CN112820795A - 一种非晶硅材料电阻率调节方法 - Google Patents

一种非晶硅材料电阻率调节方法 Download PDF

Info

Publication number
CN112820795A
CN112820795A CN202011592450.6A CN202011592450A CN112820795A CN 112820795 A CN112820795 A CN 112820795A CN 202011592450 A CN202011592450 A CN 202011592450A CN 112820795 A CN112820795 A CN 112820795A
Authority
CN
China
Prior art keywords
amorphous silicon
silicon material
resistivity
glow discharge
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011592450.6A
Other languages
English (en)
Inventor
曾璞
陈方军
刘从吉
公丕华
赖冬寅
王万祎
梁松林
周忠燕
李刚
陈君润
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South West Institute of Technical Physics
Original Assignee
South West Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South West Institute of Technical Physics filed Critical South West Institute of Technical Physics
Priority to CN202011592450.6A priority Critical patent/CN112820795A/zh
Publication of CN112820795A publication Critical patent/CN112820795A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System characterised by the doping material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种简单可行的非晶硅材料电阻率的调节方法,其中,包括:采用化学气相沉积PECVD硅烷辉光放电制备非晶硅材料,平行板结构装置衬底放在具有温控装置的平板上,射频电压加在上下平行板之间;反应腔体内采用热丝控制气体温度,在辉光放电前,先将沉积室温抽真空到5x10‑4Pa;然后在辉光放电沉积过程的反应室中,通入少量N2O与硅烷作为非晶硅材料反应气体,并且在反应过程中使反应腔中保持46Pa~55Pa的压强,对衬底进行加热到300℃,让上下平板间出现电容耦合式的气体放电,将氧原子掺杂入非晶硅材料中,使氧原子在非晶硅中与Si形成新键,形成含氧的氢化非晶硅。本发明提出的一个非晶硅材料电阻率的调节方法,简单可行。

Description

一种非晶硅材料电阻率调节方法
技术领域
本发明是关于光电器件领域,特别涉及非晶硅材料电阻率调节方法。
背景技术
近来,非晶硅材料制作的太阳能电池已经得到广泛应用,而利用非晶硅材料制备的薄膜晶体管(TFT)有源矩阵液晶显示器也成为当今液晶显示的主流。在光电探测领域,非晶硅材料由于其良好的光电性能,也成为了各种探测器制作的热门材料。在集成电路的各种器件的中,非晶硅作为一种常见的半导体材料,也得到了极大的关注。在半导体器件中硅材料的电阻率极为重要,材料的电阻率将会极大的影响到器件的各种电学性能,通常在保持其材料各种性能不变的情况下,可以通过改变硅材料物理厚度或者改变其器件结构来改变器件的电阻,但这样会导致工艺难度成倍增加,并且由于改变器件结构可能会带来的器件体积变化等问题。一般认为,非晶硅材料电阻率的大小与材料中缺陷,杂质以及硅与其它元素的键合方式有着很大关系:因为缺陷,杂质以及硅与其它元素的键合方式会影响到硅片的少数载流子寿命,少数载流子寿命又直接影响材料电阻率。现有技术常用的非晶硅材料制备方法:PECVD(Plasma Enhanced Chemical Vapor Deposition)--等离子体增强化学气相沉积法,是借助微波或射频等使含有材料组成原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的材料。为了使化学反应能在较低的温度下进行,利用了等离子体的活性来促进反应,因而这种CVD称为等离子体增强化学气相沉积(PECVD)。在PECVD工艺中由于等离子体中高速运动的电子撞击到中性的反应气体分子,就会使中性反应气体分子变成碎片或处于激活的状态容易发生反应。
发明内容
本发明的目的提供一种简单可行的非晶硅材料电阻率的调节方法,用于解决上述现有技术的问题。
本发明一种简单可行的非晶硅材料电阻率的调节方法,其中,包括:采用化学气相沉积PECVD硅烷辉光放电制备非晶硅材料,平行板结构装置衬底放在具有温控装置的平板上,射频电压加在上下平行板之间;反应腔体内采用热丝控制气体温度,在辉光放电前,先将沉积室温抽真空到5x10-4Pa;然后在辉光放电沉积过程的反应室中,通入少量N2O与硅烷作为非晶硅材料反应气体,并且在反应过程中使反应腔中保持46Pa~55Pa的压强,对衬底进行加热到300℃,让上下平板间出现电容耦合式的气体放电,将氧原子掺杂入非晶硅材料中,使氧原子在非晶硅中与Si形成新键,形成含氧的氢化非晶硅。
根据本发明所述的简单可行的非晶硅材料电阻率的调节方法的一实施例,其中,采用化学气相沉积PECVD制备非晶硅材料,通过将氧原子按工艺参数控制比例,掺杂入非晶硅材料中,从而实现电阻率的调节。
根据本发明所述的简单可行的非晶硅材料电阻率的调节方法的一实施例,其中,采用等离子体增强化学气相沉积法PECVD制备非晶硅材料。
根据本发明所述的简单可行的非晶硅材料电阻率的调节方法的一实施例,其中,衬底放在具有温控装置的平板上,射频电压加在上下平行板之间,并且反应腔体内采用热丝控制气体温度,压强通常保持在50Pa,在上下平板间就会出现电容耦合式的气体放电,并产生等离子体。
根据本发明所述的简单可行的非晶硅材料电阻率的调节方法的一实施例,其中,抽真空包括:在辉光放电前先将沉积室温抽真空,使得真空度达到5×10-4Pa。
根据本发明所述的简单可行的非晶硅材料电阻率的调节方法的一实施例,其中,达到真空度后对衬底进行加热。
根据本发明所述的简单可行的非晶硅材料电阻率的调节方法的一实施例,其中,辉光放电沉积完材料后,用氮气进行冲洗,。
根据本发明所述的简单可行的非晶硅材料电阻率的调节方法的一实施例,其中,还包括:在真空状态下,将辉光放电沉积的材料冷却2小时,待其降至常温后取出。
根据本发明所述的简单可行的非晶硅材料电阻率的调节方法的一实施例,其中,还包括:制备的非晶硅材料进行了电阻率的测试。
本发明提出的一个非晶硅材料电阻率的调节方法,简单可行。本发明可以通过下述技术方案予以实现:在采用化学气相沉积PECVD制备非晶硅材料中,将氧原子掺杂入非晶硅材料中调节电阻率。
附图说明
图1为非晶硅材料的测试结果图。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本发明一个非晶硅材料电阻率的调节方法包括如下步骤:在采用化学气相沉积PECVD硅烷辉光放电制备非晶硅材料中,平行板结构装置衬底放在具有温控装置的平板上,射频电压加在上下平行板之间;反应腔体内采用热丝控制气体温度,在辉光放电前,先将沉积室温抽真空到5x10-4Pa;然后在辉光放电沉积过程的反应室中,通入少量N2O与硅烷作为非晶硅材料反应气体,并且在反应过程中使反应腔中保持46Pa~55Pa的压强,对衬底进行加热到300℃,让上下平板间出现电容耦合式的气体放电,将氧原子掺杂入非晶硅材料中,使氧原子在非晶硅中与Si形成新键,形成含氧的氢化非晶硅。
本发明的原理利用了在PECVD硅烷辉光放电制备非晶硅材料的过程中掺杂微量的氧元素,氧元素本身的引入会导致非晶硅的键合方式发生改变,形成新的化学键,但如果掺杂过多,会导致非晶硅材料中的晶格失配。由于氧化硅与非晶硅的工艺条件基本兼容,通入少量N2O与硅烷作为反应气体,产生的高能等离子体能打开硅硅键、硅氢键和硅氧键,所以能将氧原子掺杂入非晶硅材料中,形成含氧的氢化非晶硅,其化学式可用a-SiOx:Hy表示。根据随机混合模型(RMM),可将a-SiOx:Hy材料看作是尺度大小在纳米范围内的氧化硅和非晶硅材料互相随机混合而成,根据等效介质近似理论(Effective Medium Approximation)来解释混合材料的电阻率或者介电常数等性质。根据等效介质理论:混合材料的电阻率与其本身所包含的各种元素的比例相关。所以通过控制非晶硅材料中氧原子的含量来根据实际需求调节材料的电阻率。而掺杂氧元素的含量由通入N2O的量决定,所以电阻率可以通过控制N2O的比例来调节。
制备的非晶硅材料采用四探针测试仪测试其电阻率,测试结果如图1所示,通过图1可以看出,随着掺氧量的不同,材料的电阻率有了线性变化,实现了电阻率调节的功能。
一个非晶硅材料电阻率的调节方法,其特征在于包括如下步骤:在采用化学气相沉积PECVD制备非晶硅材料中,通过将氧原子按工艺参数控制比例,掺杂入非晶硅材料中,从而实现电阻率的调节。
在以下描述的实施例中,非晶硅材料电阻率的调节可以通过PECVD掺氧非晶硅实现。采用等离子体增强化学气相沉积法PECVD制备非晶硅材料。PECVD装置可以采用现有技术一种平行板结构装置。衬底放在具有温控装置的平板上,射频电压加在上下平行板之间,并且反应腔体内采用热丝控制气体温度,压强通常保持在50Pa左右,于是在上下平板间就会出现电容耦合式的气体放电,并产生等离子体。其实现步骤主要包括:
(1)抽真空。在辉光放电前先将沉积室温抽真空,使得真空度达到5×10-4Pa左右,以避免杂质气体对材料带来的污染。保持50Pa压强;
(2)加热衬底。当达到想要的真空度后需要对衬底进行加热,有利于释放出吸附在腔体壁和衬底上的杂质气体分子和水分子,避免对成膜质量造成影响。
(3)材料沉积。在辉光放电沉积过程的反应室中,通入少量N2O与硅烷作为非晶硅材料反应气体;对衬底进行加热,让上下平板间出现电容耦合式的气体放电,使氧原子在非晶硅中形成新的化学键,将氧原子掺杂入非晶硅材料中,形成含氧的氢化非晶硅。设置相关工艺参数(压强50Pa,硅烷流量100sccm,分别通入不同流量的N2O,射频功率30w,气体温度200℃,衬底温度300℃,沉积时间15分钟),其中硅烷制备非晶硅的典型的反应方程如下:
e+SiH4→SiH2+H2+e-2.1ev (1)
e+SiH4→SiH3+H2+e-4.1ev (2)
e+SiH4→Si+2H2+e-4.4ev (3)
e+SiH4→SiH+H2+H+e-5.9ev (4)
氧元素的掺入方法采取在硅烷中通入少量N2O的方法,反应示意方程式如下:
mSiH4+nSiO2→SiOxHy+uH2+vN2 (5)
根据需求分别设置了6组不同的反应气体流量比,制备了6个不同组份的材料。样本制作时仅仅改变硅烷与笑气流量比,工艺参数如下:压强50Pa,硅烷流量100sccm,射频功率30w,气体温度200℃,衬底温度300℃,沉积时间15分钟。其中样品1到6中的硅烷、笑气流量比分别为100:1,100:2:,100:4,100:8,100:12,100:16。
(4)气路清洗。沉积完材料后,沉积室和各个气路均会有残余气体和粉尘等副产物,因此必须迅速用氮气进行冲洗,以避免堵塞气路,保证设备正常运转。
(5)非晶硅材料制品冷却。在真空状态下将沉积的材料冷却2小时,待其降至常温后方可取出,以防止其氧化。
附图1为对非晶硅材料掺氧后,6种不同组份的掺氧非晶硅材料的电阻率。
(6)样品测试。本实验采用日本NAPSON公司生产的RT3000型四探针测试仪对制备的非晶硅材料进行了电阻率的测试。
本发明提出的一个非晶硅材料电阻率的调节方法,简单可行。本发明可以通过下述技术方案予以实现:在采用化学气相沉积PECVD制备非晶硅材料中,将氧原子掺杂入非晶硅材料中调节电阻率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (9)

1.一种简单可行的非晶硅材料电阻率的调节方法,其特征在于,包括:
采用化学气相沉积PECVD硅烷辉光放电制备非晶硅材料,平行板结构装置衬底放在具有温控装置的平板上,射频电压加在上下平行板之间;反应腔体内采用热丝控制气体温度,在辉光放电前,先将沉积室温抽真空到5x10-4Pa;然后在辉光放电沉积过程的反应室中,通入少量N2O与硅烷作为非晶硅材料反应气体,并且在反应过程中使反应腔中保持46Pa~55Pa的压强,对衬底进行加热到300℃,让上下平板间出现电容耦合式的气体放电,将氧原子掺杂入非晶硅材料中,使氧原子在非晶硅中与Si形成新键,形成含氧的氢化非晶硅。
2.如权利要求1所述的简单可行的非晶硅材料电阻率的调节方法,其特征在于,采用化学气相沉积PECVD制备非晶硅材料,通过将氧原子按工艺参数控制比例,掺杂入非晶硅材料中,从而实现电阻率的调节。
3.如权利要求1所述的简单可行的非晶硅材料电阻率的调节方法,其特征在于,采用等离子体增强化学气相沉积法PECVD制备非晶硅材料。
4.如权利要求1所述的简单可行的非晶硅材料电阻率的调节方法,其特征在于,衬底放在具有温控装置的平板上,射频电压加在上下平行板之间,并且反应腔体内采用热丝控制气体温度,压强通常保持在50Pa,在上下平板间就会出现电容耦合式的气体放电,并产生等离子体。
5.如权利要求1所述的简单可行的非晶硅材料电阻率的调节方法,其特征在于,抽真空包括:在辉光放电前先将沉积室温抽真空,使得真空度达到5×10-4Pa。
6.如权利要求1所述的简单可行的非晶硅材料电阻率的调节方法,其特征在于,达到真空度后对衬底进行加热。
7.如权利要求1所述的简单可行的非晶硅材料电阻率的调节方法,其特征在于,辉光放电沉积完材料后,用氮气进行冲洗。
8.如权利要求1所述的简单可行的非晶硅材料电阻率的调节方法,其特征在于,还包括:在真空状态下,将辉光放电沉积的材料冷却2小时,待其降至常温后取出。
9.如权利要求1所述的简单可行的非晶硅材料电阻率的调节方法,其特征在于,还包括:制备的非晶硅材料进行了电阻率的测试。
CN202011592450.6A 2020-12-29 2020-12-29 一种非晶硅材料电阻率调节方法 Pending CN112820795A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011592450.6A CN112820795A (zh) 2020-12-29 2020-12-29 一种非晶硅材料电阻率调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011592450.6A CN112820795A (zh) 2020-12-29 2020-12-29 一种非晶硅材料电阻率调节方法

Publications (1)

Publication Number Publication Date
CN112820795A true CN112820795A (zh) 2021-05-18

Family

ID=75855704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011592450.6A Pending CN112820795A (zh) 2020-12-29 2020-12-29 一种非晶硅材料电阻率调节方法

Country Status (1)

Country Link
CN (1) CN112820795A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113843931A (zh) * 2021-09-17 2021-12-28 西南技术物理研究所 一种gd414c硅橡胶电阻率改变方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278015A (en) * 1989-08-31 1994-01-11 Sango Electric Co., Ltd. Amorphous silicon film, its production and photo semiconductor device utilizing such a film
CN101295743A (zh) * 2008-04-15 2008-10-29 福建钧石能源有限公司 薄膜、薄膜的形成方法和具有该薄膜的太阳能电池
CN103205727A (zh) * 2012-12-24 2013-07-17 西南技术物理研究所 非晶硅光学薄膜折射率调节方法
CN107785302A (zh) * 2016-08-31 2018-03-09 沈阳硅基科技有限公司 一种soi硅衬底材料的制备方法和soi材料
CN110429020A (zh) * 2019-06-28 2019-11-08 湖南红太阳光电科技有限公司 一种管式pecvd设备制备非晶硅薄膜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278015A (en) * 1989-08-31 1994-01-11 Sango Electric Co., Ltd. Amorphous silicon film, its production and photo semiconductor device utilizing such a film
CN101295743A (zh) * 2008-04-15 2008-10-29 福建钧石能源有限公司 薄膜、薄膜的形成方法和具有该薄膜的太阳能电池
CN103205727A (zh) * 2012-12-24 2013-07-17 西南技术物理研究所 非晶硅光学薄膜折射率调节方法
CN107785302A (zh) * 2016-08-31 2018-03-09 沈阳硅基科技有限公司 一种soi硅衬底材料的制备方法和soi材料
CN110429020A (zh) * 2019-06-28 2019-11-08 湖南红太阳光电科技有限公司 一种管式pecvd设备制备非晶硅薄膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王德和: "氧对a-Si:H的性质的影响", 《北京大学学报(自然科学版)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113843931A (zh) * 2021-09-17 2021-12-28 西南技术物理研究所 一种gd414c硅橡胶电阻率改变方法

Similar Documents

Publication Publication Date Title
JP5751895B2 (ja) 半導体装置の製造方法、クリーニング方法および基板処理装置
US8105957B2 (en) Method of producing semiconductor device
US8906813B2 (en) SiOx process chemistry development using microwave plasma CVD
US8080290B2 (en) Film formation method and apparatus for semiconductor process
US6531193B2 (en) Low temperature, high quality silicon dioxide thin films deposited using tetramethylsilane (TMS) for stress control and coverage applications
US20090232985A1 (en) Method of forming silicon oxide containing films
EP0470632A2 (en) Method of manufacturing a silicon oxide film and an oxide based glass for semiconductor devices
TWI489524B (zh) 形成多晶矽膜之方法
WO2004009861A2 (en) Method to form ultra high quality silicon-containing compound layers
KR20030084125A (ko) 절연막의 저온 증착법
US20040081747A1 (en) Method for manufacture of a solar cell
CN112820795A (zh) 一种非晶硅材料电阻率调节方法
KR20180111556A (ko) 에칭 방법 및 에칭 장치
CN105070646B (zh) 一种低应力氮化硅薄膜的制备方法
KR102184690B1 (ko) 오목부의 매립 방법 및 처리 장치
Lim et al. N‐channel polycrystalline silicon thin film transistors using as‐deposited polycrystalline silicon and ion doping
CN103205727A (zh) 非晶硅光学薄膜折射率调节方法
JP2004311782A (ja) 成膜方法及び成膜装置
Sarret et al. n‐type polycrystalline silicon films obtained by crystallization of in situ phosphorus‐doped amorphous silicon films deposited at low pressure
EP0946783A1 (en) Semiconducting devices and method of making thereof
JP3443909B2 (ja) 半導体膜形成方法、半導体装置の製造方法及び半導体装置
JPH1149507A (ja) シリコン粒子の製造方法及びシリコン膜の形成方法
CN104164660B (zh) 一种低介电常数多孔SiOCNH薄膜及其制备方法
KR100458140B1 (ko) 반도체 소자의 박막증착장치 및 그 방법
Haji et al. Pressure dependence of in situ boron‐doped silicon films prepared by low‐pressure chemical vapor deposition. II. Resistivity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210518

RJ01 Rejection of invention patent application after publication