<210> 74
<211> 22
<212> DNA
<213> 人工序列(引物S305F CDS 序列克隆- GhHY5)
<400> 74
acgaagaaat gcaagaacaa gg 22
<210> 75
<211> 25
<212> DNA
<213> 人工序列(引物S305R CDS 序列克隆- GhHY5)
<400> 75
agagagaacc aaagttccaa ttgtc 25
<210> 76
<211> 20
<212> DNA
<213> 人工序列(引物S128F 启动子序列克隆- GoBRPa)
<400> 76
atgccctctt cgtcacttgg 20
<210> 77
<211> 20
<212> DNA
<213> 人工序列(引物S128R 启动子序列克隆- GoBRPa)
<400> 77
taccctttga gggcaagctg 20
<210> 78
<211> 43
<212> DNA
<213> 人工序列(引物S162F 启动子活性分析- GoBRPa-118)
<400> 78
gaccatgatt acgccaagct tgattatgcc ctcttcgtca ctt 43
<210> 79
<211> 43
<212> DNA
<213> 人工序列(引物S162R 启动子活性分析- GoBRPa-118)
<400> 79
accacccggg gatcctctag acattcttaa attttattat tat 43
<210> 80
<211> 43
<212> DNA
<213> 人工序列(引物S163F 启动子活性分析- GoBRPa-HB118)
<400> 80
gaccatgatt acgccaagct tgattatgcc ctcttcgtca ctt 43
<210> 81
<211> 43
<212> DNA
<213> 人工序列(引物S163R 启动子活性分析- GoBRPa-HB118)
<400> 81
accacccggg gatcctctag acattcttaa tttattatta tta 43
<210> 82
<211> 42
<212> DNA
<213> 人工序列(引物S311F pBI121 载体构建- GoBRPa-118)
<400> 82
gagaacacgg gggactctag aatggtagtg aaagtgtatg gt 42
<210> 83
<211> 42
<212> DNA
<213> 人工序列(引物S311R pBI121 载体构建- GoBRPa-118)
<400> 83
cgatcgggga aattcgagct ctcaataatt agcgagcttc at 42
<210> 84
<211> 42
<212> DNA
<213> 人工序列(引物S312F pBI121 载体构建- GoBRPa-HB118)
<400> 84
gagaacacgg gggactctag aatggtagtg aaagtgtatg gt 42
<210> 85
<211> 42
<212> DNA
<213> 人工序列(引物S312R pBI121 载体构建- GoBRPa-HB118)
<400> 85
cgatcgggga aattcgagct ctcaataatt agcgagcatc at 42
<210> 86
<211> 28
<212> DNA
<213> 人工序列(引物S273F 共分离 SNP标记)
<400> 86
aaactcattg gaagaacgag caatggaa 28
<210> 87
<211> 27
<212> DNA
<213> 人工序列(引物S273R 共分离 SNP标记)
<400> 87
ttccaagcag ctcggttaga aatggtc 27

Claims (10)

1.控制棉花花冠颜色变化的基因是棉花的GST基因,该基因编码谷胱甘肽S转移酶GST。
2.控制棉花花冠颜色变化的基因的基因序列是SEQ ID NO.10。
3.用于鉴定控制棉花花冠颜色变化的基因的候选基因是SEQ ID NO.9、SEQ ID NO.10、SEQ ID NO.11、SEQ ID NO.12或SEQ ID NO.13。
4.控制棉花花冠颜色变化的基因是谷胱甘肽S转移酶GST蛋白的基因,该基因所编码GST蛋白的氨基酸序列是SEQ ID NO.5、SEQ ID NO.6、SEQ ID NO.7、或SEQ ID NO.8。
5.用于鉴定控制棉花花冠颜色变化的基因的候选基因所编码蛋白的氨基酸序列是SEQID NO.5、SEQ ID NO.6、SEQ ID NO.7、或SEQ ID NO.8。
6.一种基因工程体,其特征在于:该基因工程体的基因中至少含有如权利要求1所述棉花的GST基因,该基因的基因序列是SEQ ID NO.10;或该基因工程体的中至少含有编码谷胱甘肽S转移酶GST的蛋白,所编码GST蛋白的氨基酸序列是SEQ ID NO.5、SEQ ID NO.6、SEQID NO.7、或SEQ ID NO.8。
7.一种控制棉花花冠颜色变化的方法,其特征在于:利用野生二倍体比克氏棉与陆地棉远缘杂交得到的红花品种HB118,与白花品种陆地棉遗传标准系TM-1杂交或得遗传群体,通过图位克隆技术得到棉花的GST基因,其编码谷胱甘肽S转移酶GST,通过调控该基因的表达,控制棉花花冠颜色的变化。
8.一种引起棉花花冠颜色变化的基因的鉴定方法,其特征在于:该方法的过程是:
(1)定位筛选除花色表现性状不同之外其他形性状均相同的同源或近源的红花系棉种和白花系棉种,选定:
红花系棉种:HB118
白花系棉种:118
针对上述两种棉花通过HPLC-MS/MS检测分析HB118和118中色素成分及含量,并用比色法检测验证;
(2)红花基因的精细定位和图位克隆:
以118为母本,HB118为父本,杂交得到F1代,F1代通过严格自交得到F2遗传群体,统计F2遗传群体总株数,以及其中的红色花瓣植株的株数、白色花瓣植株的株数,分析孟德尔遗传定律分离比,确定是否为单基因控制的显性形状;
定位红花基因的染色体区间;
在染色体区间中的候选基因中确定与植物色素相关的基因;
用于鉴定控制棉花花冠颜色变化的基因的候选基因有SEQ ID NO.1、SEQ ID NO.2、SEQID NO.3、或SEQ ID NO.4;
鉴定候选基因在红花系棉种和白花系棉种的花瓣中的差异表达,分析候选基因,通过图位克隆分析基因差异,验证定位结果;
(3)定位基因特征分析:
对定位基因的编码蛋白进行分析;
关联花青素进行分析,定位基因的编码蛋白在HB118和118中对比是否影响其与花青素结合的能力;
结合定位基因的编码蛋白氨基酸序列的影响因素,对比分析在HB118和118中定位基因的编码蛋白的表达量的差异;
综合判断红色花瓣的差异因素的决定性因素;
(4)判断定位基因在HB118和118中差异表达是否由于启动子活性变化所导致:
针对定位基因在HB118和118的花瓣、花丝、根、茎、叶不同组织进行差异表达检测;
将定位基因-HB118与定位基因-118基因的启动子活性检测:将定位基因-HB118与定位基因-118基因的启动子进行克隆,将两个启动子与GUS连接后进行启动子活性检测瞬时转化烟草,对比二者启动子的启动活性,判断启动子活性差异;
对两个启动子序列进行原件分析:利用NewPLACE对两个启动子序列进行原件分析,判断二者与转录因子的因素关联性;判断两个启动子的原件是否具有转录因子结合位点,
(5)判断定位基因的表达调控机制:
对比定位基因-HB118与定位基因-118二者的启动子上的转录因子结合位点的差异,并调查所差异的转录因子的组织特异表达热图,进行对比分析;
序列分析相关的转录因子差异在HB118和118中的表达的差异性;
分析二者转录因子在棉花中的同源基因,分析同源基因在调控花青素合成通路基因的表达方式,并在在HB118和118棉种中进行转录因子ORF克隆,序列分析二者转录因子的差异性;
针对二者转录因子所调控表达的同源基因,在棉花中提取该转录因子,并进行聚类分析及序列对比,分析相关转录因子同源基因参与红花基因的基因调控的相关性;
推测红花基因的基因调控由哪一个同源基因所参与基因调控;
验证推测结果,针对二者的转录因子同源基因分别与定位基因-HB118和定位基因-118的启动子进行酵母单杂实验,分析和验证转录因子和启动子同源基因的结合性;
(6)外界生长环境因素的变化对红花表型的干扰:
试验和分析不同光照强度条件下,对定位基因-HB118与定位基因-118的表达差异;
(7)结合花青素合成通路相关基因及其他调控相关基因的表达分析相关基因在HB118和118花瓣中的表达差异;
(8)综合分析关于HB118红花近等基因系的特异基因表达的分子机制。
9.根据权利要求8所述的一种引起棉花花冠颜色变化的基因的鉴定方法,其特征在于:HB118棉种是陆地棉白花品种118的近等基因系棉种,HB118棉种是由陆地棉与比克氏棉远缘杂交得到,表现出红色花冠、花瓣底部具有深色基斑的性状。
10.棉花的GST基因,或棉花中编码谷胱甘肽S转移酶GST的蛋白,在控制棉花花冠颜色变化的基因工程中的应用。
CN202011512884.0A 2020-12-20 2020-12-20 一种引起棉花花冠颜色变化的基因及其鉴定方法 Pending CN112831507A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011512884.0A CN112831507A (zh) 2020-12-20 2020-12-20 一种引起棉花花冠颜色变化的基因及其鉴定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011512884.0A CN112831507A (zh) 2020-12-20 2020-12-20 一种引起棉花花冠颜色变化的基因及其鉴定方法

Publications (1)

Publication Number Publication Date
CN112831507A true CN112831507A (zh) 2021-05-25

Family

ID=75923639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011512884.0A Pending CN112831507A (zh) 2020-12-20 2020-12-20 一种引起棉花花冠颜色变化的基因及其鉴定方法

Country Status (1)

Country Link
CN (1) CN112831507A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826386A (zh) * 2020-07-30 2020-10-27 西南大学 一种调控棉花纤维呈色的融合基因及其表达载体和应用
CN114836450A (zh) * 2022-06-30 2022-08-02 中国农业科学院作物科学研究所 有色大麦籽粒花青素转运相关基因HvGST及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106754999A (zh) * 2017-01-13 2017-05-31 安徽农业大学 一种棕色棉纤维原花青素转运相关的gst蛋白基因及其应用
CN111826386A (zh) * 2020-07-30 2020-10-27 西南大学 一种调控棉花纤维呈色的融合基因及其表达载体和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106754999A (zh) * 2017-01-13 2017-05-31 安徽农业大学 一种棕色棉纤维原花青素转运相关的gst蛋白基因及其应用
CN111826386A (zh) * 2020-07-30 2020-10-27 西南大学 一种调控棉花纤维呈色的融合基因及其表达载体和应用

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
EBI: "ID:KX500358", 《EBI DATABASE》, 11 August 2017 (2017-08-11), pages 1 *
EBI: "KF923942.1", 《EBI DATABASE》, 15 August 2014 (2014-08-15), pages 1 *
NCBI: "genbank:KAB20734393.1", 《GENBANK DATABASE》, 9 August 2016 (2016-08-09), pages 1 *
NCBI: "Genbank:QJZ27969.1", 《GENBANK DATABASE》, 31 May 2020 (2020-05-31), pages 1 *
NCBI: "Genbank:QJZ27970.1", 《GENBANK DATABASE》, 31 May 2020 (2020-05-31), pages 1 *
NCBI: "NCBI Reference Sequence:XM_07749100.1", 《GENBANK DATABASE》, 9 August 2016 (2016-08-09), pages 1 *
NCBI: "NCBI Reference Sequence:XP_017612135.1", 《GENBANK DATABASE》, 9 August 2016 (2016-08-09), pages 1 *
NCBI: "NCBI Reference Sequence:XP_017644171.1", 《GENBANK DATABASE》, 9 August 2016 (2016-08-09), pages 1 *
张法铭: "陆地棉HB红花近等基因系差别基因分析", 《中国优秀博硕士学位论文全文数据库(硕士) 农业科技辑》, no. 3, 15 March 2017 (2017-03-15), pages 6 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826386A (zh) * 2020-07-30 2020-10-27 西南大学 一种调控棉花纤维呈色的融合基因及其表达载体和应用
CN111826386B (zh) * 2020-07-30 2022-02-01 西南大学 一种调控棉花纤维呈色的融合基因及其表达载体和应用
CN114836450A (zh) * 2022-06-30 2022-08-02 中国农业科学院作物科学研究所 有色大麦籽粒花青素转运相关基因HvGST及其应用
CN114836450B (zh) * 2022-06-30 2022-09-30 中国农业科学院作物科学研究所 有色大麦籽粒花青素转运相关基因HvGST及其应用

Similar Documents

Publication Publication Date Title
Chen et al. Research progress of fruit color development in apple (Malus domestica Borkh.)
Umemura et al. Expression and functional analysis of a novel MYB gene, MdMYB110a_JP, responsible for red flesh, not skin color in apple fruit
Mathews et al. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport
Koornneef et al. Genetic approaches in plant physiology
Fambrini et al. The extreme dwarf phenotype of the GA-sensitive mutant of sunflower, dwarf2, is generated by a deletion in the ent-kaurenoic acid oxidase1 (HaKAO1) gene sequence
CN112831507A (zh) 一种引起棉花花冠颜色变化的基因及其鉴定方法
CN104894142A (zh) 调控花青素合成与代谢的小麦新基因TaMYB7D
CN112301039A (zh) 一种玉米叶斑马条纹叶色基因zb9以及与其连锁的InDel分子标记和应用
CN108841797A (zh) 一种调控水稻叶绿素合成的蛋白质及其编码基因与应用
CN104975030B (zh) 玉米黄绿叶突变基因ygl-1及其编码的蛋白质与应用
Byun et al. Identification of CaAN3 as a fruit-specific regulator of anthocyanin biosynthesis in pepper (Capsicum annuum)
Lin et al. The mungbean VrP locus encoding MYB90, an R2R3-type MYB protein, regulates anthocyanin biosynthesis
Wang et al. Characterization of the BrTT1 gene responsible for seed coat color formation in Dahuang (Brassica rapa L. landrace)
Yamagishi High promoter sequence variation in subgroup 6 members of R2R3-MYB genes is involved in different floral anthocyanin color patterns in Lilium spp.
Brar et al. Biotechnological approaches for increasing productivity and sustainability of rice production
KR102090157B1 (ko) 식물체의 초장, 종자 크기 및 출수기를 조절하는 야생벼 유래 apx9 유전자 및 이의 용도
CN110423766B (zh) 一种番茄红素β-环化酶基因及其编码蛋白和应用
CN112175973A (zh) 水稻类病斑控制基因spl36及其应用
CN110093352B (zh) 一种与芹菜花青素合成相关的转录因子AgMYB1基因序列及其应用
Rahman et al. Allelic gene interaction and anthocyanin biosynthesis of purple pericarp trait for yield improvement in black rice
Roy et al. Black rice developed through interspecific hybridization (O. sativa x O. rufipogon): Origin of black rice gene from Indian wild rice
CN112679592B (zh) 水稻叶色控制基因sel、其突变基因及其在水稻叶色改良中的应用
Li et al. AcMYB1 interacts with AcbHLH1 to regulate anthocyanin biosynthesis in Aglaonema commutatum
CN112626085B (zh) 水稻窄叶基因nal13及其应用
CN112029778B (zh) 马铃薯花青素合成调控基因StWRKY13及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20240130

Address after: 250100 No. 202 industrial North Road, Licheng District, Shandong, Ji'nan

Applicant after: SHANDONG ACADEMY OF AGRICULTURAL SCIENCES

Country or region after: China

Address before: 250100 No. 202 industrial North Road, Licheng District, Shandong, Ji'nan

Applicant before: SHANDONG COTTON RESEARCH CENTER

Country or region before: China

TA01 Transfer of patent application right