CN109647377B - 电化学自掺杂型WO3颗粒负载TiO2纳米管及制备方法与应用 - Google Patents

电化学自掺杂型WO3颗粒负载TiO2纳米管及制备方法与应用 Download PDF

Info

Publication number
CN109647377B
CN109647377B CN201811457314.9A CN201811457314A CN109647377B CN 109647377 B CN109647377 B CN 109647377B CN 201811457314 A CN201811457314 A CN 201811457314A CN 109647377 B CN109647377 B CN 109647377B
Authority
CN
China
Prior art keywords
tio
nanotube
particle
doping type
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811457314.9A
Other languages
English (en)
Other versions
CN109647377A (zh
Inventor
张延荣
汪晓光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201811457314.9A priority Critical patent/CN109647377B/zh
Publication of CN109647377A publication Critical patent/CN109647377A/zh
Application granted granted Critical
Publication of CN109647377B publication Critical patent/CN109647377B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种电化学自掺杂型WO3颗粒负载TiO2纳米管及制备方法与应用,属于光催化材料领域。所述TiO2纳米管内壁和外壁上负载了WO3纳米颗粒;所述复合物中含有W5+缺陷和Ti3+缺陷及W5+缺陷和Ti3+缺陷伴随产生的氧空穴。通过采用负载WO3对TiO2纳米管进行改性,并通过对其进行电化学还原处理进一步改性,改变其缺陷容量及其对可见光的响应范围,提高其光催化以及光电催化性能。将材料应用于室内挥发性有机物的光催化降解以及抗生素溶液的光电降解,具有更高的降解效率。

Description

电化学自掺杂型WO3颗粒负载TiO2纳米管及制备方法与应用
技术领域
本发明属于光催化材料领域,更具体地,涉及一种电化学自掺杂型WO3颗粒负载TiO2纳米管及制备方法与应用。
背景技术
自1972年,日本科学家Fujishima和Honda首次发表在n-半导体TiO2电极上发现水的光电催化分解的报道以来,TiO2以独特的光学性质和较高光催化活性,在光学材料、光电化学和光电磁、光催化降解污染物等领域的应用中得到广泛的发展。1991年Iij ima等人发现了碳纳米管,由于其独特的结构和优异的性能,一维纳米材料(如纳米线、纳米管、纳米膜)受到了人们的广泛关注和研究。TiO2纳米管阵列作为TiO2的二维纳米材料,因其高度有序、尺寸可控的结构特征和独特的电子转移特性而引起越来越多的关注。与其他形态TiO2纳米材料相比,TiO2纳米管阵列有着更大的比表面积、更好的电子传输通道及吸附能力,因此可更好的提高光电转换效率、光催化性能等,特别是在管中修饰金属、非金属粒子或其他半导体氧化物材料,将会极大改善TiO2的催化、光电及电磁性能。1999年Zwilling等通过阳极氧化法获得了具有高度有序阵列结构的TiO2纳米管。目前,TiO2纳米管的制备方法还包括溶胶-凝胶法、水热合成法以及磁控溅射法等。
然而,受限于TiO2半导体本身较宽的禁带(3.2eV),该半导体材料仅能利用波长在可见光区的太阳能资源,以及光催化难以避免的光生电子-空穴复合问题,TiO2纳米管的催化效率,特别是在可见光区的催化效率较低,因此大量的改性工作就此展开。主要包括贵金属的表面修饰、过度金属修饰及离子掺杂、非金属掺杂与共掺杂以及半导体复合等。
基于WO3半导体材料禁带宽度低、无毒廉价等优点,2013年以来,大量的工作将WO3负载于TiO2纳米管上,以形成异质结,提高TiO2纳米管基材料的响应波长,进而提高光催化效率。然而,由于不可避免的光生电子-空穴的复合现象,该材料的光催化以及光电催化性能始终不能达到实际生产的标准。
发明内容
本发明解决了现有技术中光响应型催化剂缺陷容量有限、对可见光的响应范围窄,光催化以及光电催化性能差的技术问题。针对现有技术的以上缺陷或改进需求,本发明提供了一种可见光响应电化学还原自掺杂型 WO3颗粒负载TiO2纳米管及其制备方法和应用,其目的在于将WO3负载于 TiO2纳米管表面,改变其带隙宽度和位置,从而增加其对可见光的响应范围,进一步地,利用电化学还原处理的方法对WO3颗粒负载TiO2纳米管进行改性,提高其光催化以及光电催化性能,使其能有效并快速地降解用于气相或者液相中有机污染物的降解。
为实现上述目的,按照本发明的一个方面,公开了一种电化学自掺杂型WO3颗粒负载TiO2纳米管复合物,所述复合物中TiO2纳米管内壁和外壁上负载了WO3纳米颗粒;所述复合物中含有W5+缺陷和Ti3+缺陷及W5+缺陷和Ti3+缺陷伴随产生的氧空穴。
优选地,所述复合物的内径为100nm-200nm。
优选地,所述复合物能吸收波长小于等于470nm的光辐射。
按照本发明的另一方面,提供了所述电化学自掺杂型WO3颗粒负载 TiO2纳米管复合物的制备方法,含有以下步骤:
(1)采用阳极氧化法、溶胶-凝胶法、水热法、磁控溅射法或原子层沉积法制备得到TiO2前驱体,然后将该TiO2前驱体在400℃-600℃条件下煅烧60min-240min,得到TiO2纳米管;
(2)在步骤(1)得到的TiO2纳米管的内壁和外壁上沉积WO3颗粒前驱体,然后在400℃-600℃条件下煅烧60min-240min,得到内壁和外壁上负载了WO3纳米颗粒的TiO2纳米管;
(3)在三电极体系下,将步骤(2)得到的内壁和外壁上负载了WO3纳米颗粒的TiO2纳米管作为工作电极,在还原电压为-1.0v~-1.6v条件下,使部分WO3纳米颗粒和部分TiO2纳米管分别被还原成W5+缺陷和Ti3+缺陷,得到电化学自掺杂型WO3颗粒负载TiO2纳米管复合物。
优选地,步骤(1)所述阳极氧化法为在两电极体系下,将金属Ti片作为工作电极置于含有F-的电解质溶液中,在恒电压为20V-80V的条件下刻蚀2h-20h,得到TiO2前驱体;
优选地,所述含F-的电解质溶液为氟化铵水溶液与有机溶剂形成的混合溶液;所述混合溶液中氟化铵的浓度为0.1g/L-10g/L;所述氟化铵水溶液的体积占混合溶液的体积的5%-20%;所述有机溶剂为乙二醇、丙三醇、甘油、二甲基亚砜、二甲基甲酰胺、甲酰胺、甲基甲酰胺或二乙二醇。
优选地,步骤(2)中沉积WO3颗粒前驱体的方法为电化学沉积法、共水热法、旋涂法或浸渍法;
优选地,所述电化学沉积法为将步骤(2)所得的TiO2纳米管作为工作电极,在三电极体系下,以乙二胺四乙酸、醋酸铵和钨酸钠的混合溶液为电解质,在所述TiO2纳米管内壁和外壁上沉积WO3前驱体;
优选地,所述电解质中乙二胺四乙酸、醋酸铵和钨酸钠的浓度均为0.01 mol/L-1mol/L;所述电化学沉积法为恒电流极化法,所述恒电流的电流密度为-1mA/cm2~-10mA/cm2,沉积时间400s-1000s。
优选地,步骤(3)所述还原的时间为200s-1000s;步骤(3)中的三电极体系是以铂电极为对电极,以饱和甘汞电极为参比电极。
按照本发明的另一方面,提供了所述电化学自掺杂型WO3颗粒负载 TiO2纳米管复合物在光催化或光电催化方面的应用。
按照本发明的另一方面,提供了所述电化学自掺杂型WO3颗粒负载 TiO2纳米管复合物在挥发性有机物的光催化降解方面的应用;
优选地,所述应用在波长小于等于470nm的光照条件下进行;
优选地,所述挥发性有机物的浓度为50ppmv-250ppmv。
按照本发明的另一方面,提供了所述电化学自掺杂型WO3颗粒负载 TiO2纳米管复合物在抗生素溶液的光电降解方面的应用;
优选地,所述应用在0.2v~1.2v偏压以及波长小于等于470nm的光照条件下进行;
优选地,所述抗生素溶液中抗生素的浓度为0.1mg/~10mg/L。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)本发明提供了一种电化学自掺杂型WO3颗粒负载TiO2纳米管,通过在TiO2纳米管的基础上复合WO3纳米颗粒并进行电化学还原自掺杂,获得了一种富氧空位缺陷的,充分利用其产生的羟基自由基、超氧自由基等活性氧完成现有空气中挥发性有机污染物及水质中抗生素降解的可见光催化剂。该纳米管结构中包含W6+-O键和Ti4+-O键,还含有缺陷W5+、Ti3+及其伴随产生的氧空穴;通过先将WO3和TiO2复合后获得WO3/TiO中间产物,然后将其进一步电化学还原,产生大量W5+、Ti3+物种以及氧空穴。
(2)本发明的可见光响应型催化剂R-WO3/TiO2纳米管,其应用于光催化降解有机污染物时,负载于TiO2上的WO3颗粒与锐钛矿的TiO2形成异质结,并降低WO3/TiO2纳米管的禁带宽度,所述催化剂的带隙宽度为2.6 eV~2.8eV,使其最大吸收边向可见光方向扩展,从而可以利用能量更低的可见光来完成有机物的降解反应。此外,WO3/TiO2纳米管异质结的存在可显著抑制光生电子空穴的复合,从而提高光催化性能。
(3)本发明在材料制备过程中不掺入贵金属,WO3与TiO2成本低廉易得,因此适用于实际生产和应用。
(4)本发明提供了一种简便的自掺杂还原方法,通过使用电化学方法直接阴极耦合还原WO3/TiO2纳米管,在还原后产生大量的氧空位缺陷,利用氧空位的对光生电子空穴的分离促进作用,提高原始WO3/TiO2纳米管异质结的光催化效率。与目前传统的还原气氛热处理(如在氢气气氛中煅烧) 方法相比,电化学自掺杂方法高效、安全,易于操作与控制。
(5)本发明中改性的自掺杂型WO3颗粒负载TiO2纳米管,具有高度有序的纳米管阵列,比表面积大,在光催化降解空气中挥发性有机物时,空气中的氧气分子能有效扩散至纳米管中的开放通道中,从而抑制管内“碳床”的形成,纳米管结构赋予该发明具备优异的稳定性,不易失活。
(6)本发明中改性的自掺杂型WO3颗粒负载TiO2纳米管宏观上表现为薄片状,薄片面积可调,与传统的粉末状催化剂相比,该发明易于回收,且适合作为光电极应用于光电催化降解水质中的有机污染物(如抗生素),进一步提高其催化性能。
附图说明
图1(a)为TiO2纳米管的微观形貌图;图1(b)为实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的微观形貌图。
图2为TiO2纳米管、WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的UV-vis吸收光谱图。
图3为WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的光致发光光谱图。
图4为TiO2纳米管,WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的的XRD图。
图5为TiO2纳米管,WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的光电流响应图。
图6(a)为WO3/TiO2纳米管在可见光下降解挥发性有机物(异丙醇) 的降解曲线图;图6(b)为实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管在可见光下降解挥发性有机物(异丙醇)的重复降解曲线图。
图7(a)为TiO2片、TiO2纳米管、WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管在紫外光下的挥发性有机物(甲苯)降解曲线图,图7(b)为实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管在紫外光下的挥发性有机物(甲苯)重复降解曲线图。
图8为WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管光电在可见光下降解污染物(磺胺甲恶挫)的降解曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
改性的自掺杂型WO3颗粒负载TiO2纳米管的制备方法,包括如下步骤:
(1)在两电极体系下,将钛片作为工作电极置于含有F-的电解质溶液中,在20V~80V恒电压条件下刻蚀2~20h。将得到的TiO2纳米管前驱体在一定400~600℃温度下烧制60~240min,得到TiO2纳米管。
还可以采用现有技术中的溶胶-凝胶法、水热法、磁控溅射法或原子层沉积法制备得到TiO2前驱体,再经过煅烧得到TiO2纳米。
(2)将步骤(1)所得的前驱体TiO2纳米管前驱体作为工作电极,在三电极体系下,采用电化学沉积法,以EDTA、醋酸铵以及钨酸钠混合溶液为电解质,在恒电流条件下,在TiO2纳米管表面沉积一层WO3前驱体,在 400~600℃温度下烧制60~240min,水洗后烘干得到WO3/TiO2纳米管。
(3)将步骤(2)得到的WO3/TiO2纳米管作为工作电极,以铂电极为电极,饱和甘汞电极为参比电极,在-1.0V~-1.6V还原电压条件下,还原 200s~1000s;后水洗烘干后得到富缺陷的改性的自掺杂型WO3颗粒负载 TiO2纳米管。
本文中WO3/TiO2纳米管表示WO3颗粒负载TiO2纳米管,R-WO3/TNTs 表示改性的自掺杂型WO3颗粒负载TiO2纳米管。
实施例1
一种改性的自掺杂型TiO2纳米管基可见光光催化剂的制备方法,包括如下步骤:该光催化剂为可见光响应型TiO2纳米管基光催化剂。
(1)制备TiO2纳米管
将Ti片剪裁为3cm×3.5cm大小,在两电极体系下浸入含有3.119g/L 氟化铵以及13.75%(体积比)去离子水的乙二醇溶液中,以铂电极为对电极在60V电压刻蚀8小时。将得到的TiO2纳米管前驱体放入马弗炉中,在 450℃下煅烧120min,以获得锐钛矿型TiO2纳米管。
(2)制备WO3/TiO2纳米管
将步骤(1)中所得的TiO2纳米管作为工作电极,饱和甘汞电极作为参比电极,铂片电极做为对电极,进行WO3纳米颗粒的电化学沉积,其中电解质为溶度均为0.1mol/L的EDTA、醋酸铵以及钨酸钠水溶液,在-2mA/cm2恒电流条件下沉积600s。后将WO3/TiO2纳米管前驱体置于马弗炉中,在 450℃下煅烧120min。
(3)制备改性自掺杂型的WO3颗粒负载TiO2纳米管
将步骤(2)中所得的材料作为工作电极,饱和甘汞电极作为参比电极,铂片电极为对电极,电解质为0.1M的Na2SO4溶液。还原电位设置为-1.4V,还原600s。
对本实施例制备的光催化剂进行结果分析:以下提到的TiO2纳米管是指实施例1步骤(2)在450℃烧制得到的TiO2纳米管;WO3/TiO2纳米管是指实施例1步骤(2)在450℃烧制得到的TiO2纳米管经步骤(3)得到的催化剂;改性的自掺杂型WO3颗粒负载TiO2纳米管是指实施例1步骤(2) 在烧制得到的TiO2纳米管经步骤(3)和(4)得到的改性的自掺杂型TiO2纳米管基光催化剂。
(1)TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的SEM微观形貌图
图1(a)为TiO2纳米管的微观形貌图;图1(b)为实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的微观形貌图。如图1(a)所示,从SEM 微观形貌图可以看出TiO2纳米管(简称TNTs)具有的150nm直径的高度有序的纳米管阵列结构。TNTs壁的厚度约为10nm且管壁光滑,而改性的自掺杂型WO3颗粒负载TiO2纳米管的管壁由于WO3颗粒的负载而粗糙,这些颗粒分布在纳米管壁的内侧和外侧,WO3颗粒的负载并没有破坏原有的纳米管阵列结构。
(2)TiO2纳米管,WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的UV-vis吸收光谱图
从图2中可以看出,TiO2纳米管的吸收边为400nm,WO3/TiO2纳米管的吸收边为460nm,而改性的自掺杂型WO3颗粒负载TiO2纳米管的吸收边为470nm,说明本发明通过对材料的改进,改变了其带隙宽度,增加了其对于可见光的吸收,提高了催化剂光催化能力。
(3)WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的光致发光光谱图
从光致发光光谱图图3中可以很明显的看出,原始的WO3/TiO2纳米管发光强度很高,说明其电子和空穴复合率很高,光催化反应时真正发挥作用的电子和空穴很少。而改性的自掺杂型WO3颗粒负载TiO2纳米管发光强度变弱,说明其电子和空穴的复合效率很低,光催化效率很高,更有利于对可见光的利用。
(4)为TiO2纳米管,WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的的XRD图
如图4所示,TiO2纳米管显示出对应于锐钛矿TiO2晶相的衍射峰,其中在2θ=25.7°,37.5°,38.4°,39.2°,48.8°,54.7°,55.9°,63.7°,69.9°和 75.4°处的峰指数为(101),(103),(004),(112),(211),(204),(116) 和(107)的TiO2晶面,从R-WO3/TNTs样品中可以观察到位于24.4和26.6 的替代峰,其对应于单斜晶WO3的(200)和(101)平面这表明负载过程成功将WO3负载到了TiO2纳米管上,形成异质结。
(5)TiO2纳米管,WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的光电流响应图
通过对TiO2纳米管、WO3颗粒负载TiO2纳米管和改性的自掺杂型WO3颗粒负载TiO2纳米管的光电流响应图对比分析,如图5所示,可以发现,改性的R-WO3/TiO2具有最强的光电活性,电化学还原方法引入氧空穴显著增强了材料中载流子的迁移效率。
(6)WO3颗粒负载TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的降解挥发性有机物(异丙醇)图(在可见光下)
图6(a)为WO3/TiO2纳米管在可见光下降解挥发性有机物(异丙醇) 的降解曲线图;图6(b)为实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管在可见光下降解挥发性有机物(异丙醇)的重复降解曲线图。反应体系为:面积为9cm2的片状催化剂被放入在含有浓度为80ppmv异丙醇的 240mL密闭体系内,黑暗条件下自然吸附24分钟后,用具有400nm滤光片的300W氙灯照射,每隔12min取样测异丙醇、中间产物丙酮以及CO2的浓度。从图中可以很明显看出,改性的自掺杂型WO3颗粒负载TiO2纳米管相比于WO3/TiO2纳米管具有更优异的催化性能,可应用于实际生产之中。
(7)TiO2纳米管,WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管降解挥发性有机物(甲苯)图(在紫外光下)
图7(a)为TiO2片、TiO2纳米管、WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的挥发性有机物(甲苯)降解曲线图(在紫外光下),图7(b)为实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管的挥发性有机物(甲苯)重复降解曲线图。反应体系为:面积为9cm2的片状催化剂被放入在含有浓度为250ppmv异丙醇的240mL密闭体系内,黑暗条件下自然吸附5分钟后,用的300W氙灯照射,每隔5min取样测甲苯的浓度。从图中可以很明显看出,改性的自掺杂型WO3颗粒负载TiO2纳米管相比于WO3/TiO2纳米管具有更优异的催化性能,此外,多次的循环降解实验说明材料具有良好的稳定性,不易失活,适用于实际生产过程中。
(8)WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管光电降解污染物(磺胺甲恶唑)图(可见光下)。
图8中所示的是WO3/TiO2纳米管和实施例1改性的自掺杂型WO3颗粒负载TiO2纳米管光电降解污染物(磺胺甲恶唑)的比较,反应体系为:将材料作为工作电极,浸入电解液的面积为1cm×2cm,电解液为25ml含有1mg/L的抗生素磺胺甲恶挫以及0.1M的Na2SO4水溶液,设置偏压为 1.0V。黑暗条件下搅拌20分钟后,用具有400nm滤光片的300W氙灯照射,取样测量磺胺甲恶唑浓度。从图中可以看出,在光照条件下,相对于 WO3/TiO2纳米管,改性的自掺杂型WO3颗粒负载TiO2纳米管对于磺胺甲恶挫的降解有了极大的提升,在1小时内,对污染物的降解达到了90%左右,说明通过电化学还原自掺杂改性取得了十分好的效果。
通过上述分析可知,本实施例的方法制备的改性的自掺杂型WO3颗粒负载TiO2纳米管具有很强的光催化活性,并且能够有效降解污染物(空气中挥发性有机物以及水质中的抗生素)。
实施例2
一种改性的自掺杂型TiO2纳米管基可见光光催化剂的制备方法,包括如下步骤:该光催化剂为可见光响应型TiO2纳米管基光催化剂。
(1)制备TiO2纳米管
将Ti片剪裁为3cm×3.5cm大小,在两电极体系下浸入含有0.1g/L氟化铵以及20%(体积比)去离子水的乙二醇溶液中,以铂电极为对电极在 20V电压刻蚀20小时。将得到的TiO2纳米管前驱体放入马弗炉中,在400℃下煅烧240min,以获得锐钛矿型TiO2纳米管。
(2)制备WO3/TiO2纳米管
将步骤(1)中所得的TiO2纳米管作为工作电极,饱和甘汞电极作为参比电极,铂片电极做为对电极,进行WO3纳米颗粒的电化学沉积,其中电解质为溶度均为0.01mol/L的EDTA、醋酸铵以及钨酸钠水溶液,在-10 mA/cm2恒电流条件下沉积400s。后将WO3/TiO2纳米管前驱体置于马弗炉中,在600℃下煅烧60min。
(3)制备改性的自掺杂型WO3颗粒负载TiO2纳米管
将(2)中所得的材料作为工作电极,饱和甘汞电极作为参比电极,铂片电极为对电极,电解质为0.1M的Na2SO4溶液。还原电位设置为-1.6V,还原200s。
实施例3
一种改性的自掺杂型TiO2纳米管基可见光光催化剂的制备方法,包括如下步骤:该光催化剂为可见光响应型TiO2纳米管基光催化剂。
(1)制备TiO2纳米管
将Ti片剪裁为3cm×3.5cm大小,在两电极体系下浸入含有10g/L氟化铵以及5%(体积比)去离子水的乙二醇溶液中,以铂电极为对电极在80 V电压刻蚀2小时。将得到的TiO2纳米管前驱体放入马弗炉中,在600℃下煅烧60min,以获得锐钛矿型TiO2纳米管。
(2)制备WO3/TiO2纳米管
将步骤(1)中所得的TiO2纳米管作为工作电极,饱和甘汞电极作为参比电极,铂片电极做为对电极,进行WO3纳米颗粒的电化学沉积,其中电解质为溶度均为1mol/L的EDTA、醋酸铵以及钨酸钠水溶液,在-1mA/cm2恒电流条件下沉积1000s。后将WO3/TiO2纳米管前驱体置于马弗炉中在400℃下煅烧240min。
(3)制备改性的自掺杂型WO3颗粒负载TiO2纳米管
将步骤(2)中所得的材料作为工作电极,饱和甘汞电极作为参比电极,铂片电极为对电极,电解质为0.1M的Na2SO4溶液。还原电位设置为-1.0V,还原1000s。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

1.一种电化学自掺杂型WO3颗粒负载TiO2纳米管复合物,其特征在于,所述复合物中TiO2纳米管内壁和外壁上负载了WO3纳米颗粒;所述复合物中含有W5+缺陷和Ti3+缺陷及W5+缺陷和Ti3+缺陷伴随产生的氧空穴;
该复合物是按包含以下步骤的制备方法制备得到的:
(1)采用阳极氧化法、溶胶-凝胶法、水热法、磁控溅射法或原子层沉积法制备得到TiO2前驱体,然后将该TiO2前驱体在400℃-600℃条件下煅烧60min-240min,得到TiO2纳米管;
(2)在步骤(1)得到的TiO2纳米管的内壁和外壁上沉积WO3颗粒前驱体,然后在400℃-600℃条件下煅烧60min-240min,得到内壁和外壁上负载了WO3纳米颗粒的TiO2纳米管;
(3)在三电极体系下,将步骤(2)得到的内壁和外壁上负载了WO3纳米颗粒的TiO2纳米管作为工作电极,在还原电压为-1.0V~-1.6V条件下,使部分WO3纳米颗粒和部分TiO2纳米管分别被还原成W5+缺陷和Ti3+缺陷,得到电化学自掺杂型WO3颗粒负载TiO2纳米管复合物;
其中,所述步骤(3)中的所述还原的时间为200s-1000s。
2.如权利要求1所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物,其特征在于,所述复合物的内径为100nm-200nm。
3.如权利要求1所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物,其特征在于,所述复合物能吸收波长小于等于470nm的光辐射。
4.权利要求1-3任一所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物的制备方法,其特征在于,含有以下步骤:
(1)采用阳极氧化法、溶胶-凝胶法、水热法、磁控溅射法或原子层沉积法制备得到TiO2前驱体,然后将该TiO2前驱体在400℃-600℃条件下煅烧60min-240min,得到TiO2纳米管;
(2)在步骤(1)得到的TiO2纳米管的内壁和外壁上沉积WO3颗粒前驱体,然后在400℃-600℃条件下煅烧60min-240min,得到内壁和外壁上负载了WO3纳米颗粒的TiO2纳米管;
(3)在三电极体系下,将步骤(2)得到的内壁和外壁上负载了WO3纳米颗粒的TiO2纳米管作为工作电极,在还原电压为-1.0V~-1.6V条件下,使部分WO3纳米颗粒和部分TiO2纳米管分别被还原成W5+缺陷和Ti3+缺陷,得到电化学自掺杂型WO3颗粒负载TiO2纳米管复合物;并且,步骤(3)所述还原的时间为200s-1000s。
5.如权利要求4所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物的制备方法,其特征在于,步骤(1)所述阳极氧化法为在两电极体系下,将金属Ti片作为工作电极置于含有F-的电解质溶液中,在恒电压为20V-80V的条件下刻蚀2h-20h,得到TiO2前驱体。
6.如权利要求5所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物的制备方法,其特征在于,所述含F-的电解质溶液为氟化铵水溶液与有机溶剂形成的混合溶液;所述混合溶液中氟化铵的浓度为0.1g/L-10g/L;所述氟化铵水溶液的体积占混合溶液的体积的5%-20%;所述有机溶剂为乙二醇、丙三醇、甘油、二甲基亚砜、二甲基甲酰胺、甲酰胺、甲基甲酰胺或二乙二醇。
7.如权利要求4所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物的制备方法,其特征在于,步骤(2)中沉积WO3颗粒前驱体的方法为电化学沉积法、共水热法、旋涂法或浸渍法。
8.如权利要求7所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物的制备方法,其特征在于,所述电化学沉积法为将步骤(2)所得的TiO2纳米管作为工作电极,在三电极体系下,以乙二胺四乙酸、醋酸铵和钨酸钠的混合溶液为电解质,在所述TiO2纳米管内壁和外壁上沉积WO3前驱体。
9.如权利要求8所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物的制备方法,其特征在于,所述电解质中乙二胺四乙酸、醋酸铵和钨酸钠的浓度均为0.01mol/L-1mol/L;所述电化学沉积法为恒电流极化法,所述恒电流的电流密度为-1mA/cm2~-10mA/cm2,沉积时间400s-1000s。
10.如权利要求4所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物的制备方法,其特征在于,步骤(3)中的三电极体系是以铂电极为对电极,以饱和甘汞电极为参比电极。
11.权利要求1-3任一所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物在光催化或光电催化方面的应用。
12.权利要求1-3任一所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物在挥发性有机物的光催化降解方面的应用。
13.如权利要求12所述应用,其特征在于,所述应用在波长小于等于470nm的光照条件下进行;
所述挥发性有机物的浓度为50ppmv-250ppmv。
14.权利要求1-3任一所述电化学自掺杂型WO3颗粒负载TiO2纳米管复合物在抗生素溶液的光电降解方面的应用。
15.如权利要求14所述应用,其特征在于,所述应用在0.2V~1.2V偏压以及波长小于等于470nm的光照条件下进行;
所述抗生素溶液中抗生素的浓度为0.1mg/L~10mg/L。
CN201811457314.9A 2018-11-30 2018-11-30 电化学自掺杂型WO3颗粒负载TiO2纳米管及制备方法与应用 Active CN109647377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811457314.9A CN109647377B (zh) 2018-11-30 2018-11-30 电化学自掺杂型WO3颗粒负载TiO2纳米管及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811457314.9A CN109647377B (zh) 2018-11-30 2018-11-30 电化学自掺杂型WO3颗粒负载TiO2纳米管及制备方法与应用

Publications (2)

Publication Number Publication Date
CN109647377A CN109647377A (zh) 2019-04-19
CN109647377B true CN109647377B (zh) 2020-08-18

Family

ID=66112545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811457314.9A Active CN109647377B (zh) 2018-11-30 2018-11-30 电化学自掺杂型WO3颗粒负载TiO2纳米管及制备方法与应用

Country Status (1)

Country Link
CN (1) CN109647377B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110404571B (zh) * 2019-05-17 2023-08-04 中南大学 一种高活性可见光响应TiO2粉体的制备方法及应用
CN110860300B (zh) * 2019-11-26 2022-09-06 湘潭大学 一种3DWO3/BiOBr光催化剂及其制备方法和应用
CN110947376B (zh) * 2019-12-19 2021-04-06 华中科技大学 单原子贵金属锚定缺陷型WO3/TiO2纳米管、其制备和应用
CN113061923B (zh) * 2021-03-12 2022-08-02 华中科技大学 一种高活性电化学自掺杂TiO2纳米管基材料及其制备与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1188202C (zh) * 2000-06-10 2005-02-09 清风株式会社 使用光电催化系统去除污染物的方法和设备
CN103334142A (zh) * 2013-06-17 2013-10-02 华中科技大学 一种自掺杂改性的高电导性TiO2纳米管阵列制备方法
CN103928690B (zh) * 2014-04-10 2016-03-02 华中科技大学 一种可见光光催化燃料电池及其制备方法
CN106475089A (zh) * 2016-10-13 2017-03-08 中国科学院城市环境研究所 一种具有表面氧空位的TiO2/WO3 可见光催化剂及其制备方法和应用
CN107952464B (zh) * 2017-12-13 2020-09-11 大连理工大学 一种新型光催化材料及双光催化电极自偏压污染控制系统

Also Published As

Publication number Publication date
CN109647377A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
CN110947376B (zh) 单原子贵金属锚定缺陷型WO3/TiO2纳米管、其制备和应用
CN109647377B (zh) 电化学自掺杂型WO3颗粒负载TiO2纳米管及制备方法与应用
Andronic et al. Black TiO2 synthesis by chemical reduction methods for photocatalysis applications
Duan et al. TiO2 faceted nanocrystals on the nanofibers: Homojunction TiO2 based Z-scheme photocatalyst for air purification
Zhu et al. Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays
Li et al. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation
CN109569684B (zh) 等离子体改性金属氧化物和g-氮化碳共修饰二氧化钛纳米棒复合光催化剂及其制备和应用
Rao et al. Synthesis of titania wrapped cadmium sulfide nanorods for photocatalytic hydrogen generation
Zhu et al. Synergistic manipulation of micro-nanostructures and composition: anatase/rutile mixed-phase TiO2 hollow micro-nanospheres with hierarchical mesopores for photovoltaic and photocatalytic applications
Lin et al. Anatase TiO 2 nanotube powder film with high crystallinity for enhanced photocatalytic performance
Ma et al. Construction of netlike 3D Z-scheme photoelectrodes with improved photocatalytic performance based on g-C3N4 nanosheets modified TiO2 nanobelt-tubes
Duan et al. The Z-scheme heterojunction between TiO2 nanotubes and Cu2O nanoparticles mediated by Ag nanoparticles for enhanced photocatalytic stability and activity under visible light
Zhang et al. Synthesis of ZnO doped high valence S element and study of photogenerated charges properties
CN102941077A (zh) 一种具有可见光活性的二氧化钛纳米管薄膜的制备方法
Aritonang et al. Modification of TiO2 nanotube arrays with N doping and Ag decorating for enhanced visible light photoelectrocatalytic degradation of methylene blue
Liu et al. CoS/ZnWO4 composite with band gap matching: simple impregnation synthesis, efficient dye sensitization system for hydrogen production
Yu et al. Construction of rutile/anatase TiO2 homojunction and metal-support interaction in Au/TiO2 for visible photocatalytic water splitting and degradation of methylene blue
Xiao et al. Fabrication of In2O3/TiO2 nanotube arrays hybrids with homogeneously developed nanostructure for photocatalytic degradation of Rhodamine B
Liu et al. In situ formation of porous TiO2 nanotube array with MgTiO3 nanoparticles for enhanced photocatalytic activity
Sun et al. Alkynyl carbon functionalized N-TiO2: Ball milling synthesis and investigation of improved photocatalytic activity
CN108031461B (zh) 一种钛锆复合氧化物纳米管及其原位制备方法
CN111841525B (zh) 一种具有可见光响应的氧化石墨烯基光催化剂及其制备方法
Wang et al. Stable LSPR effect and full-spectrum photocatalytic water purification by g-C3N4− x/MoO3− x with passivated interface oxygen vacancies
Aritonang et al. Photo-electro-catalytic performance of highly ordered nitrogen doped TiO2 nanotubes array photoanode
Chen et al. Construction of titania–ceria nanostructured composites with tailored heterojunction for photocurrent enhancement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant