CN112827484B - 一种复合光电催化材料的制备及处理偏二甲肼废水的方法 - Google Patents

一种复合光电催化材料的制备及处理偏二甲肼废水的方法 Download PDF

Info

Publication number
CN112827484B
CN112827484B CN202110018900.9A CN202110018900A CN112827484B CN 112827484 B CN112827484 B CN 112827484B CN 202110018900 A CN202110018900 A CN 202110018900A CN 112827484 B CN112827484 B CN 112827484B
Authority
CN
China
Prior art keywords
photocatalytic material
tnas
unsymmetrical dimethylhydrazine
preparing
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110018900.9A
Other languages
English (en)
Other versions
CN112827484A (zh
Inventor
任向红
周锋
师金锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rocket Force University of Engineering of PLA
Original Assignee
Rocket Force University of Engineering of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rocket Force University of Engineering of PLA filed Critical Rocket Force University of Engineering of PLA
Priority to CN202110018900.9A priority Critical patent/CN112827484B/zh
Publication of CN112827484A publication Critical patent/CN112827484A/zh
Application granted granted Critical
Publication of CN112827484B publication Critical patent/CN112827484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明属光催化领域,涉及一种光催化材料及其电辅助降解偏二甲肼废水的方法,特别涉及一种利用Bi2O3/TiO2纳米管阵列的复合光电催化材料的制备及其电辅助降解偏二甲肼废水的方法。本发明的复合材料光催化效果高,在偏置电位的辅助下,可以有效提高复合材料的光生电子空穴对的分离效率(即量子效率),进而提高光催化活性。本发明用于偏二甲肼废水处理的复合材料性能稳定,易于回收,生产工艺简单,成本低廉,安全环保,不会造成二次污染,具有工程应用前景。

Description

一种复合光电催化材料的制备及处理偏二甲肼废水的方法
技术领域
本发明属于电辅助光催化领域,涉及一种复合光催化材料及处理偏二甲肼废水的方法,特别涉及一种利用Bi2O3/TiO2纳米管阵列复合光催化材料及其电辅助处理偏二甲肼废水的方法。
背景技术
偏二甲肼作为运载火箭的推进剂,被广泛用于卫星和航天器等设备,在航天器的发射、发动机测试、存储和运输过程中,通常会产生大量的偏二甲肼废气、废水。目前,光催化技术因具有绿色、环保、能耗低等优点而被应用于偏二甲肼废水处理工艺,光催化材料主要有纳米粉末材料和固定化材料两类。CN102626625B公布的偏二甲肼废水降解光催化剂是贵金属掺杂ZnO纳米颗粒,为了实现在可见光范围内进行光催化反应,在光催化剂中掺杂了贵金属如Ag、Pd等,然而,该催化剂贵金属成本昂贵,且纳米粉末光催化剂回收困难,难于重复使用,易造成二次污染。CN110368919A以水热法制备二氧化钛纳米棒阵列并负载于导电玻璃基底,并通过掺杂铁、镍、锌混合改性,成功实现了模拟太阳光条件下对偏二甲肼的降解,光照强度为60mW/cm2的降解效率为36.77%。可以发现,固定化处理会降低材料的光催化活性。
CN110639499A通过塑形煅烧制得一种可见光改性光催化材料Bi2O3/TiO2/Al2O3,但循环回收过程需要过滤、烘干等步骤,且水体环境中受外力作用易脱落粉末。CN105951154A提供了一种阳极氧化法原位制备二氧化钛纳米管阵列光催化剂的制备方法,提高了光催化材料的稳定性,并成功应用于有机染料罗丹明B的光催化降解,CN1613556A以二氧化钛纳米管阵列为基底,通过沉积石墨烯和贵金属改性,对2,4-二氯苯氧乙酸的降解率最高为95.26%;但是,石墨烯和贵金属材料制备成本高,且偏二甲肼的降解过程中易产生有毒副产物,限制了其在偏二甲肼废水中的应用。为了进一步提高材料的光催化活性,CN104628200A以纳米ZnO作为光催化剂、掺硼金刚石为薄膜电极、不锈钢为阴极、碳纳米纤维与海藻酸钙微球为填充粒子制备三维电极,提供了一种光电组合降解偏二甲肼等有机污染物的方法,但存在制备工艺复杂、成本高的问题,用于电催化氧化偏二甲肼废水依旧受限于紫外光条件,且需要添加30%的双氧水作为助催化剂。
发明内容
针对上述现有技术的不足,本发明提供一种复合光催化剂及其电辅助降解偏二甲肼废水的方法。采用阳极氧化法,以钛片为阳极、石墨为阴极,以氟离子的乙二醇溶液为电解液,原位制备得到二氧化钛纳米管阵列(TNAs)作为催化电极基底材料;以TNAs为阴极、铋离子的乙二醇溶液为电解液进行电化学沉积,再通过高温煅烧制得改性的Bi2O3/TiO2复合光催化电极。Bi2O3/TiO2异质结能够提高材料的可见光响应性能,以偏置电位辅助处理偏二甲肼废水可以大大提高材料的光生电子空穴对分离效率,进而提高光催化效率。本发明的复合型光催化材料制备简单、成本低,废水处理方法易实现、速率快、效果高。
本发明复合光催化剂材料中,由于TiO2是n型半导体,而Bi2O3是p型半导体,当两种材料复合时,TiO2的费米能级下降,Bi2O3的费米能级上升,致使两者费米能级重叠,导致复合材料的整体禁带宽降低,进而提高了可见光响应性能,同时异质结构构筑的内电场也能提高光生载流子的分离效率。光生电子与吸附氧分子反应生成超氧自由基(·O2 -),光生空穴与水分子反应生成羟基自由基(·OH),这些强氧化性的自由基能够直接氧化有机污染物分子,矿化成为水分子(H2O)和二氧化碳(CO2),达到污染物降解的目的。
本发明提供一种复合光催化材料的制备方法,其特征在于:首先预处理钛基板,配置电解液,利用阳极氧化法制备二氧化钛纳米管阵列TNAs薄膜基底,以电沉积Bi3+进行可见光改性,通过高温煅烧得到纳米Bi2O3修饰的TNAs异质结型光催化材料;具体包括以下步骤:
步骤1:钛基板预处理
将纯度>99.99%的钛片以1%~8%wt的硝酸HNO3和0.02%~0.1%wt的氢氟酸HF混合溶液进行化学抛光,再依次用丙酮、乙醇、去离子水超声处理10~30min,晾干备用;
步骤2:配制电解液
配置0.1mol/L~0.5mol/L NaF的乙二醇溶液,加入1%~3%vol水,形成混合溶液,通过稀氢氧化钠或盐酸溶液调整混合溶液的pH为6~8;
步骤3:阳极氧化处理
以步骤1处理后的钛片为阳极,石墨片为阴极,设置阳极氧化电压为30V~50V,电极间距2cm~5cm,反应时间为45min~90min;
步骤4:电沉积改性
配置0.01mol/L~0.10mol/L Bi(NO3)3的乙二醇溶液,电沉积法改性,电沉积时间为0~20min,以提高材料的可见光响应性能;
步骤5:高温煅烧
将Bi2O3/TNAs复合光催化材料置于马弗炉内,在空气氛围下,以1~2℃/min的速率升温至450℃~550℃,保持3h~4h后随炉自然冷却,得到表面微黄色的Bi2O3/TNAs复合光催化材料。
本发明进一步提供一种复合光催化材料的制备方法,其特征在于,所述的Bi2O3/TNAs复合光催化材料TNAs基底纳米管阵列孔径为,管长5μm~15μm。
本发明进一步提供一种复合光催化材料的制备方法,其特征在于,所述的Bi2O3/TNAs复合光催化材料介孔空间结构为50nm~300nm。
本发明进一步提供一种复合光催化材料的制备方法,其特征在于,所述的多孔状的Bi2O3/TNAs复合光催化材料的晶体组成为锐钛矿TiO2、Bi2O3
本发明进一步提供一种复合光催化材料的制备方法,其特征在于,所述的复合光催化材料的带隙能为1.86eV~2.58eV。
本发明提供一种利用复合光催化材料处理偏二甲肼废水的方法,其特征在于:具体包括以下步骤:
步骤1:配制浓度在100mg/L~120mg/L之间的偏二甲肼模拟废水30mL~100mL,利用氨基亚铁氰化钠分光光度法测定废水中偏二甲肼初始浓度;调节偏二甲肼废水初始pH值为6~8;
步骤2:将权利要求1中制备的Bi2O3/TNAs复合光催化材料放置于盛有偏二甲肼废水的石英试管,置于反应箱避光静置30min,用氨基亚铁氰化钠分光光度法检测偏二甲肼的含量;
步骤3:使用汞灯或者氙灯光源时,控制灯光辐照功率为100mW/cm2;以三电极体系外加偏置电位0.1V~1.5V,以外加电场辅助,加速光生电子空穴对的分离效率,提高对偏二甲肼废水的光催化降解效率;
步骤4:在光催化反应过程中,每隔1h取样分析,利用氨基亚铁氰化钠分光光度法测定废水中偏二甲肼的浓度,至废水浓度低于方法检出限。
本发明有益效果在于:
(1)本发明用于偏二甲肼废水处理的复合材料光催化效率高,以电沉积Bi2O3改性提高材料的可见光利用率,异质结的内电场和外加偏置电位外电场同时作用提高光生载流子的分离效率,同时外加辅助电场能够加快整体的反应速率;
(2)本发明的用于偏二甲肼废水处理的复合材料,性能稳定,便于分离回收,不会造成二次污染,环境友好;
(3)本发明的用于偏二甲肼废水处理的复合材料的生产工艺简单,成本低廉,安全环保,具有工程应用前景。
附图说明
图1为实施例1的TNAs基底表面及横截面的SEM图
图2为实施例1~4的Bi2O3/TNAs复合光催化材料的SEM对比图
图3为实施例2、3的Bi2O3/TNAs复合光催化材料及例TNAs基底的XRD对比图
图4为实施例2、3的Bi2O3/TNAs复合光催化材料的I-t曲线
图5为实施例3的Ti元素XPS图谱
图6为实施例3的Bi元素XPS图谱
图7为实施例5对UDMH的降解效果图
图8为实施例5对UDMH的降解效果动力学拟合图
具体实施方式
为了使发明的目的、技术方案和优点更佳清楚明白,以下结合具体实施例进一步详细说明。
实施例1
一种复合光催化材料,采用如下方法进行制备:
第一步:阳极氧化法制备二氧化钛纳米管阵列(TNAs)薄膜基底。将高纯钛片(>99.99%)裁成1.5cm×4.5cm的小片,以5%wt的HNO3和0.05%wt的HF混合溶液进行化学抛光,再依次用丙酮、乙醇、去离子水超声处理15min,放入pH值为7、含3%vol水的0.1mol/LNaF溶液进行阳极氧化制样,氧化电压为40V,电极间距为4cm,反应时间为60min。
第二步:电沉积煅烧法制备Bi2O3/TNAs复合光催化材料。称取适量的Bi(NO3)3配成0.01mol/L的Bi3+溶液,以TNAs薄膜基底为阴极,Pt为阳极,电压设为6.0V、电极间距4cm,进行电沉积改性;控制反应时间为30s,以去离子水清洗3遍,60℃干燥30min;将Bi2O3/TNAs复合光催化材料置于马弗炉内,空气氛围下,以1℃/min~2℃/min的速率升温至480℃,保持3h~4h后随炉自然冷却,得到表面淡黄色纳米结构的Bi2O3/TNAs复合光催化材料。
实施例2
第一步:阳极氧化法制备二氧化钛纳米管阵列(TNAs)薄膜基底。将高纯钛片(>99.99%)裁成1.5cm×4.5cm的小片,以5%wt的HNO3和0.05%wt的HF混合溶液进行化学抛光,再依次用丙酮、乙醇、去离子水超声处理15min,放入pH值为7、含3%vol水的0.2mol/LNaF溶液进行阳极氧化制样,氧化电压为40V,电极间距为4cm,反应时间为48min。
第二步:电沉积煅烧法制备Bi2O3/TNAs复合光催化材料。称取适量的Bi(NO3)3配成0.04mol/L的Bi3+溶液,以TNAs薄膜基底为阴极,Pt为阳极,电压设为6.0V、电极间距4cm,进行电沉积改性;控制反应时间为5min,以去离子水清洗3遍,60℃干燥30min;将Bi2O3/TNAs复合光催化材料置于马弗炉内,空气氛围下,以1~2℃/min的速率升温至500℃,保持3h~4h后随炉自然冷却,得到表面淡黄色纳米结构的Bi2O3/TNAs复合光催化材料。
实施例3
第一步:阳极氧化法制备二氧化钛纳米管阵列(TNAs)薄膜基底。将高纯钛片(>99.99%)裁成1.5cm×4.5cm的小片,以5%wt的HNO3和0.05%wt的HF混合溶液进行化学抛光,再依次用丙酮、乙醇、去离子水超声处理15min,放入pH值为7、含3%vol水的0.1mol/LNaF溶液进行阳极氧化制样,氧化电压为40V,电极间距为4cm,反应时间为55min。
第二步:电沉积煅烧法制备Bi2O3/TNAs复合光催化材料。称取适量的Bi(NO3)3配成0.01mol/L的Bi3+溶液,以TNAs薄膜基底为阴极,Pt为阳极,电压设为6.0V、电极间距4cm,进行电沉积改性;控制反应时间为10min,以去离子水清洗3遍,60℃干燥30min;将Bi2O3/TNAs复合光催化材料置于马弗炉内,空气氛围下,以1℃/min~2℃/min的速率升温至530℃,保持3h~4h后随炉自然冷却,得到表面淡黄色纳米结构的Bi2O3/TNAs复合光催化材料。
实施例4
第一步:阳极氧化法制备二氧化钛纳米管阵列(TNAs)薄膜基底。将高纯钛片(>99.99%)裁成1.5cm×4.5cm的小片,以5%wt的HNO3和0.05%wt的HF混合溶液进行化学抛光,再依次用丙酮、乙醇、去离子水超声处理15min,放入pH值为7、含3%vol水的0.5mol/LNaF溶液进行阳极氧化制样,氧化电压为40V,电极间距为4cm,反应时间为90min。
第二步:电沉积煅烧法制备Bi2O3/TNAs复合光催化材料。称取适量的Bi(NO3)3配成0.06mol/L的Bi3+溶液,以TNAs薄膜基底为阴极,Pt为阳极,电压设为6.0V、电极间距4cm,进行电沉积改性;控制反应时间为15min,以去离子水清洗3遍,60℃干燥30min;将Bi2O3/TNAs复合光催化材料置于马弗炉内,空气氛围下,以1℃/min~2℃/min的速率升温至510℃,保持3h~4h后随炉自然冷却,得到表面淡黄色纳米结构的Bi2O3/TNAs复合光催化材料。
从以上实例可以看出:
(1)从图1所示的复合光催化剂材料的扫描显微镜(SEM)形貌图可以看出,实施例1样品基底具有丰富整齐的纳米管阵列结构,多孔结构有利于增大对水中污染物的吸附,光催化反应与吸附作用同时存在,强化了光催化效率;本发明的基底纳米管孔径为80nm~150nm,管长为5μm~15μm。
(2)从图2可以看出实施例1、2、3、4表面沉积有大量纳米颗粒,本发明的表明沉积的晶粒尺寸为50nm~1.5μm之间。
(3)从图3可以看出,通过实施例2基底和实施例2、实施例3复合光催化材料的XRD图谱对比,发现基底材料主要为Ti和锐钛矿TiO2,而复合光催化材料均有Ti、TiO2、Bi2O3三种物质。
(4)从图4可以看出,实施例1~4的模拟太阳光响应电流密度为0.10mA/cm2~0.275mA/cm2左右。
(5)从图5和图6可以看出,实施例3样品中Ti为+4价、Bi元素为+3价。其他实施例的元素价态一致。
实例5应用效果
为了更加贴近现实环境中的应用,选用模拟太阳光照进行光催化降解偏二甲肼废水实验,用氨基亚铁氰化钠分光光度法(GB/T 14376-93)检测偏二甲肼的含量,计算降解率。具体方法如下:选取制备的Bi2O3/TNAs复合光催化材料一片(1.5cm×4.5cm)加入到40mL、浓度为120mg/L的偏二甲肼溶液中,pH值为7;使用氙灯光源设定辐照功率为100mW/cm2,以三电极体系外加偏置电位0.3V,辅助光催化降解偏二甲肼,提高降解效率,并以未加偏置电位进行对比实验;首先避光反应30min,然后在不同光源条件下进行反应,每隔1h取适量反应液,用分光光度计检测。
电辅助光催化降解效果对比如图7所示,可以看出,偏置电位大大提高了光催化材料对UDMH废水的降解效率,TNAs-10(bais)在6h的降解率就达到了94.03%,并在8h左右将UDMH完全降解,优于TNAs-10的89.14%。
电辅助光催化动力学拟合对比如图8所示,可以看出,通过伪一级动力学线性拟合,TNAs-10对UDMH废水的降解速率常数分别为0.215h-1,而TNAs-10(bais)对UDMH废水的降解速率呈指数分布。说明偏置电位辅助光催化降解偏二甲肼废水能够提升光催化降解速率,其机理是:光催化材料受光激发产生h+/e-对,受到外部电场的作用,光生e-迅速向外部电路转移至阴极,并在阴极电子大量堆积,进而与吸附O2反应生成超氧自由基
Figure BDA0002887679900000071
;而在VB为留下大量的h+,并在阳极与H2O反应生成·OH。因此,受外场的作用,进一步提高了光生载流子的分离效率,从而大大提高了材料的光催化活性及降解速率。

Claims (6)

1.一种复合光催化材料的制备方法,其特征在于:首先预处理钛基板,配置电解液,利用阳极氧化法制备二氧化钛纳米管阵列TNAs薄膜基底,以电沉积Bi3+进行可见光改性,通过高温煅烧得到纳米Bi2O3修饰的TNAs异质结型光催化材料;具体包括以下步骤:
步骤1:钛基板预处理
将纯度>99.99%的钛片以1%~8%wt的硝酸HNO3和0.02%~0.1%wt的氢氟酸HF混合溶液进行化学抛光,再依次用丙酮、乙醇、去离子水超声处理10~30min,晾干备用;
步骤2:配制电解液
配置0.1mol/L~0.5mol/L NaF的乙二醇溶液,加入1%~3%vol水,形成混合溶液,通过稀氢氧化钠或盐酸溶液调整混合溶液的pH为6~8;
步骤3:阳极氧化处理
以步骤1处理后的钛片为阳极,石墨片为阴极,设置阳极氧化电压为30V~50V,电极间距2cm~5cm,反应时间为45min~90min;
步骤4:电沉积改性
配置0.01mol/L~0.10mol/L Bi(NO3)3的乙二醇溶液,电沉积法改性,电沉积时间为0~20min,以提高材料的可见光响应性能;
步骤5:高温煅烧
将Bi2O3/TNAs复合光催化材料置于马弗炉内,在空气氛围下,以1~2℃/min的速率升温至450℃~550℃,保持3h~4h后随炉自然冷却,得到表面微黄色的Bi2O3/TNAs复合光催化材料。
2.根据权利要求1所述的一种复合光催化材料的制备方法,其特征在于:所述的Bi2O3/TNAs复合光催化材料TNAs基底纳米管阵列孔径为,管长5μm~15μm。
3.根据权利要求1所述的一种复合光催化材料的制备方法,其特征在于,所述的Bi2O3/TNAs复合光催化材料介孔空间结构为50nm~300nm。
4.根据权利要求1所述的一种复合光催化材料的制备方法,其特征在于,所述的多孔状的Bi2O3/TNAs复合光催化材料的晶体组成为锐钛矿TiO2、Bi2O3
5.根据权利要求1所述的一种复合光催化材料的制备方法,其特征在于,所述的复合光催化材料的带隙能为1.86eV~2.58eV。
6.利用复合光催化材料处理偏二甲肼废水的方法,其特征在于:具体包括以下步骤:
步骤1:配制浓度在100mg/L~120mg/L之间的偏二甲肼模拟废水30mL~100mL,利用氨基亚铁氰化钠分光光度法测定废水中偏二甲肼初始浓度;调节偏二甲肼废水初始pH值为6~8;
步骤2:将权利要求1中制备的Bi2O3/TNAs复合光催化材料放置于盛有偏二甲肼废水的石英试管,置于反应箱避光静置30min,用氨基亚铁氰化钠分光光度法检测偏二甲肼的含量;
步骤3:使用汞灯或者氙灯光源时,控制灯光辐照功率为100mW/cm2;以三电极体系外加偏置电位0.1V~1.5V,以外加电场辅助,加速光生电子空穴对的分离效率,提高对偏二甲肼废水的光催化降解效率;
步骤4:在光催化反应过程中,每隔1h取样分析,利用氨基亚铁氰化钠分光光度法测定废水中偏二甲肼的浓度,至废水浓度低于方法检出限。
CN202110018900.9A 2021-01-07 2021-01-07 一种复合光电催化材料的制备及处理偏二甲肼废水的方法 Active CN112827484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110018900.9A CN112827484B (zh) 2021-01-07 2021-01-07 一种复合光电催化材料的制备及处理偏二甲肼废水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110018900.9A CN112827484B (zh) 2021-01-07 2021-01-07 一种复合光电催化材料的制备及处理偏二甲肼废水的方法

Publications (2)

Publication Number Publication Date
CN112827484A CN112827484A (zh) 2021-05-25
CN112827484B true CN112827484B (zh) 2023-03-17

Family

ID=75927805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110018900.9A Active CN112827484B (zh) 2021-01-07 2021-01-07 一种复合光电催化材料的制备及处理偏二甲肼废水的方法

Country Status (1)

Country Link
CN (1) CN112827484B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101537354A (zh) * 2009-04-20 2009-09-23 大连理工大学 可见光活化的氧化亚铜/二氧化钛纳米复合光催化剂的制备方法及其应用
CN101653728A (zh) * 2009-09-04 2010-02-24 大连理工大学 铁酸锌/二氧化钛纳米复合可见光光催化剂的制备方法及其应用
CN102826630A (zh) * 2012-09-09 2012-12-19 桂林理工大学 Bi/TiO2纳米管阵列对制糖废水的光催化降解的应用
CN102962051A (zh) * 2012-11-21 2013-03-13 同济大学 一种高稳定可见光催化活性的β-Bi2O3/TiO2-NTs复合光催化剂的制备方法
CN103285891A (zh) * 2013-06-05 2013-09-11 河北工业大学 卤氧化铋-氧化钛纳米管阵列复合光催化薄膜的制备方法
CN105951154A (zh) * 2016-04-27 2016-09-21 中国计量大学 一种降解罗丹明b的二氧化钛纳米管阵列光催化剂的阳极氧化制备方法
CN107723777A (zh) * 2017-10-16 2018-02-23 南通纺织丝绸产业技术研究院 电沉积二硫化钼量子点修饰二氧化钛纳米管阵列的制备方法
CN110639499A (zh) * 2019-11-01 2020-01-03 中国人民解放军火箭军工程大学 一种复合光催化剂及其应用于偏二甲肼废水处理的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101537354A (zh) * 2009-04-20 2009-09-23 大连理工大学 可见光活化的氧化亚铜/二氧化钛纳米复合光催化剂的制备方法及其应用
CN101653728A (zh) * 2009-09-04 2010-02-24 大连理工大学 铁酸锌/二氧化钛纳米复合可见光光催化剂的制备方法及其应用
CN102826630A (zh) * 2012-09-09 2012-12-19 桂林理工大学 Bi/TiO2纳米管阵列对制糖废水的光催化降解的应用
CN102962051A (zh) * 2012-11-21 2013-03-13 同济大学 一种高稳定可见光催化活性的β-Bi2O3/TiO2-NTs复合光催化剂的制备方法
CN103285891A (zh) * 2013-06-05 2013-09-11 河北工业大学 卤氧化铋-氧化钛纳米管阵列复合光催化薄膜的制备方法
CN105951154A (zh) * 2016-04-27 2016-09-21 中国计量大学 一种降解罗丹明b的二氧化钛纳米管阵列光催化剂的阳极氧化制备方法
CN107723777A (zh) * 2017-10-16 2018-02-23 南通纺织丝绸产业技术研究院 电沉积二硫化钼量子点修饰二氧化钛纳米管阵列的制备方法
CN110639499A (zh) * 2019-11-01 2020-01-03 中国人民解放军火箭军工程大学 一种复合光催化剂及其应用于偏二甲肼废水处理的方法

Also Published As

Publication number Publication date
CN112827484A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
Andronic et al. Black TiO2 synthesis by chemical reduction methods for photocatalysis applications
EP3617146B1 (en) Linear porous titanium dioxide material and preparation and use thereof
Muscetta et al. Hydrogen production through photoreforming processes over Cu2O/TiO2 composite materials: A mini-review
Maimaitizi et al. In situ synthesis of Pt and N co-doped hollow hierarchical BiOCl microsphere as an efficient photocatalyst for organic pollutant degradation and photocatalytic CO2 reduction
Yan et al. Black titanium dioxide nanomaterials in photocatalysis
Mao et al. Fabrication of highly efficient Bi 2 WO 6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr (VI) from wastewater
Wang et al. Solar driven hydrogen releasing from urea and human urine
Motola et al. Enhanced photocatalytic activity of hydrogenated and vanadium doped TiO2 nanotube arrays grown by anodization of sputtered Ti layers
CN109569684B (zh) 等离子体改性金属氧化物和g-氮化碳共修饰二氧化钛纳米棒复合光催化剂及其制备和应用
Zhang et al. Cu (OH) 2-modified TiO2 nanotube arrays for efficient photocatalytic hydrogen production
CN102941077A (zh) 一种具有可见光活性的二氧化钛纳米管薄膜的制备方法
CN108675382B (zh) 一种基于TiO2纳米管光催化剂的集成催化系统及其降解处理方法
CN109647377B (zh) 电化学自掺杂型WO3颗粒负载TiO2纳米管及制备方法与应用
Cong et al. Fabrication of electrochemically-modified BiVO4-MoS2-Co3O4composite film for bisphenol A degradation
Wang et al. Improving photoelectrochemical reduction of Cr (VI) ions by building α-Fe 2 O 3/TiO 2 electrode
Pouramini et al. Enhancing PFC ability to dye removal and power generation simultaneously via conductive spheres in the anodic chamber
CN115092991A (zh) 基于碳量子点和二茂铁共掺杂的p型MOF光阴极的废水燃料电池及其制备和应用
He et al. Synergistic piezo-photocatalytic reduction of U (VI) by Zn0. 7Cd0. 3S solid solution homojunction
Huang et al. CdS-based semiconductor photocatalysts for hydrogen production from water splitting under solar light
Martha et al. Fabrication of nano N-doped In2Ga2ZnO7 for photocatalytic hydrogen production under visible light
CN112827484B (zh) 一种复合光电催化材料的制备及处理偏二甲肼废水的方法
Xiong et al. Enhancing visible light photocatalytic performance with N-doped TiO2 nanotube arrays assisted by H2O2
Guo et al. Au nanoparticle sensitized blue TiO 2 nanorod arrays for efficient Gatifloxacin photodegradation
Jia et al. Visible-Light-Sensitive SrCO3/AgI Hybrids for Tetracycline Degradation
CN115318329B (zh) 氮化碳量子点/(001)面暴露的二氧化钛/碳化钛MXene及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant