CN112821875B - An amplifier circuit - Google Patents
An amplifier circuit Download PDFInfo
- Publication number
- CN112821875B CN112821875B CN201911121883.0A CN201911121883A CN112821875B CN 112821875 B CN112821875 B CN 112821875B CN 201911121883 A CN201911121883 A CN 201911121883A CN 112821875 B CN112821875 B CN 112821875B
- Authority
- CN
- China
- Prior art keywords
- tube
- nmos tube
- pmos
- drain
- amplifier circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3241—Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
- H03F1/3282—Acting on the phase and the amplitude of the input signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Amplifiers (AREA)
Abstract
本发明提供一种放大器电路,涉及电子领域。所述放大器电路包括:折叠共源共栅输入模块、浮动电流源闭环模块、偏置电路模块以及输出模块;折叠共源共栅输入模块用于为放大器电路提供输入信号;浮动电流源闭环模块用于抑制输出阻抗降低以及控制放大器输出级电路的静态电流;偏置电路模块用于提供偏置电压以及控制放大器输出级电路的静态电流;输出模块用于输出放大器电路产生的电流。本发明的放大器电路不但精确控制输出级电路的静态电流,并且提高了放大器差分输入级的输出阻抗,最终提高了放大器的增益以及电源抑制比。整个放大器电路增加的元器件较少,成本较低且兼容性很强,运行可靠性高,极大的丰富了用户使用AB类放大器的选择。
The present invention provides an amplifier circuit, which relates to the field of electronics. The amplifier circuit includes: a folded common source and common gate input module, a floating current source closed loop module, a bias circuit module and an output module; the folded common source and common gate input module is used to provide an input signal for the amplifier circuit; the floating current source closed loop module is used to suppress the reduction of output impedance and control the quiescent current of the amplifier output stage circuit; the bias circuit module is used to provide a bias voltage and control the quiescent current of the amplifier output stage circuit; the output module is used to output the current generated by the amplifier circuit. The amplifier circuit of the present invention not only accurately controls the quiescent current of the output stage circuit, but also improves the output impedance of the differential input stage of the amplifier, and finally improves the gain and power supply rejection ratio of the amplifier. The entire amplifier circuit has fewer components added, low cost, strong compatibility, high operating reliability, and greatly enriches the user's choice of using Class AB amplifiers.
Description
技术领域Technical Field
本发明涉及电子领域,特别是一种放大器电路。The invention relates to the field of electronics, and in particular to an amplifier circuit.
背景技术Background technique
运算放大器是模拟电路系统的重要组成部分,用来构造信号放大,信号滤波,功率放大等各种功能的电路,当运算放大器需要驱动小电阻和大电容时,通常把输出级偏置在甲乙类(AB类或者class-AB类),AB类放大器的静态电流小,并能够产生非常大的输出电流到负载上,具有效率高,失真小的优点。一般高性能的AB类放大器需要有很高的增益和电源抑制比。Operational amplifiers are an important part of analog circuit systems. They are used to construct circuits with various functions such as signal amplification, signal filtering, and power amplification. When an operational amplifier needs to drive small resistors and large capacitors, the output stage is usually biased in Class AB or class-AB. Class AB amplifiers have a small quiescent current and can generate a very large output current to the load. They have the advantages of high efficiency and low distortion. Generally, high-performance class AB amplifiers need to have high gain and power supply rejection ratio.
目前AB类放大器由于内部元件特征以及电路各元件配合等原因,导致AB类放大器的输出电流控制不能够很精确,尤其是对输出电流的静态电流的控制很难做到精确控制,当工作电源电压变化时,输出电流静态电流就会发生较大幅度的变化,从而导致AB类放大器的电源抑制比降低,使得AB类放大器的失真程度变大。At present, due to the characteristics of internal components and the coordination of various circuit components, the output current control of class AB amplifiers cannot be very precise, especially the control of the quiescent current of the output current is difficult to achieve precise control. When the working power supply voltage changes, the quiescent current of the output current will change significantly, thereby reducing the power supply rejection ratio of the class AB amplifier and increasing the distortion of the class AB amplifier.
发明内容Summary of the invention
鉴于上述问题,本发明提供一种放大器电路,解决了上述问题。In view of the above problems, the present invention provides an amplifier circuit to solve the above problems.
本发明实施例提供了一种放大器电路,所述放大器电路包括:An embodiment of the present invention provides an amplifier circuit, the amplifier circuit comprising:
折叠共源共栅输入模块、浮动电流源闭环模块、偏置电路模块以及输出模块;Folded common source and common gate input module, floating current source closed loop module, bias circuit module and output module;
所述折叠共源共栅输入模块、所述浮动电流源闭环模块、所述偏置电路模块以及所述输出模块相互连接;The folded cascode input module, the floating current source closed-loop module, the bias circuit module and the output module are connected to each other;
所述折叠共源共栅输入模块用于为所述放大器电路提供输入信号;The folded cascode input module is used to provide an input signal for the amplifier circuit;
所述浮动电流源闭环模块用于抑制所述折叠共源共栅输入模块的输出阻抗降低,以及,与所述偏置电路模块共同控制所述放大器电路中的输出级电路的静态电流;The floating current source closed-loop module is used to suppress the reduction of the output impedance of the folded cascode input module, and to control the static current of the output stage circuit in the amplifier circuit together with the bias circuit module;
所述偏置电路模块用于为所述浮动电流源闭环模块提供偏置电压,以及,与所述浮动电流源闭环模块共同控制所述放大器电路中的输出级电路的静态电流;The bias circuit module is used to provide a bias voltage for the floating current source closed-loop module, and to control the static current of the output stage circuit in the amplifier circuit together with the floating current source closed-loop module;
所述输出模块用于输出所述放大器电路产生的电流以及补偿所述放大器电路的频率特性;The output module is used to output the current generated by the amplifier circuit and compensate for the frequency characteristics of the amplifier circuit;
其中,所述偏置电路模块为所述浮动电流源闭环模块中的晶体管的栅极提供偏置电压,以使得所述放大器电路的输出级偏置在甲乙类,并且所述偏置电路模块与所述浮动电流源闭环模块共同控制所述输出模块中的晶体管的静态电流,进而控制所述放大器电路中的输出级电路的静态电流。Among them, the bias circuit module provides a bias voltage for the gate of the transistor in the floating current source closed-loop module so that the output stage of the amplifier circuit is biased in Class AB, and the bias circuit module and the floating current source closed-loop module jointly control the quiescent current of the transistor in the output module, thereby controlling the quiescent current of the output stage circuit in the amplifier circuit.
可选地,所述折叠共源共栅输入模块包括:第一NMOS管、第二NMOS管、第三NMOS管、第四NMOS管、第五NMOS管、第六NMOS管、第七NMOS管、第八NMOS管、第一PMOS管、第二PMOS管、第三PMOS管、第四PMOS管;Optionally, the folded cascode input module includes: a first NMOS tube, a second NMOS tube, a third NMOS tube, a fourth NMOS tube, a fifth NMOS tube, a sixth NMOS tube, a seventh NMOS tube, an eighth NMOS tube, a first PMOS tube, a second PMOS tube, a third PMOS tube, and a fourth PMOS tube;
所述第一NMOS管和所述第二NMOS管构成输入级差分输入对管,用于接收外部信号;The first NMOS transistor and the second NMOS transistor constitute an input-stage differential input pair of transistors for receiving external signals;
所述第三NMOS管、所述第四NMOS管、所述第八NMOS管、所述第五NMOS管、所述第六NMOS管、所述第七NMOS管构成所述放大器电路中的差分输入级电路的共源共栅电流镜负载,以产生所述放大器电路中差分输入级电路的输出电流以及控制所述浮动电流源闭环模块中MOS管的漏极电压;The third NMOS transistor, the fourth NMOS transistor, the eighth NMOS transistor, the fifth NMOS transistor, the sixth NMOS transistor, and the seventh NMOS transistor constitute a common-source and common-gate current mirror load of the differential input stage circuit in the amplifier circuit to generate an output current of the differential input stage circuit in the amplifier circuit and control the drain voltage of the MOS transistor in the floating current source closed-loop module;
所述第一PMOS管、所述第二PMOS管构成输入级电流镜;The first PMOS tube and the second PMOS tube constitute an input-stage current mirror;
所述第三PMOS管、所述第四PMOS管构成输入级共源共栅结构;所述输入级电流镜和所述输入级共源共栅结构共同作用,以产生所述放大器电路中的差分输入级电路的输出电流。The third PMOS tube and the fourth PMOS tube form an input stage common source and common gate structure; the input stage current mirror and the input stage common source and common gate structure work together to generate an output current of the differential input stage circuit in the amplifier circuit.
可选地,所述浮动电流源闭环模块包括:第九NMOS管、第十NMOS管、第十一NMOS管、第五PMOS管、第六PMOS管、第七PMOS管、第八PMOS管;Optionally, the floating current source closed-loop module includes: a ninth NMOS tube, a tenth NMOS tube, an eleventh NMOS tube, a fifth PMOS tube, a sixth PMOS tube, a seventh PMOS tube, and an eighth PMOS tube;
所述第十NMOS管、所述第十一NMOS管构成反馈级差分输入对管;The tenth NMOS tube and the eleventh NMOS tube constitute a feedback stage differential input pair of tubes;
所述第七PMOS管、所述第八PMOS管构成反馈级电流镜负载,所述反馈级差分输入对管和所述反馈级电流镜负载共同作用,控制所述第九NMOS管的漏极电压,使得所述第九NMOS管的漏极电压与自身的栅极电压相等。The seventh PMOS tube and the eighth PMOS tube constitute a feedback-stage current mirror load, and the feedback-stage differential input pair tube and the feedback-stage current mirror load work together to control the drain voltage of the ninth NMOS tube so that the drain voltage of the ninth NMOS tube is equal to its own gate voltage.
可选地,所述偏置电路模块包括:第十二NMOS管、第十三NMOS管、第十四NMOS管、第九PMOS管以及第十PMOS管;Optionally, the bias circuit module includes: a twelfth NMOS tube, a thirteenth NMOS tube, a fourteenth NMOS tube, a ninth PMOS tube and a tenth PMOS tube;
所述第十二NMOS管、所述第十三NMOS管以及固定电流源共同作用,为所述第九NMOS管提供偏置电压,同时使得所述第九NMOS管的漏源电压与所述第十三NMOS管的漏源电压相等;The twelfth NMOS tube, the thirteenth NMOS tube and the fixed current source work together to provide a bias voltage for the ninth NMOS tube, and at the same time make the drain-source voltage of the ninth NMOS tube equal to the drain-source voltage of the thirteenth NMOS tube;
所述第十四NMOS管、所述第九PMOS管、所述第十PMOS管以及固定电流源共同作用,为所述第五PMOS管提供偏置电压,同时使得所述第五PMOS管的漏源电压与所述第十PMOS管的漏源电压相等。The fourteenth NMOS tube, the ninth PMOS tube, the tenth PMOS tube and the fixed current source work together to provide a bias voltage for the fifth PMOS tube, and at the same time make the drain-source voltage of the fifth PMOS tube equal to the drain-source voltage of the tenth PMOS tube.
可选地,所述输出模块包括:第十五NMOS管、第十一PMOS管、第一电阻、第二电阻、第一电容以及第二电容;Optionally, the output module includes: a fifteenth NMOS tube, an eleventh PMOS tube, a first resistor, a second resistor, a first capacitor and a second capacitor;
所述第十五NMOS管、所述第十一PMOS管的漏极为所述放大器电路的输出端;The drains of the fifteenth NMOS tube and the eleventh PMOS tube are output ends of the amplifier circuit;
所述第一电阻和所述第一电容构成密勒补偿结构,为所述放大器电路提供频率补偿;The first resistor and the first capacitor form a Miller compensation structure to provide frequency compensation for the amplifier circuit;
所述第二电阻和所述第二电容构成密勒补偿结构,为所述放大器电路提供频率补偿。The second resistor and the second capacitor form a Miller compensation structure to provide frequency compensation for the amplifier circuit.
可选地,所述第九NMOS管的漏极电压通过所述反馈级差分输入对管和所述反馈级电流镜负载,作用于所述第六PMOS管的栅极,进而控制所述第六PMOS管的漏极电压,以使得所述第九NMOS管的漏极电压与栅极电压相等。Optionally, the drain voltage of the ninth NMOS tube acts on the gate of the sixth PMOS tube through the feedback stage differential input pair and the feedback stage current mirror load, thereby controlling the drain voltage of the sixth PMOS tube so that the drain voltage of the ninth NMOS tube is equal to the gate voltage.
可选地,所述第四NMOS管的宽长比为M,所述第八NMOS管的宽长比为N,所述第三NMOS管的宽长比为M+N,所述第四NMOS管和所述第六NMOS管组成的支路上的电流,等于流经所述第九NMOS管和流经所述第五PMOS管的电流之和。Optionally, the width-to-length ratio of the fourth NMOS tube is M, the width-to-length ratio of the eighth NMOS tube is N, the width-to-length ratio of the third NMOS tube is M+N, and the current on the branch formed by the fourth NMOS tube and the sixth NMOS tube is equal to the sum of the current flowing through the ninth NMOS tube and the current flowing through the fifth PMOS tube.
可选地,所述第九NMOS管的漏源电压与第十三NMOS管的漏源电压相等;Optionally, the drain-source voltage of the ninth NMOS tube is equal to the drain-source voltage of the thirteenth NMOS tube;
所述第九NMOS管与所述第十三NMOS管均采用多叉指结构,并且每个叉指具有相同的尺寸。The ninth NMOS tube and the thirteenth NMOS tube both adopt a multi-finger structure, and each finger has the same size.
可选地,所述第五PMOS管的漏源电压与所述第十PMOS管的漏源电压相等;Optionally, the drain-source voltage of the fifth PMOS tube is equal to the drain-source voltage of the tenth PMOS tube;
所述第五PMOS管与所述第十PMOS管均采用多叉指结构,并且每个叉指具有相同的尺寸。The fifth PMOS tube and the tenth PMOS tube both adopt a multi-finger structure, and each finger has the same size.
可选地,所述第四NMOS管和所述第六NMOS管组成的支路上的电流,等于流经所述第九NMOS管和流经所述第五PMOS管的电流之和;Optionally, the current on the branch formed by the fourth NMOS tube and the sixth NMOS tube is equal to the sum of the current flowing through the ninth NMOS tube and the current flowing through the fifth PMOS tube;
所述第七NMOS管和所述第八NMOS管组成的支路上的电流直接流过所述第六PMOS管以使得所述浮动电流源闭环模块保持稳定;The current on the branch formed by the seventh NMOS tube and the eighth NMOS tube directly flows through the sixth PMOS tube to keep the floating current source closed-loop module stable;
其中,流经所述第九NMOS管的电流的大小和流经所述第五PMOS管的电流的大小随所述放大器电路的负载电流的变化而动态变化。The magnitude of the current flowing through the ninth NMOS tube and the magnitude of the current flowing through the fifth PMOS tube change dynamically with the change of the load current of the amplifier circuit.
本发明提供的一种放大器电路,利用浮动电流源闭环模块抑制折叠共源共栅输入模块的输出阻抗降低,以及,与偏置电路模块共同控制放大器电路中的输出级电路的静态电流;同时利用偏置电路模块为浮动电流源闭环模块提供偏置电压,以及,与浮动电流源闭环模块共同控制放大器电路中的输出级电路的静态电流。此电路不但精确控制静态电流,并且提高了放大器差分输入级电路的输出阻抗,最终提高了放大器的增益以及电源抑制比,整个放大器电路增加的元器件较少,成本较低且兼容性很强,运行可靠性高,极大的丰富了用户使用AB类放大器的选择。The present invention provides an amplifier circuit, which uses a floating current source closed-loop module to suppress the reduction of the output impedance of a folded common source and common gate input module, and jointly controls the quiescent current of an output stage circuit in the amplifier circuit with a bias circuit module; at the same time, the bias circuit module is used to provide a bias voltage for the floating current source closed-loop module, and jointly controls the quiescent current of the output stage circuit in the amplifier circuit with the floating current source closed-loop module. This circuit not only accurately controls the quiescent current, but also improves the output impedance of the amplifier differential input stage circuit, and ultimately improves the gain and power supply rejection ratio of the amplifier. The entire amplifier circuit has fewer components added, has a low cost, is highly compatible, and has high operating reliability, which greatly enriches the user's choice of using a class AB amplifier.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art by reading the detailed description of the preferred embodiments below. The accompanying drawings are only for the purpose of illustrating the preferred embodiments and are not to be considered as limiting the present invention. Also, the same reference symbols are used throughout the accompanying drawings to represent the same components. In the accompanying drawings:
图1是目前一种典型的AB类放大器的电路示意图;FIG1 is a circuit diagram of a typical class AB amplifier;
图2是本发明实施例放大器电路的模块示意图;FIG2 is a schematic diagram of a module of an amplifier circuit according to an embodiment of the present invention;
图3是本发明实施例放大器电路的示意图;FIG3 is a schematic diagram of an amplifier circuit according to an embodiment of the present invention;
图4是本发明实施例放大器电路带辅助放大器Au的电路结构示意图;4 is a schematic diagram of the circuit structure of an amplifier circuit with an auxiliary amplifier Au according to an embodiment of the present invention;
图5是本发明实施例放大器电路中偏置电路模块的电路结构示意图。FIG. 5 is a schematic diagram of the circuit structure of a bias circuit module in an amplifier circuit according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。应当理解,此处所描述的具体实施例仅用以解释本发明,仅仅是本发明一部分实施例,而不是全部的实施例,并不用于限定本发明。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the present invention is further described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, are only part of the embodiments of the present invention, not all of the embodiments, and are not used to limit the present invention.
发明人发现,目前对AB类放大器的输出电流的静态电流的控制很难做到精确控制,而静态电流即使很小的升高,都会导致AB类放大器的电源抑制比降低,使得AB类放大器的失真程度变大,发明人进一步发现产生上述问题的主要原因是:AB类放大器中控制输出电流的晶体管自身特性因素,导致了上述问题。The inventors have found that it is currently difficult to accurately control the quiescent current of the output current of a class AB amplifier, and even a small increase in the quiescent current will cause the power supply rejection ratio of the class AB amplifier to decrease, thereby increasing the distortion of the class AB amplifier. The inventors have further found that the main reason for the above problem is that the characteristics of the transistors that control the output current in the class AB amplifier themselves lead to the above problem.
参照图1示出了目前一种典型的AB类放大器的电路示意图,该AB类放大器电路由差分输入级电路,class-AB偏置产生电路和输出级电路构成,其中差分输入级电路为折叠共源共栅结构,这种结构具有较高的输出阻抗和电压增益,NMOS晶体管M1,M2构成差分输入对管,IB1为差分对提供偏置电流,NMOS晶体管M9和PMOS晶体管M10构成浮动电流源,用于控制输出级的静态电流。Class-AB偏置电路包括堆叠二极管接法的NMOS晶体管M22,M23和堆叠二极管接法的PMOS晶体管M24,M25,分别为浮动电流源晶体管M9和M10提供偏置电压。输出级电路包含PMOS晶体管M21和NMOS晶体管M20,电阻Rc和电容Cc构成密勒补偿结构为放大器电路提供频率补偿。Referring to FIG1 , a circuit diagram of a typical class AB amplifier is shown. The class AB amplifier circuit is composed of a differential input stage circuit, a class-AB bias generating circuit and an output stage circuit, wherein the differential input stage circuit is a folded common source and common gate structure, which has a high output impedance and voltage gain, NMOS transistors M1 and M2 constitute a differential input pair, IB1 provides a bias current for the differential pair, and NMOS transistor M9 and PMOS transistor M10 constitute a floating current source for controlling the static current of the output stage. The class-AB bias circuit includes NMOS transistors M22 and M23 in a stacked diode connection and PMOS transistors M24 and M25 in a stacked diode connection, which provide bias voltages for floating current source transistors M9 and M10, respectively. The output stage circuit includes a PMOS transistor M21 and an NMOS transistor M20, and a resistor Rc and a capacitor Cc constitute a Miller compensation structure to provide frequency compensation for the amplifier circuit.
在上述的传统AB类放大器电路中,流过NMOS晶体管M22,M23的电流为固定电流源IB2,理想情况下,NMOS晶体管M22,M20相匹配,M23,M9相匹配,它们具有相同的栅源电压Vgs,因此流经输出级NMOS晶体管M20的电流为N*IB2,其中N为M20与M22的宽长比之比,流经PMOS晶体管M21的电流具有与此相同的控制原理。输出电流的静态电流的控制精度取决于晶体管M9/M23,M22/M20,M10/M25和M24/M21之间的匹配。但是晶体管M9与M23,M10与M25的漏源电压Vds不同,由于存在沟道长度调制效应,使得输出级电流的控制不够精确,当电源电压变化时,M9和M10的漏源电压VdsM9和VdsM10,也发生变化,从而引起输出级电路的静态电流发生较大幅度的变化,这就降低了AB类放大器的电源抑制比,使得AB类放大器的失真程度变大。In the above-mentioned conventional class AB amplifier circuit, the current flowing through the NMOS transistors M22 and M23 is a fixed current source IB2. Ideally, the NMOS transistors M22 and M20 are matched, and M23 and M9 are matched. They have the same gate-source voltage Vgs, so the current flowing through the output stage NMOS transistor M20 is N*IB2, where N is the ratio of the width-to-length ratio of M20 to M22. The current flowing through the PMOS transistor M21 has the same control principle. The control accuracy of the static current of the output current depends on the matching between the transistors M9/M23, M22/M20, M10/M25 and M24/M21. However, the drain-source voltages Vds of transistors M9 and M23, and M10 and M25 are different. Due to the channel length modulation effect, the control of the output stage current is not precise enough. When the power supply voltage changes, the drain-source voltages VdsM9 and VdsM10 of M9 and M10 also change, causing a large change in the quiescent current of the output stage circuit, which reduces the power supply rejection ratio of the class AB amplifier and increases the distortion of the class AB amplifier.
另一方面,在一些高压CMOS工艺中,由于浮动电流源结构的NMOS晶体管M9的漏端电压较高,导致其漏端与自身衬底之间的漏电(Ibd)较大,从而使得AB类放大器电路中差分输入级的输出阻抗降低,AB类放大器的增益降低,并且这个漏电是随电源电压变化而变化的,这同样降低了AB类放大器的电源抑制比。On the other hand, in some high-voltage CMOS processes, since the drain voltage of the NMOS transistor M9 in the floating current source structure is relatively high, the leakage current (Ibd) between its drain terminal and its own substrate is relatively large, thereby reducing the output impedance of the differential input stage in the class AB amplifier circuit and the gain of the class AB amplifier. In addition, this leakage current varies with the power supply voltage, which also reduces the power supply rejection ratio of the class AB amplifier.
基于以上问题,发明人经过深入研究,结合差分输入结构和电流镜结构的特点,经过大量实地测试和仿真计算,大胆地、创造性的提出本发明的放大器电路,解决了上述问题,并且整个放大器电路增加的元器件较少,成本也较低且兼容性很强。以下对发明人提出的解决方案进行详细解释和说明。Based on the above problems, the inventors have conducted in-depth research, combined the characteristics of the differential input structure and the current mirror structure, and after a large number of field tests and simulation calculations, boldly and creatively proposed the amplifier circuit of the present invention, which solves the above problems. In addition, the entire amplifier circuit has fewer components, lower costs, and strong compatibility. The solution proposed by the inventors is explained and illustrated in detail below.
参照图2,示出了本发明实施例放大器电路的模块示意图,具体可以包括:2 , a schematic diagram of a module of an amplifier circuit according to an embodiment of the present invention is shown, which may specifically include:
折叠共源共栅输入模块20、浮动电流源闭环模块30、偏置电路模块40以及输出模块50。The folded cascode input module 20 , the floating current source closed-loop module 30 , the bias circuit module 40 and the output module 50 .
折叠共源共栅输入模块20、浮动电流源闭环模块30、偏置电路模块40以及输出模块50相互连接。其中,折叠共源共栅输入模块20用于为AB类放大器电路提供输入信号;浮动电流源闭环模块30用于抑制折叠共源共栅输入模块20的输出阻抗降低,以及,与偏置电路模块40共同控制AB类放大器电路输出的电流的静态电流;偏置电路模块40为浮动电流源闭环模块30中的晶体管的栅极提供偏置电压,以使得AB类放大器电路的输出级偏置在甲乙类,并且偏置电路模块40与浮动电流源闭环模块30共同控制输出模块50中的晶体管的静态电流,进而控制AB类放大器电路中的输出级电路的静态电流;输出模块50用于输出AB类放大器电路产生的电流以及补偿AB类放大器电路的频率特性。The folded cascode input module 20, the floating current source closed-loop module 30, the bias circuit module 40 and the output module 50 are connected to each other. The folded cascode input module 20 is used to provide an input signal for the class AB amplifier circuit; the floating current source closed-loop module 30 is used to suppress the reduction of the output impedance of the folded cascode input module 20, and to control the static current of the current output by the class AB amplifier circuit together with the bias circuit module 40; the bias circuit module 40 provides a bias voltage for the gate of the transistor in the floating current source closed-loop module 30, so that the output stage of the class AB amplifier circuit is biased in class AB, and the bias circuit module 40 and the floating current source closed-loop module 30 jointly control the static current of the transistor in the output module 50, thereby controlling the static current of the output stage circuit in the class AB amplifier circuit; the output module 50 is used to output the current generated by the class AB amplifier circuit and compensate for the frequency characteristics of the class AB amplifier circuit.
可选地,参照图3,示出了本发明实施例放大器电路的示意图,其中,浮动电流源闭环模块30中Au指辅助放大器,其与其他晶体管共同组成浮动电流源闭环模块30,其具体结构在下文中对应处详细说明;同理,图3中class-AB偏置产生电路即指本发明实施例放大器电路中的偏置电路模块40,其具体结构在下文中对应处详细说明。Optionally, referring to Figure 3, a schematic diagram of an amplifier circuit of an embodiment of the present invention is shown, wherein Au in the floating current source closed-loop module 30 refers to an auxiliary amplifier, which together with other transistors constitute the floating current source closed-loop module 30, and its specific structure is described in detail at the corresponding place below; similarly, the class-AB bias generating circuit in Figure 3 refers to the bias circuit module 40 in the amplifier circuit of the embodiment of the present invention, and its specific structure is described in detail at the corresponding place below.
参照图3,本发明实施例放大器电路中的折叠共源共栅输入模块20包括:第一NMOS管201、第二NMOS管202、第三NMOS管203、第四NMOS管204、第五NMOS管205、第六NMOS管206、第七NMOS管207、第八NMOS管208、第一PMOS管211、第二PMOS管212、第三PMOS管213、第四PMOS管214、第一固定偏置电压端209、第一固定电流源210、第二固定偏置电压端216以及第三固定偏置电压端215。3 , the folded common-source input module 20 in the amplifier circuit of the embodiment of the present invention includes: a first NMOS tube 201, a second NMOS tube 202, a third NMOS tube 203, a fourth NMOS tube 204, a fifth NMOS tube 205, a sixth NMOS tube 206, a seventh NMOS tube 207, an eighth NMOS tube 208, a first PMOS tube 211, a second PMOS tube 212, a third PMOS tube 213, a fourth PMOS tube 214, a first fixed bias voltage terminal 209, a first fixed current source 210, a second fixed bias voltage terminal 216 and a third fixed bias voltage terminal 215.
第一NMOS管201的栅极与第一外部信号输入端连接,第一外部信号输入端接收的信号是外部器件产生的,需要AB类放大器电路进行处理的信号;第一NMOS管201的源极与第二NMOS管202的源极和第一固定电流源210分别连接;第一NMOS管201的漏极与第一PMOS管211的漏极和第三PMOS管213的源极分别连接;第二NMOS管202的栅极与第二外部信号输入端连接,同理,第二外部信号输入端接收的信号也是外部器件产生的,需要AB类放大器电路进行处理的信号,这两个信号可以是同一个信号来源,也可以是一个参考信号,一个需要处理信号,或者是其他形式的信号,本发明实施例对此不做任何限定。第二NMOS管202的源极与第一NMOS管201的源极和第一固定电流源210分别连接;第二NMOS管202的漏极与第二PMOS管212的漏极和第四PMOS管214的源极分别连接,第一NMOS管201和第二NMOS管202构成AB类放大器电路的输入级电路的差分输入对管,用于接收外部信号,进而根据外部信号,产生输入级的差分电流信号。The gate of the first NMOS tube 201 is connected to the first external signal input terminal. The signal received by the first external signal input terminal is generated by an external device and needs to be processed by a class AB amplifier circuit; the source of the first NMOS tube 201 is connected to the source of the second NMOS tube 202 and the first fixed current source 210 respectively; the drain of the first NMOS tube 201 is connected to the drain of the first PMOS tube 211 and the source of the third PMOS tube 213 respectively; the gate of the second NMOS tube 202 is connected to the second external signal input terminal. Similarly, the signal received by the second external signal input terminal is also generated by an external device and needs to be processed by a class AB amplifier circuit. The two signals can be from the same signal source, or can be a reference signal, a signal to be processed, or other forms of signals. The embodiment of the present invention does not impose any limitation on this. The source of the second NMOS tube 202 is connected to the source of the first NMOS tube 201 and the first fixed current source 210 respectively; the drain of the second NMOS tube 202 is connected to the drain of the second PMOS tube 212 and the source of the fourth PMOS tube 214 respectively. The first NMOS tube 201 and the second NMOS tube 202 constitute a differential input pair of tubes of the input stage circuit of the class AB amplifier circuit, which are used to receive external signals and then generate differential current signals of the input stage according to the external signals.
第三NMOS管203的栅极与第四NMOS管204的栅极、第八NMOS管208的栅极、第五NMOS管205的漏极以及第三PMOS管213的漏极分别连接;第三NMOS管203的源极接地;第三NMOS管203的漏极与第五NMOS管205的源极连接;第四NMOS管204的栅极与第三NMOS管203的栅极、第八NMOS管208的栅极、第五NMOS管205的漏极以及第三PMOS管213的漏极分别连接;第四NMOS管204的源极接地;第四NMOS管204的漏极与第六NMOS管206的源极连接;第五NMOS管205的栅极与第六NMOS管206的栅极、第七NMOS管207的栅极以及第一固定偏置电压端209分别连接;第五NMOS管205的源极与第三NMOS管203的漏极连接;第五NMOS管205的漏极与第三NMOS管203的栅极、第四NMOS管204的栅极、第八NMOS管208的栅极以及第三PMOS管213的漏极分别连接;第六NMOS管206的栅极与第五NMOS管205的栅极、第七NMOS管207的栅极以及第一固定偏置电压端209分别连接;第六NMOS管206的源极与第四NMOS管204的漏极连接;第六NMOS管206的漏极与浮动电流源闭环模块30和输出模块50分别连接;第七NMOS管207的栅极与第五NMOS管205的栅极、第六NMOS管206的栅极以及第一固定偏置电压端209分别连接;第七NMOS管207的源极与第八NMOS管208的漏极连接;第七NMOS管207的漏极与浮动电流源闭环模块30连接;第八NMOS管208的栅极与第三NMOS管203的栅极、第四NMOS管204的栅极、第五NMOS管205的漏极以及第三PMOS管213的漏极分别连接;第八NMOS管208的源极接地;第八NMOS管208的漏极与第七NMOS管207的源极连接。The gate of the third NMOS tube 203 is connected to the gate of the fourth NMOS tube 204, the gate of the eighth NMOS tube 208, the drain of the fifth NMOS tube 205 and the drain of the third PMOS tube 213 respectively; the source of the third NMOS tube 203 is grounded; the drain of the third NMOS tube 203 is connected to the source of the fifth NMOS tube 205; the gate of the fourth NMOS tube 204 is connected to the gate of the third NMOS tube 203, the gate of the eighth NMOS tube 208, the drain of the fifth NMOS tube 205 and the drain of the third PMOS tube 213 respectively. The source of the fourth NMOS tube 204 is grounded; the drain of the fourth NMOS tube 204 is connected to the source of the sixth NMOS tube 206; the gate of the fifth NMOS tube 205 is connected to the gate of the sixth NMOS tube 206, the gate of the seventh NMOS tube 207 and the first fixed bias voltage terminal 209 respectively; the source of the fifth NMOS tube 205 is connected to the drain of the third NMOS tube 203; the drain of the fifth NMOS tube 205 is connected to the gate of the third NMOS tube 203, the gate of the fourth NMOS tube 204, the gate of the eighth NMOS tube 208 The gate of the sixth NMOS tube 206 is connected to the gate of the fifth NMOS tube 205, the gate of the seventh NMOS tube 207 and the first fixed bias voltage terminal 209 respectively; the source of the sixth NMOS tube 206 is connected to the drain of the fourth NMOS tube 204; the drain of the sixth NMOS tube 206 is connected to the floating current source closed-loop module 30 and the output module 50 respectively; the gate of the seventh NMOS tube 207 is connected to the gate of the fifth NMOS tube 205, the gate of the sixth NMOS tube 206 and the first fixed bias voltage terminal 209 respectively. The fixed bias voltage terminal 209 is connected respectively; the source of the seventh NMOS tube 207 is connected to the drain of the eighth NMOS tube 208; the drain of the seventh NMOS tube 207 is connected to the floating current source closed-loop module 30; the gate of the eighth NMOS tube 208 is connected to the gate of the third NMOS tube 203, the gate of the fourth NMOS tube 204, the drain of the fifth NMOS tube 205 and the drain of the third PMOS tube 213 respectively; the source of the eighth NMOS tube 208 is grounded; the drain of the eighth NMOS tube 208 is connected to the source of the seventh NMOS tube 207.
第三NMOS管203、第四NMOS管204、第八NMOS管208、第五NMOS管205、第六NMOS管206、第七NMOS管207构成AB类放大器电路中的输入级电路的共源共栅电流镜负载;上述输入级的共源共栅电流镜负载和接收到第一NMOS管201和第二NMOS管202提供的电流,根据该电流产生AB类放大器电路中的输入级电路的输出电流,同时,上述输入级的共源共栅电流镜负载控制浮动电流源闭环模块30中第九NMOS管的漏极电压。The third NMOS tube 203, the fourth NMOS tube 204, the eighth NMOS tube 208, the fifth NMOS tube 205, the sixth NMOS tube 206, and the seventh NMOS tube 207 constitute a common-source and common-gate current mirror load of the input stage circuit in the class AB amplifier circuit; the common-source and common-gate current mirror load of the input stage and the current provided by the first NMOS tube 201 and the second NMOS tube 202 are received, and the output current of the input stage circuit in the class AB amplifier circuit is generated according to the current. At the same time, the common-source and common-gate current mirror load of the input stage controls the drain voltage of the ninth NMOS tube in the floating current source closed-loop module 30.
第一PMOS管211的栅极与第二PMOS管212的栅极和第三固定偏置电压端215分别连接;第一PMOS管211的源极与工作电源VDD、第二PMOS管212的源极以及偏置电路模块40以及输出模块50分别连接;第一PMOS管211的漏极与第一NMOS管201的漏极和第三PMOS管213的源极分别连接;第二PMOS管212的栅极与第一PMOS管211的栅极和第三固定偏置电压端215分别连接;第二PMOS管212的源极与第一PMOS管211的源极、工作电源VDD以及偏置电路模块40以及输出模块50分别连接;第二PMOS管212的漏极与第二NMOS管202的漏极和第四PMOS管214的源极分别连接;第三PMOS管213的栅极与第四PMOS管214的栅极和第二固定偏置电压端216分别连接;第三PMOS管213的源极与第一PMOS管211的漏极和第一NMOS管201的漏极分别连接;第三PMOS管213的漏极与第五NMOS管205的漏极、第三NMOS管203的栅极、第四NMOS管204的栅极以及第八NMOS管208的栅极分别连接;第四PMOS管214的栅极与第三PMOS管213的栅极和第二固定偏置电压端216分别连接;第四PMOS管214的源极与第二PMOS管212的漏极和第二NMOS管202的漏极分别连接;第四PMOS管214的漏极与浮动电流源闭环模块40连接。The gate of the first PMOS tube 211 is connected to the gate of the second PMOS tube 212 and the third fixed bias voltage terminal 215 respectively; the source of the first PMOS tube 211 is connected to the working power supply VDD, the source of the second PMOS tube 212, the bias circuit module 40 and the output module 50 respectively; the drain of the first PMOS tube 211 is connected to the drain of the first NMOS tube 201 and the source of the third PMOS tube 213 respectively; the gate of the second PMOS tube 212 is connected to the gate of the first PMOS tube 211 and the third fixed bias voltage terminal 215 respectively; the source of the second PMOS tube 212 is connected to the source of the first PMOS tube 211, the working power supply VDD, the bias circuit module 40 and the output module 50 respectively; the drain of the second PMOS tube 212 is connected to the drain of the second NMOS tube 202 and the drain of the fourth PMOS tube 214 The gate of the third PMOS tube 213 is connected to the gate of the fourth PMOS tube 214 and the second fixed bias voltage terminal 216 respectively; the source of the third PMOS tube 213 is connected to the drain of the first PMOS tube 211 and the drain of the first NMOS tube 201 respectively; the drain of the third PMOS tube 213 is connected to the drain of the fifth NMOS tube 205, the gate of the third NMOS tube 203, the gate of the fourth NMOS tube 204 and the gate of the eighth NMOS tube 208 respectively; the gate of the fourth PMOS tube 214 is connected to the gate of the third PMOS tube 213 and the second fixed bias voltage terminal 216 respectively; the source of the fourth PMOS tube 214 is connected to the drain of the second PMOS tube 212 and the drain of the second NMOS tube 202 respectively; the drain of the fourth PMOS tube 214 is connected to the floating current source closed-loop module 40.
其中,第一PMOS管211与第二PMOS管212构成AB类放大器电路中的输入级电流镜;第三PMOS管213与第四PMOS管214构成输入级共源共栅结构;上述输入级电流镜和输入级共源共栅结构接收到第一NMOS管201和第二NMOS管202提供的电流,根据该电流并通过共同作用,产生差分输入级电路的两个支路的电流,该两个支路的电流经过处理后得到AB类放大器电路中的输入级电路的输出电流,该部分的电路产生电流信号的原理与目前AB类放大器的相同部分产生电流的原理相同,为了说明书的简洁,在此不做赘述。需要说明的是,输入级的共源共栅电流镜中的一条支路,可以控制浮动电流源闭环模块30中第九NMOS管的漏极电压,具体将在下文对应处进行说明。Among them, the first PMOS tube 211 and the second PMOS tube 212 constitute an input stage current mirror in the class AB amplifier circuit; the third PMOS tube 213 and the fourth PMOS tube 214 constitute an input stage cascode structure; the above-mentioned input stage current mirror and input stage cascode structure receive the current provided by the first NMOS tube 201 and the second NMOS tube 202, and generate the current of the two branches of the differential input stage circuit according to the current and through the joint action, and the current of the two branches is processed to obtain the output current of the input stage circuit in the class AB amplifier circuit. The principle of generating the current signal of this part of the circuit is the same as the principle of generating the current of the same part of the current class AB amplifier, and for the sake of brevity of the specification, it is not repeated here. It should be noted that a branch in the cascode current mirror of the input stage can control the drain voltage of the ninth NMOS tube in the floating current source closed-loop module 30, which will be specifically described in the corresponding part below.
可选地,参照图3,浮动电流源闭环模块30包括:第九NMOS管309、第五PMOS管305、第六PMOS管306以及辅助放大器Au,其中,本发明实施例放大器电路带辅助放大器Au的电路结构示意图如图4所示,其包括:第十NMOS管310、第十一NMOS管311、第七PMOS管307、第八PMOS管308以及第三固定电流源312。需要说明的是,图4中关于折叠共源共栅输入模块20、偏置电路模块40以及输出模块50与图3中相同模块中的元器件一样,为了附图的简洁,并未对其中元器件进行具体标识。Optionally, referring to FIG3 , the floating current source closed-loop module 30 includes: a ninth NMOS tube 309, a fifth PMOS tube 305, a sixth PMOS tube 306 and an auxiliary amplifier Au, wherein the circuit structure diagram of the amplifier circuit with the auxiliary amplifier Au in the embodiment of the present invention is shown in FIG4 , which includes: a tenth NMOS tube 310, an eleventh NMOS tube 311, a seventh PMOS tube 307, an eighth PMOS tube 308 and a third fixed current source 312. It should be noted that the components of the folded common source and common gate input module 20, the bias circuit module 40 and the output module 50 in FIG4 are the same as those in the same module in FIG3 , and for the sake of simplicity of the drawing, the components are not specifically identified.
参照图4,结合图3,第九NMOS管309的栅极与偏置电路模块40和第十一NMOS管311的栅极分别连接;第九NMOS管309的源极与第六NMOS管206的漏极、第五PMOS管305的漏极以及输出模块50分别连接;第九NMOS管309的漏极与第七NMOS管207的漏极、第六PMOS管306的漏极以及第十NMOS管310的栅极分别连接;第十NMOS管310的栅极与第九NMOS管309的漏极连接;第十NMOS管310的源极与第十一NMOS管311的源极和第三固定电流源312分别连接;第十NMOS管310的漏极与第七PMOS管307的漏极、第七PMOS管307的栅极以及第八PMOS管308的栅极分别连接;第十一NMOS管311的栅极与第九NMOS管309的栅极连接;第十一NMOS管311的源极与第十NMOS管310的源极和第三固定电流源312分别连接;第十一NMOS管311的漏极与第八PMOS管308的漏极和第六PMOS管306的栅极分别连接。4, in combination with FIG. 3, the gate of the ninth NMOS tube 309 is connected to the bias circuit module 40 and the gate of the eleventh NMOS tube 311 respectively; the source of the ninth NMOS tube 309 is connected to the drain of the sixth NMOS tube 206, the drain of the fifth PMOS tube 305 and the output module 50 respectively; the drain of the ninth NMOS tube 309 is connected to the drain of the seventh NMOS tube 207, the drain of the sixth PMOS tube 306 and the gate of the tenth NMOS tube 310 respectively; the gate of the tenth NMOS tube 310 is connected to the drain of the ninth NMOS tube 309; the source of the tenth NMOS tube 310 is connected to the drain of the seventh NMOS tube 207, the drain of the sixth PMOS tube 306 and the gate of the tenth NMOS tube 310 respectively; The source of the eleventh NMOS tube 311 is connected to the third fixed current source 312 respectively; the drain of the tenth NMOS tube 310 is connected to the drain of the seventh PMOS tube 307, the gate of the seventh PMOS tube 307 and the gate of the eighth PMOS tube 308 respectively; the gate of the eleventh NMOS tube 311 is connected to the gate of the ninth NMOS tube 309; the source of the eleventh NMOS tube 311 is connected to the source of the tenth NMOS tube 310 and the third fixed current source 312 respectively; the drain of the eleventh NMOS tube 311 is connected to the drain of the eighth PMOS tube 308 and the gate of the sixth PMOS tube 306 respectively.
第五PMOS管305的栅极与偏置电路模块40连接;第五PMOS管305的源极与第四PMOS管214的漏极、第六PMOS管306的源极以及输出模块50分别连接;第五PMOS管305的漏极与第九NMOS管309的源极、第六NMOS管206的漏极以及输出模块50分别连接;第六PMOS管306的栅极与第十一NMOS管311的漏极和第八PMOS管308的漏极分别连接;第六PMOS管306的源极与第四PMOS管214的漏极、第五PMOS管305的源极以及输出模块50分别连接;第六PMOS管306的漏极与第九NMOS管309的漏极、第七NMOS管207的漏极以及第十NMOS管310的栅极分别连接;第七PMOS管307的栅极与自身的漏极、第八PMOS管308的栅极以及第十NMOS管310的漏极分别连接;第七PMOS管307的源极与第八PMOS管308的源极、第一PMOS管211的源极以及第二PMOS管212的源极分别连接;第七PMOS管307的漏极与自身的栅极、第八PMOS管308的栅极以及第十NMOS管310的漏极分别连接;第八PMOS管308的栅极与第七PMOS管307的栅极、第七PMOS管307的漏极以及第十NMOS管310的漏极分别连接;第八PMOS管308的源极与第七PMOS管307的源极、第一PMOS管211的源极以及第二PMOS管212的源极分别连接;第八PMOS管308的漏极与第六PMOS管306的栅极和第十一NMOS管311的漏极分别连接。The gate of the fifth PMOS tube 305 is connected to the bias circuit module 40; the source of the fifth PMOS tube 305 is connected to the drain of the fourth PMOS tube 214, the source of the sixth PMOS tube 306 and the output module 50 respectively; the drain of the fifth PMOS tube 305 is connected to the source of the ninth NMOS tube 309, the drain of the sixth NMOS tube 206 and the output module 50 respectively; the gate of the sixth PMOS tube 306 is connected to the drain of the eleventh NMOS tube 311 and the drain of the eighth PMOS tube 308 respectively; the source of the sixth PMOS tube 306 is connected to the drain of the fourth PMOS tube 214, the source of the fifth PMOS tube 305 and the output module 50 respectively; the drain of the sixth PMOS tube 306 is connected to the drain of the ninth NMOS tube 309, the drain of the seventh NMOS tube 207 and the gate of the tenth NMOS tube 310 respectively; the gate of the seventh PMOS tube 307 is connected to its own drain, The gate of the eighth PMOS tube 308 and the drain of the tenth NMOS tube 310 are connected respectively; the source of the seventh PMOS tube 307 is connected respectively to the source of the eighth PMOS tube 308, the source of the first PMOS tube 211 and the source of the second PMOS tube 212; the drain of the seventh PMOS tube 307 is connected respectively to its own gate, the gate of the eighth PMOS tube 308 and the drain of the tenth NMOS tube 310; the gate of the eighth PMOS tube 308 is connected respectively to the gate of the seventh PMOS tube 307, the drain of the seventh PMOS tube 307 and the drain of the tenth NMOS tube 310; the source of the eighth PMOS tube 308 is connected respectively to the source of the seventh PMOS tube 307, the source of the first PMOS tube 211 and the source of the second PMOS tube 212; the drain of the eighth PMOS tube 308 is connected respectively to the gate of the sixth PMOS tube 306 and the drain of the eleventh NMOS tube 311.
其中,第十NMOS管310、第十一NMOS管311构成反馈级差分输入对管,第七PMOS管307、第八PMOS管308构成反馈级电流镜负载,上述反馈级差分输入对管和反馈级电流镜负载两者共同作用相当于实现了一个放大器的功能,得以控制第九NMOS管309的漏极电压,以使得第九NMOS管309的漏极电压与自身的栅极电压相等。Among them, the tenth NMOS tube 310 and the eleventh NMOS tube 311 constitute a feedback-stage differential input pair tube, the seventh PMOS tube 307 and the eighth PMOS tube 308 constitute a feedback-stage current mirror load, and the above-mentioned feedback-stage differential input pair tube and the feedback-stage current mirror load work together to achieve the function of an amplifier, so as to control the drain voltage of the ninth NMOS tube 309 so that the drain voltage of the ninth NMOS tube 309 is equal to its own gate voltage.
上述作用的原理是:第九NMOS管309的漏极电压和栅极电压分别作为差分输入对管的正、负两个输入端的电压信号,同时,第六PMOS管306的漏极电压也作为差分输入对管的正输入端的电压信号,假若第九NMOS管309的漏极电压较高,该较高的漏极电压会使得第十NMOS管310和第七PMOS管307组成的支路上的电流值增大,由于第十NMOS管310和第七PMOS管307组成的支路上的电流值,与第十一NMOS管311和第八PMOS管的308组成的支路上的电流值两者之和等于第三固定电流源312的电流值,那么当第十NMOS管310和第七PMOS管307组成的支路上的电流值增大,自然地,第十一NMOS管311和第八PMOS管的308组成的支路上的电流值就减小,其反映到第六PMOS管306的栅极电压就升高,自然地,第六PMOS管306的漏极电压也会降低,而第六PMOS管306的漏极电压与第九NMOS管309的漏极电压一样,因此,第九NMOS管309的漏极电压也降低,该降低的漏极电压会使得第十NMOS管310和第七PMOS管307组成的支路上的电流值减小,最终达到与第十一NMOS管311和第八PMOS管的308组成的支路上的电流值相等的电流值,又由于第九NMOS管309的栅极电压控制第十一NMOS管311和第八PMOS管的308组成的支路上的电流值,因此,通过这样的反馈结构,最终使得第九NMOS管309的漏极电压与自身的栅极电压相等。即使工作电压VDD变化,但上述结构依然可以保证第九NMOS管309的漏极电压与自身的栅极电压相等,从而避免了第九NMOS管309的漏极电压过高,减小了第九NMOS管309的漏端与衬底之间的漏电(Ibd)的大小,最终避免了AB类放大器电路中的差分输入级电路的输出阻抗降低、增益降低、电源抑制比降低的问题。The principle of the above-mentioned action is: the drain voltage and gate voltage of the ninth NMOS tube 309 are used as voltage signals of the positive and negative input terminals of the differential input pair, respectively. Meanwhile, the drain voltage of the sixth PMOS tube 306 is also used as the voltage signal of the positive input terminal of the differential input pair. If the drain voltage of the ninth NMOS tube 309 is higher, the higher drain voltage will increase the current value of the branch composed of the tenth NMOS tube 310 and the seventh PMOS tube 307. Since the sum of the current value of the branch composed of the tenth NMOS tube 310 and the seventh PMOS tube 307 and the current value of the branch composed of the eleventh NMOS tube 311 and the eighth PMOS tube 308 is equal to the current value of the third fixed current source 312, when the current value of the branch composed of the tenth NMOS tube 310 and the seventh PMOS tube 307 increases, naturally, the current value of the eleventh NMOS tube 311 and the eighth PMOS tube 308 increases. The current value on the branch composed of the tenth NMOS tube 310 and the seventh PMOS tube 307 is reduced, which is reflected in the increase of the gate voltage of the sixth PMOS tube 306. Naturally, the drain voltage of the sixth PMOS tube 306 will also decrease, and the drain voltage of the sixth PMOS tube 306 is the same as the drain voltage of the ninth NMOS tube 309. Therefore, the drain voltage of the ninth NMOS tube 309 is also reduced. The reduced drain voltage will reduce the current value on the branch composed of the tenth NMOS tube 310 and the seventh PMOS tube 307, and finally reach a current value equal to the current value on the branch composed of the eleventh NMOS tube 311 and the eighth PMOS tube 308. Since the gate voltage of the ninth NMOS tube 309 controls the current value on the branch composed of the eleventh NMOS tube 311 and the eighth PMOS tube 308, through such a feedback structure, the drain voltage of the ninth NMOS tube 309 is finally equal to its own gate voltage. Even if the operating voltage VDD changes, the above structure can still ensure that the drain voltage of the ninth NMOS tube 309 is equal to its own gate voltage, thereby avoiding the drain voltage of the ninth NMOS tube 309 being too high, reducing the leakage current (I bd ) between the drain end of the ninth NMOS tube 309 and the substrate, and ultimately avoiding the problems of reduced output impedance, reduced gain, and reduced power supply rejection ratio of the differential input stage circuit in the class AB amplifier circuit.
在上述过程中,第四NMOS管204和第六NMOS管206组成的支路上的电流,等于流经第九NMOS管309和流经第五PMOS管305的电流之和,由于第四NMOS管204和第六NMOS管206组成的支路上的电流,在第九NMOS管309和第五PMOS管305之间的分配比例随放大器电路的负载的变化而变化,在某些负载条件下,流经第五PMOS管305的电流会增大,流经第九NMOS管309的电流会减小,而在另一些条件下,流经第五PMOS管305的电流会减小,流经第九NMOS管309的电流会增大。当放大器电路驱动的负载电阻较小或者负载电流较大时,流经第九NMOS管309和流经第五PMOS管305的的电流将会不平衡,在极端情况下,第四NMOS管204和第六NMOS管206组成的支路上的电流全部流经第五PMOS管305而不流经第九NMOS管309,即,流经第九NMOS管309的电流为0,出现此情况时第六PMOS管306的电流将变得极小,第六PMOS管306极小会引起整个浮动电流源闭环模块30不稳定,产生震荡,为了解决这个问题,在折叠共源共栅输入模块20中增加第七NMOS管207和第八NMOS管208,第七NMOS管207和第八NMOS管208组成的支路上的电流直接流过第六PMOS管306,从而保证了第六PMOS管306的电流不会变的极小,即,保证了浮动电流源闭环模块30的稳定性。当然,为了保持折叠共源共栅输入模块20中差分输入级两个支路的电流平衡,需要第四NMOS管204与第八NMOS管208的电流值之和与第三NMOS管203的电流值保持相等,假若第四NMOS管204的宽长比为M,第八NMOS管208的宽长比为N,第三NMOS管203的宽长比为M+N,那么第四NMOS管204、第八NMOS管208以及第三NMOS管203的宽长比之比为M:N:M+N。In the above process, the current on the branch formed by the fourth NMOS tube 204 and the sixth NMOS tube 206 is equal to the sum of the current flowing through the ninth NMOS tube 309 and the current flowing through the fifth PMOS tube 305. Since the distribution ratio of the current on the branch formed by the fourth NMOS tube 204 and the sixth NMOS tube 206 between the ninth NMOS tube 309 and the fifth PMOS tube 305 changes with the change of the load of the amplifier circuit, under certain load conditions, the current flowing through the fifth PMOS tube 305 will increase, and the current flowing through the ninth NMOS tube 309 will decrease, while under other conditions, the current flowing through the fifth PMOS tube 305 will decrease, and the current flowing through the ninth NMOS tube 309 will increase. When the load resistance driven by the amplifier circuit is small or the load current is large, the current flowing through the ninth NMOS tube 309 and the current flowing through the fifth PMOS tube 305 will be unbalanced. In extreme cases, the current on the branch composed of the fourth NMOS tube 204 and the sixth NMOS tube 206 will all flow through the fifth PMOS tube 305 but not through the ninth NMOS tube 309, that is, the current flowing through the ninth NMOS tube 309 is 0. In this case, the current of the sixth PMOS tube 306 will become extremely small. The extremely small sixth PMOS tube 306 will cause the entire floating current source closed-loop module 30 to be unstable and oscillate. In order to solve this problem, the seventh NMOS tube 207 and the eighth NMOS tube 208 are added to the folded common source input module 20. The current on the branch composed of the seventh NMOS tube 207 and the eighth NMOS tube 208 directly flows through the sixth PMOS tube 306, thereby ensuring that the current of the sixth PMOS tube 306 will not become extremely small, that is, ensuring the stability of the floating current source closed-loop module 30. Of course, in order to maintain the current balance of the two branches of the differential input stage in the folded common source and common gate input module 20, the sum of the current values of the fourth NMOS tube 204 and the eighth NMOS tube 208 needs to be equal to the current value of the third NMOS tube 203. If the width-to-length ratio of the fourth NMOS tube 204 is M, the width-to-length ratio of the eighth NMOS tube 208 is N, and the width-to-length ratio of the third NMOS tube 203 is M+N, then the ratio of the width-to-length ratios of the fourth NMOS tube 204, the eighth NMOS tube 208 and the third NMOS tube 203 is M:N:M+N.
可选地,参照图5,示出了本发明实施例放大器电路中偏置电路模块40的电路结构示意图,偏置电路模块40包括:第十二NMOS管412、第十三NMOS管413、第十四NMOS管414、第九PMOS管409、第十PMOS管410、第二固定电流源411以及第四固定电流源408;,需要说明的是,图5中关于折叠共源共栅输入模块20、浮动电流源闭环模块30以及输出模块50与图3中相同模块中的元器件一样,为了附图的简洁,并未对其中元器件进行具体标识。Optionally, referring to FIG5 , a schematic diagram of the circuit structure of a bias circuit module 40 in an amplifier circuit according to an embodiment of the present invention is shown, wherein the bias circuit module 40 includes: a twelfth NMOS tube 412, a thirteenth NMOS tube 413, a fourteenth NMOS tube 414, a ninth PMOS tube 409, a tenth PMOS tube 410, a second fixed current source 411, and a fourth fixed current source 408; it should be noted that the components of the folded common source input module 20, the floating current source closed-loop module 30, and the output module 50 in FIG5 are the same as those in the same modules in FIG3 , and for the sake of simplicity of the drawing, the components therein are not specifically identified.
参照图5,结合图3,第十二NMOS管412的栅极与第十三NMOS管413的源极和第二固定电流源411分别连接;第十二NMOS管412的源极接地;第十二NMOS管412的漏极与第九NMOS管309的栅极、第十三NMOS管413的栅极、第十三NMOS管413的漏极以及第四固定电流源408分别连接;第十三NMOS管413的栅极与自身的漏极、第九NMOS管309的栅极、第十二NMOS管412的漏极以及第四固定电流源408分别连接;第十三NMOS管413的源极与第十二NMOS管412的栅极和第二固定电流源411分别连接;第十三NMOS管413的漏极与自身的栅极、第九NMOS管309的栅极、第十二NMOS管412的漏极以及第四固定电流源408分别连接。5 , in combination with FIG. 3 , the gate of the twelfth NMOS tube 412 is connected to the source of the thirteenth NMOS tube 413 and the second fixed current source 411 respectively; the source of the twelfth NMOS tube 412 is grounded; the drain of the twelfth NMOS tube 412 is connected to the gate of the ninth NMOS tube 309, the gate of the thirteenth NMOS tube 413, the drain of the thirteenth NMOS tube 413 and the fourth fixed current source 408 respectively; the gate of the thirteenth NMOS tube 413 is connected to its own drain, the gate of the ninth NMOS tube 309, the drain of the twelfth NMOS tube 412 and the fourth fixed current source 408 respectively; the source of the thirteenth NMOS tube 413 is connected to the gate of the twelfth NMOS tube 412 and the second fixed current source 411 respectively; the drain of the thirteenth NMOS tube 413 is connected to its own gate, the gate of the ninth NMOS tube 309, the drain of the twelfth NMOS tube 412 and the fourth fixed current source 408 respectively.
第十四NMOS管414的栅极与自身的漏极和第十PMOS管410的漏极分别连接;第十四NMOS管414的源极接地;第十四NMOS管414的漏极与自身的栅极和第十PMOS管410的漏极分别连接;第九PMOS管409的栅极与第十PMOS管410的源极和第二固定电流源411分别连接;第九PMOS管409的源极与第二PMOS管212的源极、第二固定电流源411、第四固定电流源408以及输出模块50分别连接;第九PMOS管409的漏极与第五PMOS管305的栅极、第十PMOS管410的栅极以及第二固定电流源411分别连接;第十PMOS管410的栅极与第九PMOS管409的漏极、第五PMOS管305的栅极以及第二固定电流源411分别连接;第十PMOS管410的源极与第九PMOS管409的栅极和第二固定电流源411分别连接;第十PMOS管410的漏极与第十四NMOS管414的漏极和栅极分别连接。The gate of the fourteenth NMOS tube 414 is connected to its own drain and the drain of the tenth PMOS tube 410 respectively; the source of the fourteenth NMOS tube 414 is grounded; the drain of the fourteenth NMOS tube 414 is connected to its own gate and the drain of the tenth PMOS tube 410 respectively; the gate of the ninth PMOS tube 409 is connected to the source of the tenth PMOS tube 410 and the second fixed current source 411 respectively; the source of the ninth PMOS tube 409 is connected to the source of the second PMOS tube 212, the second fixed current source 411, the fourth fixed current source 408 and the output module 50 respectively. The drain of the ninth PMOS tube 409 is connected to the gate of the fifth PMOS tube 305, the gate of the tenth PMOS tube 410 and the second fixed current source 411 respectively; the gate of the tenth PMOS tube 410 is connected to the drain of the ninth PMOS tube 409, the gate of the fifth PMOS tube 305 and the second fixed current source 411 respectively; the source of the tenth PMOS tube 410 is connected to the gate of the ninth PMOS tube 409 and the second fixed current source 411 respectively; the drain of the tenth PMOS tube 410 is connected to the drain and gate of the fourteenth NMOS tube 414 respectively.
其中,第十二NMOS管412、第十三NMOS管413、第二固定电流源411以及第四固定电流源408共同作用,为第九NMOS管309提供偏置电压,同时使得第九NMOS管309的漏源电压与第十三NMOS管413的漏源电压相等;第十四NMOS管414、第九PMOS管409、第十PMOS管410以及第二固定电流源411共同作用,为第五PMOS管305提供偏置电压,同时使得第五PMOS管305的漏源电压与第十PMOS管410的漏源电压相等。Among them, the twelfth NMOS tube 412, the thirteenth NMOS tube 413, the second fixed current source 411 and the fourth fixed current source 408 work together to provide a bias voltage for the ninth NMOS tube 309, and at the same time make the drain-source voltage of the ninth NMOS tube 309 equal to the drain-source voltage of the thirteenth NMOS tube 413; the fourteenth NMOS tube 414, the ninth PMOS tube 409, the tenth PMOS tube 410 and the second fixed current source 411 work together to provide a bias voltage for the fifth PMOS tube 305, and at the same time make the drain-source voltage of the fifth PMOS tube 305 equal to the drain-source voltage of the tenth PMOS tube 410.
可选地,参照图3,输出模块50包括:第十五NMOS管505、第十一PMOS管506、第一电阻502、第二电阻504、第一电容501以及第二电容503。Optionally, referring to FIG. 3 , the output module 50 includes: a fifteenth NMOS transistor 505 , an eleventh PMOS transistor 506 , a first resistor 502 , a second resistor 504 , a first capacitor 501 and a second capacitor 503 .
其中,第十五NMOS管505的栅极与第六NMOS管206的漏极、第九NMOS管309的源极、第五PMOS管305的漏极以及第一电容501的第一端分别连接;第十五NMOS管505的源极接地;第十五NMOS管505的漏极与第一电阻502的第一端、第二电阻504的第一端以及第十一PMOS管506的漏极分别连接;第十一PMOS管506的栅极与第四PMOS管214的漏极、第五PMOS管305的源极、第六PMOS管306的源极以及第二电容503的第一端分别连接;第十一PMOS管506的源极与第二PMOS管212的源极、第九NMOS管309的源极、第二固定电流源411、第四固定电流源408以及工作电源VDD分别连接;第十一PMOS管506的漏极与第二电阻504的第一端、第一电阻502的第一端以及第十五NMOS管505的漏极分别连接。The gate of the fifteenth NMOS tube 505 is connected to the drain of the sixth NMOS tube 206, the source of the ninth NMOS tube 309, the drain of the fifth PMOS tube 305, and the first end of the first capacitor 501, respectively; the source of the fifteenth NMOS tube 505 is grounded; the drain of the fifteenth NMOS tube 505 is connected to the first end of the first resistor 502, the first end of the second resistor 504, and the drain of the eleventh PMOS tube 506, respectively; the gate of the eleventh PMOS tube 506 is connected to the drain of the fourth PMOS tube 214, The source of the fifth PMOS tube 305, the source of the sixth PMOS tube 306 and the first end of the second capacitor 503 are respectively connected; the source of the eleventh PMOS tube 506 is respectively connected to the source of the second PMOS tube 212, the source of the ninth NMOS tube 309, the second fixed current source 411, the fourth fixed current source 408 and the working power supply VDD; the drain of the eleventh PMOS tube 506 is respectively connected to the first end of the second resistor 504, the first end of the first resistor 502 and the drain of the fifteenth NMOS tube 505.
第一电阻502的第一端与第十五NMOS管505的漏极、第十一PMOS管506的漏极以及第二电阻504的第一端分别连接;第一电阻502的第二端与第一电容501的第二端连接;第二电阻504的第一端与第十五NMOS管505的漏极、第十一PMOS管506的漏极以及第一电阻502的第一端分别连接;第二电阻504的第二端与第二电容503的第二端连接。The first end of the first resistor 502 is connected to the drain of the fifteenth NMOS tube 505, the drain of the eleventh PMOS tube 506 and the first end of the second resistor 504 respectively; the second end of the first resistor 502 is connected to the second end of the first capacitor 501; the first end of the second resistor 504 is connected to the drain of the fifteenth NMOS tube 505, the drain of the eleventh PMOS tube 506 and the first end of the first resistor 502 respectively; the second end of the second resistor 504 is connected to the second end of the second capacitor 503.
第一电容501的第一端与第十五NMOS管505的栅极、第六NMOS管206的漏极、第九NMOS管309的源极以及第五PMOS管305的漏极分别连接;第一电容501的第二端与第一电阻502的第二端连接;第二电容503的第一端与第十一PMOS管506的栅极、第四PMOS管214的漏极、第五PMOS管305的源极以及第六PMOS管306的源极分别连接;第二电容503的第二端与第二电阻504的第二端连接。The first end of the first capacitor 501 is connected to the gate of the fifteenth NMOS tube 505, the drain of the sixth NMOS tube 206, the source of the ninth NMOS tube 309 and the drain of the fifth PMOS tube 305 respectively; the second end of the first capacitor 501 is connected to the second end of the first resistor 502; the first end of the second capacitor 503 is connected to the gate of the eleventh PMOS tube 506, the drain of the fourth PMOS tube 214, the source of the fifth PMOS tube 305 and the source of the sixth PMOS tube 306 respectively; the second end of the second capacitor 503 is connected to the second end of the second resistor 504.
其中,第十五NMOS管505、第十一PMOS管506的漏极为放大器电路的输出端;第一电阻502和第一电容501构成密勒补偿结构,为放大器电路的输出电流提供频率补偿;第二电阻504和第二电容503构成密勒补偿结构,为放大器电路提供频率补偿。Among them, the drains of the fifteenth NMOS tube 505 and the eleventh PMOS tube 506 are the output ends of the amplifier circuit; the first resistor 502 and the first capacitor 501 constitute a Miller compensation structure to provide frequency compensation for the output current of the amplifier circuit; the second resistor 504 and the second capacitor 503 constitute a Miller compensation structure to provide frequency compensation for the amplifier circuit.
上述使得第九NMOS管309的漏源电压与第十三NMOS管413的漏源电压相等,以及使得第五PMOS管305的漏源电压与第十PMOS管410的漏源电压相等的原理是:设置第四固定电流源408的电流值是第二固定电流源411的电流值的两倍,由于流经第十二NMOS管412、第十三NMOS管413的电流值之和等于第四固定电流源408的电流值,因此,流经第十二NMOS管412、第十三NMOS管413的电流值均等于第二固定电流源411的电流值,由电路结构可知,第九NMOS管309与第十五NMOS管505的栅源电压之和等于第十二NMOS管412与第十三NMOS管413的栅源电压之和,即,Vgs9(第九NMOS管309的栅源电压)+Vgs15(第十五NMOS管505的栅源电压)=Vgs12(第十二NMOS管412的栅源电压)+Vgs13(第十三NMOS管413的栅源电压),设置第十二NMOS管412与第十五NMOS管505相匹配,第九NMOS管309与第十三NMOS管413相匹配,需要说明的是,这里的匹配指的是:上述MOS管均采用多叉指结构,并且每个叉指具有相同的尺寸,通过这样的匹配设计使得Vgs9=Vgs13,Vgs15=Vgs12,因此流经第十五NMOS管505的电流值为流经第十二NMOS管412的电流值的N倍,即,放大器电路中的输出级电路的静态电流值为:N倍的第二固定电流源411的电流值,其中,N指第十五NMOS管505与第十二NMOS管412的叉指个数之比。由于第十三NMOS管413的漏源电压与其自身的栅源电压相等,即,Vds13(第十三NMOS管413的漏源电压)=Vgs13(第十三NMOS管413的栅源电压),同时由于前述浮动电流源闭环模块30中的反馈环路的作用,使得第九NMOS管309的漏源电压与它的栅源电压相等,即,Vds9(第九NMOS管309的漏源电压)=Vgs9(第九NMOS管309的栅源电压),所以,第九NMOS管309的漏源电压与第十三NMOS管413的漏源电压的漏源电压也相等。The principle of making the drain-source voltage of the ninth NMOS tube 309 equal to the drain-source voltage of the thirteenth NMOS tube 413, and making the drain-source voltage of the fifth PMOS tube 305 equal to the drain-source voltage of the tenth PMOS tube 410 is as follows: the current value of the fourth fixed current source 408 is set to be twice the current value of the second fixed current source 411. Since the sum of the current values flowing through the twelfth NMOS tube 412 and the thirteenth NMOS tube 413 is equal to the current value of the fourth fixed current source 408, the current values flowing through the twelfth NMOS tube 412 and the thirteenth NMOS tube 413 are both equal to the current value of the second fixed current source 411. It can be seen from the circuit structure that the sum of the gate-source voltages of the ninth NMOS tube 309 and the fifteenth NMOS tube 505 is equal to the sum of the gate-source voltages of the twelfth NMOS tube 412 and the thirteenth NMOS tube 413, that is, V gs9 (gate-source voltage of the ninth NMOS tube 309)+V gs15 (gate-source voltage of the fifteenth NMOS tube 505)= Vgs12 (gate-source voltage of the twelfth NMOS tube 412)+ Vgs13 (gate-source voltage of the thirteenth NMOS tube 413), the twelfth NMOS tube 412 is matched with the fifteenth NMOS tube 505, and the ninth NMOS tube 309 is matched with the thirteenth NMOS tube 413. It should be noted that the matching here means that the above-mentioned MOS tubes all adopt a multi-finger structure, and each finger has the same size. Through such a matching design, Vgs9 = Vgs13 , Vgs15 = Vgs12 , so the current value flowing through the fifteenth NMOS tube 505 is N times the current value flowing through the twelfth NMOS tube 412, that is, the static current value of the output stage circuit in the amplifier circuit is: N times the current value of the second fixed current source 411, wherein N refers to the ratio of the number of fingers of the fifteenth NMOS tube 505 to the number of fingers of the twelfth NMOS tube 412. Since the drain-source voltage of the thirteenth NMOS tube 413 is equal to its own gate-source voltage, that is, V ds13 (drain-source voltage of the thirteenth NMOS tube 413) = V gs13 (gate-source voltage of the thirteenth NMOS tube 413), and due to the effect of the feedback loop in the aforementioned floating current source closed-loop module 30, the drain-source voltage of the ninth NMOS tube 309 is equal to its gate-source voltage, that is, V ds9 (drain-source voltage of the ninth NMOS tube 309) = V gs9 (gate-source voltage of the ninth NMOS tube 309), so the drain-source voltage of the ninth NMOS tube 309 is also equal to the drain-source voltage of the drain-source voltage of the thirteenth NMOS tube 413.
采用上述的电路结构,使得第九NMOS管309的漏源电压与第十三NMOS管413的漏源电压相等,从而避免了目前AB类放大器电路中第九NMOS管309的沟道长度调制效应的影响,使得对第十五NMOS管505的输出电流的控制更加精确,即使电源电压变化,第九NMOS管309的漏源电压依然保持稳定,达到了静态电流在不同电源电压下的变化幅度大幅减小的目的,最终提高了AB类放大器的电源电压抑制比。By adopting the above circuit structure, the drain-source voltage of the ninth NMOS tube 309 is equal to the drain-source voltage of the thirteenth NMOS tube 413, thereby avoiding the influence of the channel length modulation effect of the ninth NMOS tube 309 in the current class AB amplifier circuit, making the control of the output current of the fifteenth NMOS tube 505 more precise, even if the power supply voltage changes, the drain-source voltage of the ninth NMOS tube 309 remains stable, achieving the purpose of greatly reducing the variation amplitude of the static current under different power supply voltages, and finally improving the power supply voltage rejection ratio of the class AB amplifier.
与上述情况类似,第五PMOS管305与第十一PMOS管506的栅源电压之和等于第九PMOS管409与第十PMOS管410的栅源电压之和,即,Vgs5p(第五PMOS管305的栅源电压)+Vgs11p(第十一PMOS管506的栅源电压)=Vgs9p(第九PMOS管409的栅源电压)+Vgs10p(第十PMOS管410的栅源电压),同样的,设置第九PMOS管409与第十一PMOS管506相匹配,第五PMOS管305与第十PMOS管410相匹配,那么,流经第十一PMOS管506的输出电流值为流经第九PMOS管409的电流值的N倍,即,放大器电路中的输出级电路的静态电流值也为:N倍的第二固定电流源411的电流值,其中,N为第十一PMOS管506与第十PMOS管410的叉指个数之比。Similar to the above situation, the sum of the gate-source voltages of the fifth PMOS tube 305 and the eleventh PMOS tube 506 is equal to the sum of the gate-source voltages of the ninth PMOS tube 409 and the tenth PMOS tube 410, that is, V gs5p (gate-source voltage of the fifth PMOS tube 305)+V gs11p (gate-source voltage of the eleventh PMOS tube 506)=V gs9p (gate-source voltage of the ninth PMOS tube 409)+V gs10p (gate-source voltage of the tenth PMOS tube 410). Similarly, the ninth PMOS tube 409 is matched with the eleventh PMOS tube 506, and the fifth PMOS tube 305 is matched with the tenth PMOS tube 410. Then, the output current value flowing through the eleventh PMOS tube 506 is N times the current value flowing through the ninth PMOS tube 409, that is, the static current value of the output stage circuit in the amplifier circuit is also N times the current value of the second fixed current source 411, wherein N is the ratio of the number of fingers of the eleventh PMOS tube 506 to the number of fingers of the tenth PMOS tube 410.
由电路结构可以得出,第五PMOS管305的漏源电压Vds5p=VDD(电源电压)-Vgs11p-Vgs15,第十PMOS管410的漏源电压Vds10p=VDD(电源电压)-Vgs9p-Vgs14(第十四NMOS管414的栅源电压),设置第十四NMOS管414与第十五NMOS管505相匹配,所以得到Vds5p=Vds10p,即,第五PMOS管305的漏源电压与第十PMOS管410的漏源电压也相等。It can be concluded from the circuit structure that the drain-source voltage V ds5p of the fifth PMOS tube 305 is VDD (power supply voltage)-V gs11p -V gs15 , the drain-source voltage V ds10p of the tenth PMOS tube 410 is VDD (power supply voltage)-V gs9p -V gs14 (gate-source voltage of the fourteenth NMOS tube 414 ), and the fourteenth NMOS tube 414 is set to match the fifteenth NMOS tube 505 , so V ds5p =V ds10p is obtained, that is, the drain-source voltage of the fifth PMOS tube 305 is also equal to the drain-source voltage of the tenth PMOS tube 410 .
采用上述的电路结构,使得第五PMOS管305的漏源电压与第十PMOS管410的漏源电压相等,从而避免了目前AB类放大器电路中第五PMOS管305的沟道长度调制效应的影响,使得对第十一PMOS管506的输出电流的控制更加精确,即使电源电压变化,第五PMOS管305的漏源电压依然保持与第十PMOS管410的漏源电压相等,到达了静态电流在不同电源电压下的变化幅度大幅减小的目的,最终提高了AB类放大器的电源电压抑制比。By adopting the above circuit structure, the drain-source voltage of the fifth PMOS tube 305 is equal to the drain-source voltage of the tenth PMOS tube 410, thereby avoiding the influence of the channel length modulation effect of the fifth PMOS tube 305 in the current class AB amplifier circuit, making the control of the output current of the eleventh PMOS tube 506 more precise. Even if the power supply voltage changes, the drain-source voltage of the fifth PMOS tube 305 still remains equal to the drain-source voltage of the tenth PMOS tube 410, achieving the purpose of greatly reducing the variation amplitude of the static current under different power supply voltages, and finally improving the power supply voltage rejection ratio of the class AB amplifier.
综合以上所述,本发明实施例的放大器电路,通过浮动电流源闭环模块30中的反馈环路的作用,使得第九NMOS管309的漏源电压与它的栅源电压相等,从而避免了第九NMOS管309的漏极电压过高,减小了第九NMOS管309的漏端与衬底之间的漏电(Ibd)的大小,最终避免了AB类放大器电路中的差分输入级电路的输出阻抗降低、增益降低、电源抑制比降低的问题;同时基于偏置电路模块40中第十二NMOS管412与第十五NMOS管505相匹配,第九NMOS管309与第十三NMOS管413相匹配,由于第九NMOS管309的漏源电压与它的栅源电压相等,就使得第九NMOS管309的漏源电压与第十三NMOS管413的漏源电压的漏源电压也相等,消除了第九NMOS管309的沟道长度调制效应的影响,达到了静态电流在不同电源电压下的变化幅度大幅减小的目的,最终提高了AB类放大器的电源电压抑制比。In summary, the amplifier circuit of the embodiment of the present invention, through the effect of the feedback loop in the floating current source closed-loop module 30, makes the drain-source voltage of the ninth NMOS tube 309 equal to its gate-source voltage, thereby avoiding the drain voltage of the ninth NMOS tube 309 being too high, and reducing the leakage current (I bd ) between the drain end of the ninth NMOS tube 309 and the substrate. ), and finally avoid the problems of reduced output impedance, reduced gain, and reduced power supply rejection ratio of the differential input stage circuit in the class AB amplifier circuit; at the same time, based on the matching of the twelfth NMOS tube 412 and the fifteenth NMOS tube 505 in the bias circuit module 40, and the matching of the ninth NMOS tube 309 and the thirteenth NMOS tube 413, since the drain-source voltage of the ninth NMOS tube 309 is equal to its gate-source voltage, the drain-source voltage of the ninth NMOS tube 309 and the drain-source voltage of the thirteenth NMOS tube 413 are also equal, eliminating the influence of the channel length modulation effect of the ninth NMOS tube 309, achieving the purpose of greatly reducing the variation amplitude of the static current under different power supply voltages, and finally improving the power supply voltage rejection ratio of the class AB amplifier.
同样的,本发明实施例的放大器电路,基于第九PMOS管409与第十一PMOS管506相匹配,第五PMOS管305与第十PMOS管410相匹配,第十四NMOS管414与第十五NMOS管505相匹配,得到第五PMOS管305的漏源电压与第十PMOS管410的漏源电压相等,消除了第五PMOS管305的沟道长度调制效应的影响,达到了静态电流在不同电源电压下的变化幅度大幅减小的目的,最终提高了AB类放大器的电源电压抑制比。Similarly, the amplifier circuit of the embodiment of the present invention is based on the matching of the ninth PMOS tube 409 with the eleventh PMOS tube 506, the matching of the fifth PMOS tube 305 with the tenth PMOS tube 410, and the matching of the fourteenth NMOS tube 414 with the fifteenth NMOS tube 505, so that the drain-source voltage of the fifth PMOS tube 305 is equal to the drain-source voltage of the tenth PMOS tube 410, thereby eliminating the influence of the channel length modulation effect of the fifth PMOS tube 305, achieving the purpose of greatly reducing the variation amplitude of the static current under different power supply voltages, and ultimately improving the power supply voltage rejection ratio of the class AB amplifier.
综上所述,本发明的放大器电路在使用过程中,不但精确控制输出级电路的静态电流,并且提高了放大器电路中的差分输入级电路的输出阻抗,最终提高了放大器电路的增益以及电源抑制比。整个放大器电路增加的元器件较少,成本较低且兼容性很强,运行可靠性高,极大的丰富了用户使用AB类放大器的选择。In summary, the amplifier circuit of the present invention not only accurately controls the quiescent current of the output stage circuit during use, but also improves the output impedance of the differential input stage circuit in the amplifier circuit, and finally improves the gain and power supply rejection ratio of the amplifier circuit. The entire amplifier circuit has fewer components added, low cost, strong compatibility, high operating reliability, and greatly enriches the user's choice of using class AB amplifiers.
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。Although the preferred embodiments of the present invention have been described, those skilled in the art may make additional changes and modifications to these embodiments once they have learned the basic creative concept. Therefore, the appended claims are intended to be interpreted as including the preferred embodiments and all changes and modifications that fall within the scope of the embodiments of the present invention.
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。Finally, it should be noted that, in this article, relational terms such as first and second, etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship or order between these entities or operations. Moreover, the terms "include", "comprise" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or terminal device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or terminal device. In the absence of further restrictions, the elements defined by the sentence "comprise a ..." do not exclude the existence of other identical elements in the process, method, article or terminal device including the elements.
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。The embodiments of the present invention are described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific implementation methods. The above-mentioned specific implementation methods are merely illustrative and not restrictive. Under the enlightenment of the present invention, ordinary technicians in this field can also make many forms without departing from the scope of protection of the purpose of the present invention and the claims, which all fall within the protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911121883.0A CN112821875B (en) | 2019-11-15 | 2019-11-15 | An amplifier circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911121883.0A CN112821875B (en) | 2019-11-15 | 2019-11-15 | An amplifier circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112821875A CN112821875A (en) | 2021-05-18 |
CN112821875B true CN112821875B (en) | 2024-05-31 |
Family
ID=75852028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911121883.0A Active CN112821875B (en) | 2019-11-15 | 2019-11-15 | An amplifier circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112821875B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113419594B (en) * | 2021-07-02 | 2022-02-11 | 合肥睿普康集成电路有限公司 | Quiescent current control circuit capable of being used for operational amplifier |
CN114640314B (en) * | 2022-04-07 | 2024-04-09 | 西安理工大学 | A CMOS power amplifier for sensor linearization circuit |
CN115275956B (en) * | 2022-06-22 | 2023-10-24 | 贵州振华风光半导体股份有限公司 | Current compensation circuit and amplifier circuit of matched diode protection unit |
CN120016977A (en) * | 2025-04-21 | 2025-05-16 | 江苏润石科技有限公司 | Low-voltage operational amplifier for reducing system offset voltage |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990018189A (en) * | 1997-08-26 | 1999-03-15 | 윤종용 | Folded cascode op amp circuit |
KR20060064940A (en) * | 2004-12-09 | 2006-06-14 | 삼성전자주식회사 | Differential Amplifiers with Self-Biased Class A Outputs |
US7414473B1 (en) * | 2006-07-27 | 2008-08-19 | Linear Technology Corporation | Class AB folded-cascode amplifier having cascode compensation |
CN101873105A (en) * | 2009-04-21 | 2010-10-27 | 14号公司 | The class ab ammplifier system |
CN202503479U (en) * | 2012-03-16 | 2012-10-24 | 聚辰半导体(上海)有限公司 | A class AB operational amplifier with high gain and a high power supply rejection ration |
CN107819446A (en) * | 2016-09-14 | 2018-03-20 | 成都锐成芯微科技股份有限公司 | High PSRR operational amplification circuit |
CN109217833A (en) * | 2017-07-03 | 2019-01-15 | 无锡华润上华科技有限公司 | Rail-to-rail operational amplifier |
CN109947169A (en) * | 2019-04-23 | 2019-06-28 | 电子科技大学 | A High Power Supply Rejection Ratio Bandgap Reference Circuit with Preregulated Structure |
-
2019
- 2019-11-15 CN CN201911121883.0A patent/CN112821875B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990018189A (en) * | 1997-08-26 | 1999-03-15 | 윤종용 | Folded cascode op amp circuit |
KR20060064940A (en) * | 2004-12-09 | 2006-06-14 | 삼성전자주식회사 | Differential Amplifiers with Self-Biased Class A Outputs |
US7414473B1 (en) * | 2006-07-27 | 2008-08-19 | Linear Technology Corporation | Class AB folded-cascode amplifier having cascode compensation |
CN101873105A (en) * | 2009-04-21 | 2010-10-27 | 14号公司 | The class ab ammplifier system |
CN202503479U (en) * | 2012-03-16 | 2012-10-24 | 聚辰半导体(上海)有限公司 | A class AB operational amplifier with high gain and a high power supply rejection ration |
CN107819446A (en) * | 2016-09-14 | 2018-03-20 | 成都锐成芯微科技股份有限公司 | High PSRR operational amplification circuit |
CN109217833A (en) * | 2017-07-03 | 2019-01-15 | 无锡华润上华科技有限公司 | Rail-to-rail operational amplifier |
CN109947169A (en) * | 2019-04-23 | 2019-06-28 | 电子科技大学 | A High Power Supply Rejection Ratio Bandgap Reference Circuit with Preregulated Structure |
Also Published As
Publication number | Publication date |
---|---|
CN112821875A (en) | 2021-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112821875B (en) | An amplifier circuit | |
CN100481718C (en) | AB rail-to-rail operational amplifier | |
US8040187B2 (en) | Semiconductor integrated circuit device | |
CN106788434B (en) | Source follower buffer circuit | |
EP2652872B1 (en) | Current mirror and high-compliance single-stage amplifier | |
JPWO2010100741A1 (en) | Optical communication device | |
CN114710124B (en) | Rail-to-rail input-output operational transconductance amplifier based on low ripple charge pump | |
CN104242830A (en) | Reconfigurable ultra-broadband low noise amplifier with active inductor | |
KR19980036295A (en) | Mixers with Replication Voltage-to-Current Converter | |
CN110798203B (en) | High linearity unit gain voltage buffer under nano CMOS process | |
CN101471634B (en) | Output stage circuit and operational amplifier using it | |
López-Martín et al. | Highly linear programmable balanced current scaling technique in moderate inversion | |
CN105429599A (en) | Feedforward Cascode Transimpedance Amplifier Circuit with Active Inductor Structure | |
CN111384940B (en) | High-linearity wide-swing CMOS voltage follower | |
CN110649903B (en) | Differential amplifier with high common mode dynamic range and constant PVT | |
CN110350876B (en) | Preamplifiers, pre-differential amplifiers, and integrated circuits | |
CN114840046B (en) | A Linear Regulator Based on Current Miller Compensation | |
CN211089632U (en) | High-linearity wide-swing CMOS voltage follower | |
CN110224700A (en) | A kind of high speed complementation type dual power supply operational amplifier | |
CN116722830A (en) | Full-differential low-offset high-gain operational amplifier | |
CN101453195A (en) | Method for improving common mode feedback stability by using grounding capacitor | |
CN210724703U (en) | A Wide Swing Unity Gain Voltage Buffer | |
CN110798163B (en) | Wide-swing unit gain voltage buffer | |
JP4862694B2 (en) | FET amplifier and bias circuit thereof | |
CN112511110A (en) | High-linearity programmable gain amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: Room 101, Floor 1-5, Building 8, Yard 9, Fenghao East Road, Haidian District, Beijing 100094 Applicant after: Zhaoyi Innovation Technology Group Co.,Ltd. Address before: 100083 12 Floors, Block A, Tiangong Building, Science and Technology University, 30 College Road, Haidian District, Beijing Applicant before: GIGADEVICE SEMICONDUCTOR(BEIJING) Inc. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |