CN112820779A - 一种薄膜晶体管及其制备方法 - Google Patents

一种薄膜晶体管及其制备方法 Download PDF

Info

Publication number
CN112820779A
CN112820779A CN202011635704.8A CN202011635704A CN112820779A CN 112820779 A CN112820779 A CN 112820779A CN 202011635704 A CN202011635704 A CN 202011635704A CN 112820779 A CN112820779 A CN 112820779A
Authority
CN
China
Prior art keywords
layer
thin film
electrode
film transistor
phthalocyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011635704.8A
Other languages
English (en)
Other versions
CN112820779B (zh
Inventor
王军
王桂东
毛毓珂
陈赛赛
蔡金华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN202011635704.8A priority Critical patent/CN112820779B/zh
Publication of CN112820779A publication Critical patent/CN112820779A/zh
Application granted granted Critical
Publication of CN112820779B publication Critical patent/CN112820779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种薄膜晶体管及其制备方法,制备方法包括首先在导电基片上依次堆叠设置介电层、半导体层及辅助层,并使辅助层完全覆盖半导体层;再去除辅助层两端材料,形成镂空电极区域,并使半导体层的两端及介电层从镂空电极区域内露出;之后将缓冲材料充满镂空电极区域,形成缓冲层;最后在两端缓冲层上分别制备源电极与漏电极,并去除辅助层,即得到薄膜晶体管。与现有技术相比,本发明通过插入一层缓冲层材料到金属电极和半导体层,使金属电极或者半导体材料的功函数上升,进而使金属电极与半导体层的接触由肖特基接触转变为欧姆接触,使得接触电阻减小,接触电流显著增加。

Description

一种薄膜晶体管及其制备方法
技术领域
本发明属于微电子技术领域,涉及一种薄膜晶体管及其制备方法。
背景技术
薄膜晶体管(Thin Film Transistor)是一种特殊类型的金属氧化物半导体场效应晶体管(MOSFET),通过在基板上沉积薄膜状有源半导体层以及介电层,并在半导体层上加入源漏电极制备得到。在工作状态下,薄膜晶体管是通过栅极、源极、漏极电压控制多数载流子在器件中的分布,从而达到控制源极与漏电极之间电流-电压的关系。
MOSFET作为一种多数载流子器件,避免了双极型晶体管工作时少数载流子注入,因而具有更快的响应速度,从而得到较为广泛的应用。同时,功率MOSFET能够提供非常大的安全工作区,并且多个单元结构能够并行使用,具有高功率密度的优势。
对于目前的薄膜晶体管来说,其源极、漏极直接与半导体进行接触,两者的接触之间会形成范德华间隙,范德华间隙的存在会导致晶体管工作时载流子需要更大的能量才能从电极转移到半导体上,接触电阻变大,器件迁移率降低和导电特性变差。
发明内容
本发明的目的就是提供一种薄膜晶体管及其制备方法,用于解决受范德华间隙的影响,使得电极与半导体层之间接触电阻变大,器件迁移率降低和导电特性变差的问题。
本发明的目的可以通过以下技术方案来实现:
一种薄膜晶体管,包括电极与半导体层,其中所述的电极与半导体层之间还设有缓冲层,该缓冲层用于实现电极与半导体层之间的欧姆接触。
进一步地,所述的缓冲层中,所用缓冲材料包括石墨烯、纳米晶体石墨烯、石墨炔、金属酞菁化合物及噻吩衍生物中的至少一种。
进一步地,所述的金属酞菁化合物包括酞菁铜、酞菁镍、酞菁锌、酞菁钴、酞菁铂、氟代酞菁铜、氟代酞菁锌、氟代酞菁铁、氟代酞菁钴中的至少一种。
进一步地,所述的噻吩衍生物包括噻吩齐聚物、聚噻吩、聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)以及氟代齐聚噻吩中的至少一种。
进一步地,所述的电极的材料包括ITO、Al、Mg、Ag、Ta、Ti、Cr、Mo、Cu、Au、Pt中的至少一种。
一种薄膜晶体管的制备方法,包括以下步骤:
1)构建辅助层:在导电基片上依次堆叠设置介电层、半导体层及辅助层,并使辅助层完全覆盖半导体层;
2)构建电极区域;去除辅助层两端材料,形成镂空电极区域,并使半导体层的两端及介电层从镂空电极区域内露出;
3)修饰缓冲层:将缓冲材料充满镂空电极区域,形成缓冲层;
4)制备电极:在两端缓冲层上分别制备源电极与漏电极,并去除辅助层,即得到所述的薄膜晶体管。
进一步地,步骤1)中,所述的辅助层的材料包括聚甲基丙烯酸甲酯、聚酰胺、聚4-甲基-1-戊烯、聚丙烯、聚邻苯二甲酰胺、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯、聚氟乙烯、聚异丁烯、聚酰亚胺、聚乙烯醇、光刻胶、酚醛树脂、氟橡胶、有机硅橡胶、天然橡胶、丁腈橡胶中的至少一种。
进一步地,步骤2)中,通过光刻技术去除辅助层两端材料,形成镂空电极区域,并在光刻过程中通过控制光刻功率及时间以避免损伤镂空电极区域内的半导体层及介电层,同时也可通过控制镂空电极区域的位置、形状及尺寸,以控制缓冲层的位置、形状及尺寸。
进一步地,步骤3)中,通过转移或沉积法使缓冲材料充满镂空电极区域,并形成缓冲层。
进一步地,步骤4)中,通过电子束蒸发法制备电极。
本发明提供一种在制作薄膜晶体管过程中降低金属电极与半导体接触电阻的方法,采用辅助层的方法于金属电极与半导体层之间插入一层缓冲层,实现电极金属或半导体层材料功函数上升,使金属与半导体的接触由肖特基接触向欧姆接触转变,进而使得接触电阻的下降和接触电流增大。
与现有技术相比,本发明具有以下特点:
1)本发明中的辅助层可以防止光刻技术对半导体层的伤害,同时实现对缓冲层的位置、尺寸和形状控制,并避免缓冲层材料进入薄膜晶体管的沟道,影响半导体器件的性能;
2)本发明利用辅助层作为遮挡物将缓冲层插入到金属电极与半导体材料之间,为两者之间提供一个新的隧道路径,载流子将沿着新隧道路径进行转移,并使得传输阻力减小,导通电流增大;
3)本发明通过插入一层缓冲材料到金属电极和半导体层之间,使金属电极或者半导体材料的功函数上升,金属电极与半导体层之间由肖特基接触转变为欧姆接触,进而使得接触电阻减小,接触电流显著增加。
附图说明
图1为实施例1中所制备的薄膜晶体管的结构示意图;
图2为实施例1中构建半导体层后的薄膜晶体管的俯视图;
图3为实施例1中构建电极区域后的薄膜晶体管的俯视图;
图4为实施例1中构建缓冲层后的薄膜晶体管的俯视图;
图5为实施例1中构建电极后的薄膜晶体管的俯视图;
图6为实施例1中所制备的薄膜晶体管的俯视图;
图7为以MoS2半导体层和Cu电极构建的薄膜晶体管的输出曲线图;
图8为实施例2中以MoS2半导体层和Cu电极构建并修饰石墨烯缓冲层的薄膜晶体管的输出曲线图;
图9为石墨烯缓冲层修饰前后的薄膜晶体管的输出曲线对比图;
图10为石墨烯缓冲层修饰前后的薄膜晶体管转移曲线对比图;
图中标记说明:
1-导电基片、2-介电层、3-半导体层、4-缓冲层、5-电极、6-辅助层。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
一种薄膜晶体管的制备方法,包括以下步骤:
1)构建辅助层:在表面设有介电层的导电基片上,通过机械剥离法或沉积法制备半导体层,之后将辅助材料铺设于半导体层上,并使辅助材料完全覆盖半导体层,形成辅助层;
2)构建电极区域;通过光刻技术去除辅助层两端材料,形成镂空电极区域,并使半导体层的两端及介电层从镂空电极区域内露出;
3)修饰缓冲层:通过转移或沉积法使缓冲材料充满镂空电极区域,形成缓冲层;
4)制备电极:通过电子束蒸发法,在两端缓冲层上分别制备源电极与漏电极,并去除辅助层,即得到薄膜晶体管。
其中,辅助层材料包括聚甲基丙烯酸甲酯、聚酰胺、聚4-甲基-1-戊烯、聚丙烯、聚邻苯二甲酰胺、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯、聚氟乙烯、聚异丁烯、聚酰亚胺、聚乙烯醇、光刻胶、酚醛树脂、氟橡胶、有机硅橡胶、天然橡胶、丁腈橡胶中的至少一种。
缓冲材料包括石墨烯、纳米晶体石墨烯、石墨炔、金属酞菁化合物及噻吩衍生物中的至少一种;金属酞菁化合物包括酞菁铜、酞菁镍、酞菁锌、酞菁钴、酞菁铂、氟代酞菁铜、氟代酞菁锌、氟代酞菁铁、氟代酞菁钴中的至少一种。噻吩衍生物包括噻吩齐聚物、聚噻吩、聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)以及氟代齐聚噻吩中的至少一种。
源电极与漏电极的电极材料包括ITO、Al、Mg、Ag、Ta、Ti、Cr、Mo、Cu、Au、Pt中的至少一种。
本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
如图1所示的一种二碲化钼薄膜晶体管,其制备方法包括以下步骤:
1)基片预处理:依次使用丙酮、异丙醇对硅基片(15mm×15mm)进行15min超声清洗,再使用酒精冲洗,之后通过氮气吹扫去除残留酒精,并置于65℃的烘箱内烘干2h,得到预处理硅基片;
2)制备二氧化硅介电层:将预处理硅基片置于加热炉内,并在氧气氛围中于1100℃下加热处理35分钟,使硅基片上生成厚度为100nm的二氧化硅介电层2,得到含有二氧化硅介电层2的导电基片1;
3)制备二碲化钼半导体层:如图2所示,通过机械剥离法将二碲化钼转移至二氧化硅介电层2上形成厚度为11.8nm的二碲化钼半导体层3;
4)构建辅助层:透过光学显微镜,将聚甲基丙烯酸甲酯(分子量为4950k/mol,11%溶于茴香醚)以3500rpm的转速于二氧化硅介电层2上旋涂45s,并覆盖二碲化钼半导体层3,形成辅助层6;
5)光刻电极区域:如图3所示,通过光刻技术在辅助层6两端形成镂空电极区域,使二碲化钼半导体层3的两端及二氧化硅介电层2分别从2个镂空电极区域内露出;
6)修饰缓冲层:如图4所示,将石墨烯覆盖于镂空电极区域内的二碲化钼半导体层3的两端,形成缓冲层4;
7)制备金属电极:如图5所示,真空环境中通过电子束蒸发方法,在镂空电极区域内制备铜电极5,之后在丙酮蒸气下蒸洗10分钟去除辅助层6,即得到如图6所示的二碲化钼薄膜晶体管。
实施例2:
一种二硫化钼薄膜晶体管,其制备方法中步骤3)为:
制备二硫化钼半导体层:将三氧化钼和硫粉末以质量比1:20,分布于在水平管式炉两个坩埚中,并在氩气氛围中,650℃下反应40min,使二氧化硅介电层2沉积一层二硫化钼半导体,并形成二硫化钼半导体层3。
其余同实施例1。
本实施例还将修饰石墨烯缓冲层的薄膜晶体管与未修饰的相比较,结果如图7-10所示,从图中可以看出,在输出曲线中,饱和电流增大了约4.65倍(VDS=30V,VG=0V),在转移曲线中,开关电流比由1.86变成5.22(VDS=0V)。
实施例3:
一种并五苯有机薄膜晶体管,其制备方法中
步骤3)为,制备并五苯有机半导体层:将含有二氧化硅介电层2的硅基片放入薄膜沉积系统的反应腔体中,取适量并五苯放入加热台中,之后将反应腔体抽真空,加热到180℃后观察膜厚仪使并五苯沉积于二氧化硅介电层2上的厚度为50nm,形成并五苯有机半导体层3。
步骤4)为,构建辅助层:在光学显微镜中寻找适合制作晶体管的位置,同时在该位置上旋涂光刻胶(正胶)辅助层;
步骤5)为,光刻电极区域:通过光刻技术在辅助层6两端形成镂空电极区域,使并五苯有机半导体层3的两端及二氧化硅介电层2分别从2个镂空电极区域内露出;
步骤6)为,修饰缓冲层:将步骤5)所得硅基片置于薄膜沉积系统的反应腔体中,抽真空后,加热酞菁锌使其在镂空电极区域沉积,并形成酞菁锌缓冲层4;
其余同实施例1。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种薄膜晶体管,包括电极(5)与半导体层(3),其特征在于,所述的电极(5)与半导体层(3)之间还设有缓冲层(4),该缓冲层(4)用于实现电极(5)与半导体层(3)之间的欧姆接触。
2.根据权利要求1所述的一种薄膜晶体管,其特征在于,所述的缓冲层(4)中,所用缓冲材料包括石墨烯、纳米晶体石墨烯、石墨炔、金属酞菁化合物及噻吩衍生物中的至少一种。
3.根据权利要求2所述的一种薄膜晶体管,其特征在于,所述的金属酞菁化合物包括酞菁铜、酞菁镍、酞菁锌、酞菁钴、酞菁铂、氟代酞菁铜、氟代酞菁锌、氟代酞菁铁、氟代酞菁钴中的至少一种。
4.根据权利要求2所述的一种薄膜晶体管,其特征在于,所述的噻吩衍生物包括噻吩齐聚物、聚噻吩、聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)以及氟代齐聚噻吩中的至少一种。
5.根据权利要求1所述的一种薄膜晶体管,其特征在于,所述的电极(5)的材料包括ITO、Al、Mg、Ag、Ta、Ti、Cr、Mo、Cu、Au、Pt中的至少一种。
6.一种如权利要求1至5任一项所述的薄膜晶体管的制备方法,其特征在于,该方法包括以下步骤:
1)构建辅助层:在导电基片(1)上依次堆叠设置介电层(2)、半导体层(3)及辅助层(6),并使辅助层(6)完全覆盖半导体层(3);
2)构建电极区域;去除辅助层(6)两端材料,形成镂空电极区域,并使半导体层(3)的两端及介电层(2)从镂空电极区域内露出;
3)修饰缓冲层:将缓冲材料充满镂空电极区域,形成缓冲层(4);
4)制备电极:在两端缓冲层(4)上制备电极(5),并去除辅助层(6),即得到所述的薄膜晶体管。
7.根据权利要求6所述的一种薄膜晶体管的制备方法,其特征在于,步骤1)中,所述的辅助层(6)的材料包括聚甲基丙烯酸甲酯、聚酰胺、聚4-甲基-1-戊烯、聚丙烯、聚邻苯二甲酰胺、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯、聚氟乙烯、聚异丁烯、聚酰亚胺、聚乙烯醇、光刻胶、酚醛树脂、氟橡胶、有机硅橡胶、天然橡胶、丁腈橡胶中的至少一种。
8.根据权利要求6所述的一种薄膜晶体管的制备方法,其特征在于,步骤2)中,通过光刻技术去除辅助层(6)两端材料,形成镂空电极区域。
9.根据权利要求6所述的一种薄膜晶体管的制备方法,其特征在于,步骤3)中,通过转移或沉积法使缓冲材料充满镂空电极区域,并形成缓冲层(4)。
10.根据权利要求6所述的一种薄膜晶体管的制备方法,其特征在于,步骤4)中,通过电子束蒸发法制备电极(5)。
CN202011635704.8A 2020-12-31 2020-12-31 一种薄膜晶体管及其制备方法 Active CN112820779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011635704.8A CN112820779B (zh) 2020-12-31 2020-12-31 一种薄膜晶体管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011635704.8A CN112820779B (zh) 2020-12-31 2020-12-31 一种薄膜晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN112820779A true CN112820779A (zh) 2021-05-18
CN112820779B CN112820779B (zh) 2022-12-16

Family

ID=75856917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011635704.8A Active CN112820779B (zh) 2020-12-31 2020-12-31 一种薄膜晶体管及其制备方法

Country Status (1)

Country Link
CN (1) CN112820779B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697104A (zh) * 2005-04-18 2005-11-16 中国科学院长春应用化学研究所 含有有机异质结的电接触材料及其器件
CN1719636A (zh) * 2005-05-20 2006-01-11 中国科学院长春应用化学研究所 含有非反应活性缓冲层的有机薄膜晶体管及其制作方法
CN101055918A (zh) * 2005-11-11 2007-10-17 中华映管股份有限公司 有机半导体元件的接面结构及有机晶体管及其制造方法
WO2009082129A2 (en) * 2007-12-21 2009-07-02 Dongjin Semichem Co., Ltd. Organic thin film transistor and method for preparing thereof
US20090230385A1 (en) * 2008-03-14 2009-09-17 Samsung Electronics Co., Ltd. Organic thin film transistor and method of manufacturing the same
CN101777625A (zh) * 2010-01-21 2010-07-14 上海大学 一种双极型有机薄膜晶体管及其制作方法
CN102194996A (zh) * 2010-03-08 2011-09-21 索尼公司 薄膜晶体管和电子装置
CN102224580A (zh) * 2008-11-28 2011-10-19 索尼公司 薄膜晶体管制造方法、薄膜晶体管以及电子装置
CN102916050A (zh) * 2011-08-04 2013-02-06 三星显示有限公司 薄膜晶体管和薄膜晶体管阵列面板
CN103594626A (zh) * 2013-11-20 2014-02-19 上海大学 有机薄膜晶体管及其制备方法
CN103730574A (zh) * 2013-12-30 2014-04-16 合肥工业大学 一种有机薄膜晶体管及其制备方法
CN104377247A (zh) * 2014-11-24 2015-02-25 深圳市华星光电技术有限公司 薄膜晶体管、显示装置及薄膜晶体管的制造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1697104A (zh) * 2005-04-18 2005-11-16 中国科学院长春应用化学研究所 含有有机异质结的电接触材料及其器件
CN1719636A (zh) * 2005-05-20 2006-01-11 中国科学院长春应用化学研究所 含有非反应活性缓冲层的有机薄膜晶体管及其制作方法
CN101055918A (zh) * 2005-11-11 2007-10-17 中华映管股份有限公司 有机半导体元件的接面结构及有机晶体管及其制造方法
WO2009082129A2 (en) * 2007-12-21 2009-07-02 Dongjin Semichem Co., Ltd. Organic thin film transistor and method for preparing thereof
US20090230385A1 (en) * 2008-03-14 2009-09-17 Samsung Electronics Co., Ltd. Organic thin film transistor and method of manufacturing the same
CN102224580A (zh) * 2008-11-28 2011-10-19 索尼公司 薄膜晶体管制造方法、薄膜晶体管以及电子装置
CN101777625A (zh) * 2010-01-21 2010-07-14 上海大学 一种双极型有机薄膜晶体管及其制作方法
CN102194996A (zh) * 2010-03-08 2011-09-21 索尼公司 薄膜晶体管和电子装置
CN102916050A (zh) * 2011-08-04 2013-02-06 三星显示有限公司 薄膜晶体管和薄膜晶体管阵列面板
CN103594626A (zh) * 2013-11-20 2014-02-19 上海大学 有机薄膜晶体管及其制备方法
CN103730574A (zh) * 2013-12-30 2014-04-16 合肥工业大学 一种有机薄膜晶体管及其制备方法
CN104377247A (zh) * 2014-11-24 2015-02-25 深圳市华星光电技术有限公司 薄膜晶体管、显示装置及薄膜晶体管的制造方法

Also Published As

Publication number Publication date
CN112820779B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
Lüssem et al. Vertical organic transistors
TWI292633B (zh)
US7713779B2 (en) Photoactive nanocomposite and method for the production thereof
EP2965366B1 (en) Methods for producing thin film charge selective transport layers
CN100466125C (zh) 含有有机异质结的电接触材料及其器件
Chappaz-Gillot et al. Polymer solar cells with electrodeposited CuSCN nanowires as new efficient hole transporting layer
Pei et al. Understanding molecular surface doping of large bandgap organic semiconductors and overcoming the contact/access resistance in organic field-effect transistors
Park et al. Optimization of polymer photovoltaic cells with bulk heterojunction layers hundreds of nanometers thick: modifying the morphology and cathode interface
Lee et al. Air-stable polythiophene-based thin film transistors processed using oxidative chemical vapor deposition: Carrier transport and channel/metallization contact interface
CN102420288A (zh) 一种带介电修饰层的有机场效应晶体管及制备方法
Sacramento et al. Inverted polymer solar cells using inkjet printed ZnO as electron transport layer: Characterization and degradation study
Guo et al. Organic permeable base transistors–insights and perspectives
Wu et al. Screen printing of silver nanoparticles on the source/drain electrodes of organic thin-film transistors
CN112820779B (zh) 一种薄膜晶体管及其制备方法
CN107275219B (zh) 一种石墨烯器件的制造方法
CN102986049B (zh) 使用光活性有机材料的强化晶体管及其制备方法
Chao et al. High-performance solution-processed polymer space-charge-limited transistor
CN105023950A (zh) 一种具有高开关电流比的石墨烯晶体管及其制备方法
Yun et al. A study on distinctive transition mechanism of sulfuric acid treatment on performance enhancement of poly (3, 4-ethylenedioxythiophene): Polystyrene based electrodes depending on multiwall carbon nanotube dose
KR101455600B1 (ko) 유기 박막 트랜지스터 및 그 제조방법
Watanabe et al. Improvement in on/off ratio of pentacene static induction transistors by controlling hole injection barrier
RU175418U1 (ru) Полевой транзистор на углеродной пленке с вертикальным каналом проводимости
KR100976572B1 (ko) 유기 박막 트랜지스터의 제조방법
KR102622982B1 (ko) 유기 박막 트랜지스터 및 제조방법
KR102306476B1 (ko) 감소된 히스테리시스를 갖는 2차원 반도체 트랜지스터 및 이의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant