CN112820635A - 半导体结构、自支撑氮化镓层及其制备方法 - Google Patents
半导体结构、自支撑氮化镓层及其制备方法 Download PDFInfo
- Publication number
- CN112820635A CN112820635A CN202110049775.8A CN202110049775A CN112820635A CN 112820635 A CN112820635 A CN 112820635A CN 202110049775 A CN202110049775 A CN 202110049775A CN 112820635 A CN112820635 A CN 112820635A
- Authority
- CN
- China
- Prior art keywords
- indium
- layer
- gallium nitride
- nitride layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 161
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 161
- 239000004065 semiconductor Substances 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 229910052738 indium Inorganic materials 0.000 claims abstract description 122
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 122
- 239000000758 substrate Substances 0.000 claims abstract description 117
- 238000000034 method Methods 0.000 claims abstract description 47
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 17
- 229910003437 indium oxide Inorganic materials 0.000 claims description 14
- 239000011259 mixed solution Substances 0.000 claims description 14
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 12
- 230000003139 buffering effect Effects 0.000 claims description 10
- 239000012159 carrier gas Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000012495 reaction gas Substances 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 5
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 5
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 5
- BLBNEWYCYZMDEK-UHFFFAOYSA-N $l^{1}-indiganyloxyindium Chemical compound [In]O[In] BLBNEWYCYZMDEK-UHFFFAOYSA-N 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 22
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 230000005012 migration Effects 0.000 abstract description 7
- 238000013508 migration Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 225
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000007605 air drying Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000861 blow drying Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000001534 heteroepitaxy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02491—Conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/7806—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
- H01L21/7813—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本申请提供一种半导体结构的制备方法,包括:提供衬底;于衬底上形成铟层或含铟氧化物层;于铟层或含铟氧化物层上形成氮化镓层。上述实施例中的半导体结构的制备方法中,通过先在衬底上形成铟层或含铟氧化物层,在后续在铟层或含铟氧化物层上形成氮化镓层时,生长初期由于低温和铟的迁移作用,可以使得初生长的氮化镓层为疏松结构,在需要进行剥离时便于氮化镓层与衬底的剥离;同时,上述实施例中的制备方法不需要使用工艺繁琐的掩膜技术即可以实现氮化镓层的剥离,使得工艺更加简单。
Description
技术领域
本申请属于半导体技术领域,具体涉及一种半导体结构、自支撑氮化镓层及其制备方法。
背景技术
氮化镓作为典型的第三代半导体材料,具有直接带隙宽、热导率高等优异性能而受到广泛关注。氮化镓相较于第一代和第二代半导体材料除了具有更宽的禁带(在室温下其禁带宽度为3.4eV),可以发射波长较短的蓝光,其还具有高击穿电压、高电子迁移率、化学性质稳定、耐高温及耐腐蚀等特点。因此,氮化镓非常适合用于制作抗辐射、高频、大功率和高密度集成的电子器件以及蓝、绿光和紫外光电子器件。目前,氮化镓半导体材料的研究和应用已成为全球半导体研究的前沿和热点。
然而,目前氮化镓的单晶生长困难、价格昂贵,大规模和的同质外延的生长目前仍没有可能。目前,氮化镓的生长大多仍采用异质外延,所选用的异质衬底有硅衬底、碳化硅衬底和蓝宝石衬底;在异质衬底上生长氮化镓会带来晶格失配和热失配导致器件中存在残余应力影响其性能。为了进一步提高器件性能,需要将氮化镓从异质衬底上剥离以得到自支撑氮化镓层。
目前所采用的剥离工艺主要有激光剥离、自剥离、机械剥离及化学腐蚀剥离等;然而,现有的激光剥离工艺、机械剥离工艺及化学腐蚀工艺均需在氮化镓生长过程完成之后执行额外的剥离工艺,增加了工艺步骤及工艺复杂程度,从而增加了成本,同时,激光剥离工艺、机械剥离工艺及化学腐蚀剥离工艺对异质衬底均有苛刻的要求,普适性较差;现有的自剥离工艺虽然可以实现异质衬底与氮化镓的自剥离,但剥离过程中会对氮化镓的质量造成影响,成品率较低。
发明内容
基于此,有必要针对上述背景技术中的问题,提供一种能够解决上述问题的半导体结构、自支撑氮化镓层及其制备方法。
本申请的一方面提供一种半导体结构的制备方法,包括:
提供衬底;
于所述衬底上形成铟层或含铟氧化物层;
于所述铟层或所述含铟氧化物层的表面形成氮化镓层。
上述实施例中的半导体结构的制备方法中,通过先在衬底上形成铟层或含铟氧化物层,在后续在铟层或含铟氧化物层上形成氮化镓层时,生长初期由于低温和铟的迁移作用,可以使得初生长的氮化镓层为疏松结构,在需要进行剥离时便于氮化镓层与衬底的剥离;同时,上述实施例中的制备方法不需要使用工艺繁琐的掩膜技术即可以实现氮化镓层的剥离,使得工艺更加简单。
在其中一个实施例中,于所述衬底上形成铟层或含铟氧化物层包括:
将铟金属或含铟氧化物加入溶剂内搅拌均匀,以得到混合溶液;
将所述衬底浸入所述混合溶液内保持预设时间后取出,干燥后即于所述衬底上形成所述铟层或所述含铟氧化物层。
在其中一个实施例中,所述含铟氧化物包括InO、In2O或In2O3;所述含铟氧化物的粒径为1nm~10000nm;所述溶剂包括水、醇或水与醇的混合液。
在其中一个实施例中,所述混合溶液中所述铟金属或所述含铟氧化物的摩尔浓度为0.01mol/L~3mol/L。
在其中一个实施例中,将所述衬底浸入所述混合溶液内的所述预设时间为5s~10min。
在其中一个实施例中,提供的所述衬底为超薄衬底,所述衬底的厚度小于或等于300μm。
在其中一个实施例中,于所述衬底上形成所述铟层或所述含铟氧化物层之前还包括:于所述衬底的表面形成缓冲层;所述铟层或所述含铟氧化物层形成于所述缓冲层的表面。
在其中一个实施例中,于所述铟层或所述含铟氧化物层上形成所述氮化镓层包括:
于所述铟层或所述含铟氧化物层上形成第一缓冲氮化镓层,形成所述第一缓冲氮化物层的反应气体包括氯化氢及氨气,载气包括氮气或氩气;
于所述第一缓冲氮化镓层的表面形成厚膜氮化镓层,形成所述氮化物层的反应气体包括氯化氢及氨气,载气包括氢气、氮气或氩气。
在其中一个实施例中,所述第一缓冲氮化镓层的生长温度包括500℃~900℃,所述第一缓冲氮化镓层的厚度为3μm~1000μm;所述厚膜氮化镓层的生长温度包括900℃~1100℃,所述厚膜氮化镓层的厚度大于600μm。
在上述实施例中,通过先在较低温度下并且不使用氢气做载气的条件下生长一层第一缓冲氮化镓层,一方面可以避免氢气在高温下将铟的氧化物全部还原为铟,减小粒径,另一方面在生长初期,在低温和铟的迁移作用下,可以使初生长氮化镓层成为疏松结构,进而加速厚膜氮化镓层与超薄衬底的剥离。
本申请还提供一种半导体结构,包括:
衬底;
铟层或铟氧化物层,位于所述衬底上;
氮化镓层,位于所述铟层或所述铟氧化物层的表面。
上述实施例中的半导体结构中,通过在衬底上形成铟层或含铟氧化物层,再铟层或含铟氧化物层上形成氮化镓层,氮化镓层生长初期由于低温和铟的迁移作用,可以使得初生长的氮化镓层为疏松结构,在需要进行剥离时便于氮化镓层与衬底的剥离。
在其中一个实施例中,所述衬底为超薄衬底,所述衬底的厚度小于或等于300μm。
在其中一个实施例中,所述氮化镓层包括:
第一缓冲氮化镓层,位于所述铟层或所述铟氧化物层的表面;
厚膜氮化镓层,位于所述第一缓冲氮化镓层的表面。
在其中一个实施例中,所述氮化镓层还包括:第二缓冲氮化镓层,所述第二缓冲氮化镓层位于所述铟层或所述铟氧化物层上;所述第一缓冲氮化镓层位于所述第二缓冲氮化镓层的表面。
本申请还提供一种自支撑氮化镓层的制备方法,包括:
采用如上述任一方案中所述的半导体结构的制备方法制备所述半导体结构;
将所述半导体结构进行降温处理,以使得所述厚膜氮化镓层自动剥离,以得到所述自支撑氮化镓层。
本申请的还提供一种自支撑氮化镓层,所述自支撑氮化镓层采用上述任一方案中所述的制备方法制备而得到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本申请一实施例中提供的半导体结构的制备方法的流程图。
图2至图6为本申请不同实施例中提供的半导体结构的制备方法各步骤所得结构的截面结构示意图。
图7为本申请另一实施例中提供的自支撑氮化镓层的制备方法的流程图。
图8为本申请另一个实施例中提供的自支撑氮化镓层的制备方法得到的自支撑氮化镓层的截面结构示意图。
附图标记说明:
10 衬底
11 铟层
12 铟氧化物层
13 氮化镓层
131 第一缓冲氮化镓层
132 厚膜氮化镓层
141 氮化铝层
142 第二缓冲氮化镓层
15 自支撑氮化镓层
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在使用本文中描述的“包括”、“具有”、和“包含”的情况下,除非使用了明确的限定用语,例如“仅”、“由……组成”等,否则还可以添加另一部件。除非相反地提及,否则单数形式的术语可以包括复数形式,并不能理解为其数量为一个。
在一个实施例中,请参考图1,本申请提供一种半导体结构的制备方法,包括如下步骤:
S10:提供衬底;
S11:于衬底上形成铟层或含铟氧化物层;
S12:于铟层或含铟氧化物层上形成氮化镓层。
上述实施例中的半导体结构的制备方法中,通过先在衬底上形成铟层或含铟氧化物层,在后续在铟层或含铟氧化物层上形成氮化镓层时,生长初期由于低温和铟的迁移作用(具体的,铟可以向异质衬底迁移,也可以向其上形成的氮化镓层迁移),可以使得初生长的氮化镓层为疏松结构,在需要进行剥离时便于氮化镓层与衬底的剥离;同时,上述实施例中的制备方法不需要使用工艺繁琐的掩膜技术即可以实现氮化镓层的剥离,使得工艺更加简单。
在步骤S10中,请参阅图1中的S10步骤及图2,提供衬底10。
在一个示例中,衬底10可以包括硅衬底、碳化硅衬底、蓝宝石衬底及砷化硅衬底中的至少一种。
在一个示例中,衬底10为超薄衬底,即衬底10的厚度比较薄。衬底10的厚度可以为小于等于300μm;本实施例中,衬底10的厚度可以为100μm~300μm,具体可以为100μm、200μm或300μm等等。衬底10的尺寸可以为1英寸~8英寸,具体可以为1英寸、2英寸、3英寸、4英寸、5英寸6英寸、7英寸或8英寸等等。
本实施例中通过将衬底10选择为超薄衬底,由于在衬底10上形成氮化镓层时,氮化镓层与衬底10之间存在晶格失配和热失配,在后续降温剥离过程中,二者会产生不同程度的弯曲变形;而又衬底10为超薄衬底,后续厚膜氮化镓层的厚度会比衬底10大很多,一般在两倍以上,因此在应力的作用下,在保证厚膜氮化镓层完整的基础上,衬底10可以首先形成大量裂纹或破裂,使得厚膜氮化镓层从衬底10上剥离下来,有利于厚膜氮化镓层完整的自动剥离。
在一个示例中,步骤S10与步骤S11之间还包括于衬底10上形成缓冲层的步骤;在一个示例中,所述缓冲层可以单层结构,具体的,缓冲层可以为氮化铝层141,也可以为第二缓冲氮化镓层142;在另一个示例中,如图3所示,所述缓冲层可以为叠层结构,图3中以缓冲层包括依次叠置的氮化铝层141及第二缓冲氮化镓层142作为示例。第二缓冲氮化镓层132的厚度为10nm~20μm,具体可以为10nm、100nm、1μm、10μm或20μm等等。第二缓冲氮化镓层142作用是减少后续形成的第一氮化镓缓冲层生长过程中与衬底10之间的晶格失配,提高第一氮化镓缓冲层生长质量。
在步骤S11中,请参阅图1中的S11步骤及图4至图5,于衬底10上形成铟层11或含铟氧化物层12。其中,图4为在衬底10上形成铟层11的示意图,图5为在衬底10上形成含铟氧化物层12的示意图。
需要说明的是,后续步骤及结构均以衬底10上形成有含铟氧化物层12作为示例,衬底10上形成铟层11的后续结构不再示出,只需将后续步骤及所得结构的含铟氧化物层12直接替换为铟层11即可得到衬底10表面形成铟层11的对应结构。
需要进一步说明的是,所述衬底10的表面形成有缓冲层时,铟层11或含铟氧化物层12形成于缓冲层的表面。
在一个示例中,步骤S11可以包括如下步骤:
S111:将铟金属或含铟氧化物加入溶剂内搅拌均匀,以得到混合溶液;
S112:将衬底10浸入所述混合溶液内保持预设时间后取出,干燥后即于衬底10上形成铟层11或含铟氧化物层12。
在一个示例中,含铟氧化物可以包括InO、In2O或In2O3;含铟氧化物的粒径可以为1nm~10000nm,优选地,含铟氧化物的粒径可以为10nm~1000nm,更为优选地,含铟氧化物的粒径可以为20nm~500nm,具体的,含铟氧化物的粒径可以为20nm、100nm、250nm或500nm等等;溶剂包括水、醇或水与醇的混合液,具体的,溶剂可以为水,也可以为包括甲醇、乙醇、丙醇、丁醇、戊醇、己醇及庚醇中至少一种的醇,还可以为水与醇的混合液,譬如乙醇溶液等等。
在一个示例中,混合溶液中铟金属或所述含铟氧化物的摩尔浓度为0.01mol/L~3mol/L;具体可以为0.01mol/L、1mol/L、2mol/L或3mol/L等等。
在一个示例中,将衬底10浸入混合溶液内的所述预设时间为5s(秒)~10min(分钟);具体的,预设时间可以为2s、30s、1min、5min或10min等等。
在一个示例中,可以使用自然风干、甩干或吹干等干燥方式进行干燥。在步骤S12中,请参阅图1中的S11步骤及图6,于铟层11或含铟氧化物层12的表面形成氮化镓层13。
在一个示例中,可以于HVPE(氢化物气相外延)设备或MOCVD(金属有机化学气相外延)设备中形成氮化镓层13。
在一个示例中,如图6所示,步骤S12可以包括如下步骤:
S121:于铟层11或含铟氧化物层12的表面形成第一缓冲氮化镓层131,形成第一缓冲氮化物层131的反应气体包括氯化氢及氨气,载气包括氮气和/或氩气;
S122:于第一缓冲氮化镓层131的表面形成厚膜氮化镓层132,形成氮化物层133的反应气体包括氯化氢及氨气,载气包括氢气、氮气及氩气中的一种或几种。
在一个示例中,第一缓冲氮化镓层131的生长温度包括500℃~900℃,第一缓冲氮化镓层131的厚度为3μm~1000μm;具体的,第一缓冲氮化镓层131的生长温度可以为500℃、600℃、700℃、800℃或900℃等等,第一缓冲氮化镓层131的厚度可以为5μm~50μm,优选地,第一缓冲氮化镓层131的厚度可以为8μm~30μm,具体可以为8μm、10μm、20μm或30μm等等。
在一个示例中,厚膜氮化镓层132的生长温度包括900℃~1100℃,厚膜氮化镓层132的厚度大于600μm;具体的,厚膜氮化镓层132的生长温度可以为900℃、1000℃或1100℃等等,厚膜氮化镓层132的厚度可以为600μm~5000μm,具体可以为600μm、1000μm、3000μm或5000μm等等。
在上述实施例中,通过先在较低温度下并且不使用氢气做载气的条件下生长一层第一缓冲氮化镓层131,一方面可以避免氢气在高温下将铟的氧化物全部还原为铟,减小粒径,另一方面在生长初期,在低温和铟的迁移作用下,可以使初生长氮化镓层(即第一缓冲氮化镓层131)成为疏松结构,进而加速厚膜氮化镓层132与超薄衬底的剥离。
请结合图2至图6继续参阅图6,本申请还提供一种半导体结构,包括:衬底10;铟层11或铟氧化物层12,位于衬底10上;氮化镓层13,氮化镓层13位于铟层11或铟氧化物层12的表面。
上述实施例中的半导体结构中,通过在衬底10上形成铟层11或含铟氧化物层12,再铟层11或含铟氧化物层12上形成氮化镓层13,氮化镓层13生长初期由于低温和铟的迁移作用,可以使得初生长的氮化镓层12为疏松结构,在需要进行剥离时便于氮化镓层与衬底的剥离。
在一个示例中,衬底10可以包括硅衬底、碳化硅衬底、蓝宝石衬底及砷化硅衬底中的至少一种。
在一个示例中,衬底10为超薄衬底,即衬底10的厚度比较薄。衬底10的厚度可以为小于等于300μm;本实施例中,衬底10的厚度可以为100μm~300μm,具体可以为100μm、200μm或300μm等等。衬底10的尺寸可以为1寸~8寸,具体可以为1英寸、2英寸、3英寸、4英寸、5英寸6英寸、7英寸或8英寸等等。
本实施例中通过将衬底10选择为超薄衬底,由于在衬底10上形成氮化镓层时,氮化镓层与衬底10之间存在晶格失配和热失配,在后续降温剥离过程中,二者会产生不同程度的弯曲变形;而又衬底10为超薄衬底,氮化镓层的厚度会比衬底10大很多,一般在两倍以上,因此在保证氮化镓层完整的基础上,超薄衬底可以形成大量裂纹使得氮化镓层从衬底10上剥离下来,也可以破裂成几片使得氮化镓层从衬底10上剥离下来,有利于氮化镓层的自动剥离。
在一个示例中,所述缓冲层可以单层结构,具体的,缓冲层可以为氮化铝层141,也可以为第二缓冲氮化镓层142;在另一个示例中,如图3所示,所述缓冲层可以为叠层结构,图3中以缓冲层包括依次叠置的氮化铝层141及第二缓冲氮化镓层142作为示例。第二缓冲氮化镓层132的厚度为10nm~20μm,具体可以为10nm、100nm、1μm、10μm或20μm等等。第二缓冲氮化镓层142作用是作为晶种衬底,减少后续形成的第一氮化镓缓冲层生长过程中与衬底10之间的晶格失配,提高第一氮化镓缓冲层生长质量。
作为示例,当衬底10的表面形成有缓冲层时,铟层11或含铟氧化物层12位于缓冲层的表面。
在一个示例中,如图6所示,氮化镓层13包括:第一缓冲氮化镓层131,第一缓冲氮化镓层131位于铟层11或铟氧化物层12的表面;厚膜氮化镓层132,厚膜氮化镓层132位于第一缓冲氮化镓层131的表面。
在一个示例中,第一缓冲氮化镓层131的厚度为3μm~1000μm;具体的,第一缓冲氮化镓层131的厚度可以为5μm~50μm,优选地,第一缓冲氮化镓层131的厚度可以为8μm~30μm,具体可以为8μm、10μm、20μm或30μm等等。
在一个示例中,厚膜氮化镓层132的厚度大于600μm;具体的,厚膜氮化镓层132的厚度可以为600μm~5000μm,具体可以为600μm、1000μm、3000μm或5000μm等等。
在一个示例中,如图6所示,氮化镓层13还包括:第二缓冲氮化镓层132,第二缓冲氮化镓层132位于铟层11或铟氧化物层12上;第一缓冲氮化镓层131位于第二缓冲氮化镓层132的表面。
在一个示例中,第二缓冲氮化镓层132的厚度为10nm~20μm,具体可以为10nm、100nm、1μm、10μm或20μm等等。
本申请还提供一种自支撑氮化镓层的制备方法,如图7所示,包括:
S20:采用如上述任一方案中所述的半导体结构的制备方法制备半导体结构;
S21:将半导体结构进行降温处理,以使得厚膜氮化镓层132自动剥离,以得到自支撑氮化镓层15。
制备半导体结构的具体方法请参阅上述实施例中的图1至图6及其文字描述,此处不再类似。
在一个示例中,可以采用自然降温的方式将步骤S20所得结构降温至室温;也可以以预设降温速率将步骤S20所得结构降温至室温,譬如,可以以5℃/min(摄氏度每分钟)~30℃/min的降温速率将步骤S20所得结构降温至室温;还可以采用自然降温与预设降温速率降温结合的降温方式将步骤S20所得结构降温至室温,譬如,可以先按预设降温速率将步骤S20所得结构降温至预设温度,然后再自然降温至室温等等;预设温度可以根据实际需要进行设定,譬如,预设温度可以为600℃~800℃,具体的,预设温度可以为600℃、700℃或800℃等等。降温处理后得到的自支撑氮化镓层15如图8所示。
请继续参阅图8,本申请还提供一种自支撑氮化镓层15,自支撑氮化镓层采用上述实施例中所述的自支撑氮化镓层的制备方法制备而得到。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (14)
1.一种半导体结构的制备方法,其特征在于,包括:
提供衬底;
于所述衬底上形成铟层或含铟氧化物层;
于所述铟层或所述含铟氧化物层的表面形成氮化镓层。
2.根据权利要求1所述的半导体结构的制备方法,其特征在于,于所述衬底上形成铟层或含铟氧化物层包括:
将铟金属或含铟氧化物加入溶剂内搅拌均匀,以得到混合溶液;
将所述衬底浸入所述混合溶液内保持预设时间后取出,干燥后即于所述衬底上形成所述铟层或所述含铟氧化物层。
3.根据权利要求2所述的半导体结构的制备方法,其特征在于,所述含铟氧化物包括InO、In2O或In2O3;所述含铟氧化物的粒径为1nm~10000nm;所述溶剂包括水、醇或水与醇的混合液。
4.根据权利要求2所述的半导体结构的制备方法,其特征在于,所述混合溶液中所述铟金属或所述含铟氧化物的摩尔浓度为0.01mol/L~3mol/L。
5.根据权利要求2所述的半导体结构的制备方法,其特征在于,将所述衬底浸入所述混合溶液内的所述预设时间为5s~10min。
6.根据权利要求1所述的半导体结构的制备方法,其特征在于,提供的所述衬底为超薄衬底,所述衬底的厚度小于或等于300μm。
7.根据权利要求1所述的半导体结构的制备方法,其特征在于,于所述衬底上形成所述铟层或所述含铟氧化物层之前还包括:于所述衬底的表面形成缓冲层;所述铟层或所述含铟氧化物层形成于所述缓冲层的表面。
8.根据权利要求1至7中任一项所述的半导体结构的制备方法,其特征在于,于所述铟层或所述含铟氧化物层上形成所述氮化镓层包括:
于所述铟层或所述含铟氧化物层的表面形成第一缓冲氮化镓层,形成所述第一缓冲氮化物层的反应气体包括氯化氢及氨气,载气包括氮气和/或氩气;
于所述第一缓冲氮化镓层的表面形成厚膜氮化镓层,形成所述氮化物层的反应气体包括氯化氢及氨气,载气包括氢气、氮气或氩气。
9.根据权利要求8所述的半导体结构的制备方法,其特征在于,所述第一缓冲氮化镓层的生长温度包括500℃~900℃,所述第一缓冲氮化镓层的厚度为3μm~1000μm;所述厚膜氮化镓层的生长温度包括900℃~1100℃,所述厚膜氮化镓层的厚度大于600μm。
10.一种半导体结构,其特征在于,包括:
衬底;
铟层或铟氧化物层,位于所述衬底上;
氮化镓层,位于所述铟层或所述铟氧化物层的表面。
11.根据权利要求10所述的半导体结构,其特征在于,所述衬底为超薄衬底,所述衬底的厚度小于或等于300μm。
12.根据权利要求10或11任一项所述的半导体结构,其特征在于,所述氮化镓层包括:
第一缓冲氮化镓层,位于所述铟层或所述铟氧化物层的表面;
厚膜氮化镓层,位于所述第一缓冲氮化镓层的表面。
13.一种自支撑氮化镓层的制备方法,其特征在于,包括:
采用如权利要求1至9任一项所述的半导体结构的制备方法制备所述半导体结构;
将所述半导体结构进行降温处理,以使得所述厚膜氮化镓层自动剥离,以得到所述自支撑氮化镓层。
14.一种自支撑氮化镓层,其特征在于,所述自支撑氮化镓层采用如权利要求13所述的制备方法制备而得到。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110049775.8A CN112820635B (zh) | 2021-01-14 | 2021-01-14 | 半导体结构、自支撑氮化镓层及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110049775.8A CN112820635B (zh) | 2021-01-14 | 2021-01-14 | 半导体结构、自支撑氮化镓层及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112820635A true CN112820635A (zh) | 2021-05-18 |
CN112820635B CN112820635B (zh) | 2024-01-16 |
Family
ID=75869527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110049775.8A Active CN112820635B (zh) | 2021-01-14 | 2021-01-14 | 半导体结构、自支撑氮化镓层及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112820635B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114497293A (zh) * | 2021-12-29 | 2022-05-13 | 西安电子科技大学芜湖研究院 | 外延层的制备剥离方法及半导体器件制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6051847A (en) * | 1997-05-21 | 2000-04-18 | Matsushita Electric Industrial Co., Ltd. | Gallium nitride compound-based semiconductor light emitting device and process for producing gallium nitride compound-based semiconductor thin film |
US20050247942A1 (en) * | 2004-05-05 | 2005-11-10 | Supernova Optoelectronics Corp. | Epitaxial structure of gallium nitrIde series semiconductor device and process of manufacturing the same |
KR100763467B1 (ko) * | 2007-04-18 | 2007-10-04 | 주식회사 시스넥스 | 단결정 질화갈륨 기판의 제조방법 |
CN101429650A (zh) * | 2008-12-03 | 2009-05-13 | 南京大学 | 一种原位制备自支撑氮化镓衬底的方法 |
RU2013130490A (ru) * | 2013-07-02 | 2015-01-10 | Юрий Георгиевич Шретер | Способ выращивания эпитаксиальной пленки нитрида третьей группы на ростовой подложке |
CN107275187A (zh) * | 2017-06-26 | 2017-10-20 | 镓特半导体科技(上海)有限公司 | 自支撑氮化镓层及其制备方法、退火方法 |
CN110797394A (zh) * | 2019-10-31 | 2020-02-14 | 中国电子科技集团公司第十三研究所 | 一种高电子迁移率晶体管的外延结构及其制备方法 |
CN111128687A (zh) * | 2019-12-30 | 2020-05-08 | 镓特半导体科技(上海)有限公司 | 自支撑氮化镓层的制备方法 |
-
2021
- 2021-01-14 CN CN202110049775.8A patent/CN112820635B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6051847A (en) * | 1997-05-21 | 2000-04-18 | Matsushita Electric Industrial Co., Ltd. | Gallium nitride compound-based semiconductor light emitting device and process for producing gallium nitride compound-based semiconductor thin film |
US20050247942A1 (en) * | 2004-05-05 | 2005-11-10 | Supernova Optoelectronics Corp. | Epitaxial structure of gallium nitrIde series semiconductor device and process of manufacturing the same |
KR100763467B1 (ko) * | 2007-04-18 | 2007-10-04 | 주식회사 시스넥스 | 단결정 질화갈륨 기판의 제조방법 |
CN101429650A (zh) * | 2008-12-03 | 2009-05-13 | 南京大学 | 一种原位制备自支撑氮化镓衬底的方法 |
RU2013130490A (ru) * | 2013-07-02 | 2015-01-10 | Юрий Георгиевич Шретер | Способ выращивания эпитаксиальной пленки нитрида третьей группы на ростовой подложке |
CN107275187A (zh) * | 2017-06-26 | 2017-10-20 | 镓特半导体科技(上海)有限公司 | 自支撑氮化镓层及其制备方法、退火方法 |
CN110797394A (zh) * | 2019-10-31 | 2020-02-14 | 中国电子科技集团公司第十三研究所 | 一种高电子迁移率晶体管的外延结构及其制备方法 |
CN111128687A (zh) * | 2019-12-30 | 2020-05-08 | 镓特半导体科技(上海)有限公司 | 自支撑氮化镓层的制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114497293A (zh) * | 2021-12-29 | 2022-05-13 | 西安电子科技大学芜湖研究院 | 外延层的制备剥离方法及半导体器件制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112820635B (zh) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019033975A1 (zh) | 一种制备GaN衬底材料的方法 | |
JP3352712B2 (ja) | 窒化ガリウム系半導体素子及びその製造方法 | |
US9799737B2 (en) | Method for forming group III/V conformal layers on silicon substrates | |
CN107611004B (zh) | 一种制备自支撑GaN衬底材料的方法 | |
JP4371202B2 (ja) | 窒化物半導体の製造方法及び半導体ウエハ並びに半導体デバイス | |
US5923950A (en) | Method of manufacturing a semiconductor light-emitting device | |
CN107180747B (zh) | 半导体结构、自支撑氮化镓层及其制备方法 | |
JPH09134878A (ja) | 窒化ガリウム系化合物半導体の製造方法 | |
US6648966B2 (en) | Wafer produced thereby, and associated methods and devices using the wafer | |
CN102839417B (zh) | 一种在蓝宝石衬底上生长自剥离氮化镓薄膜的方法 | |
EP4223912A1 (en) | Epitaxial wafer for ultraviolet light emitting elements, method for producing metal bonded susbtrate for ultraviolet light emitting elements, method for producing ultraviolet light emitting element, and method for producing ultraviolet light emitting element array | |
CN111663181A (zh) | 一种氧化镓膜的制备方法及其应用 | |
US9257602B2 (en) | Substrate having hetero-structure, method for manufacturing the same and nitride semiconductor light emitting device using the same | |
CN110211880B (zh) | 金刚石基氮化镓hemt结构制造方法 | |
CN1694225A (zh) | GaN/β-Ga2O3复合衬底的材料及其制备方法 | |
CN115101639A (zh) | InGaN基光电子器件的复合衬底及其制备方法和应用 | |
CN112820635B (zh) | 半导体结构、自支撑氮化镓层及其制备方法 | |
CN114334651A (zh) | 一种基于超薄氮化镓自支撑衬底的hemt制备方法 | |
JP2002053399A (ja) | 窒化物半導体基板の製造方法および窒化物半導体基板 | |
JP2003332234A (ja) | 窒化層を有するサファイア基板およびその製造方法 | |
KR102037589B1 (ko) | 표면 조도가 개선된 반도체 구조체 및 이의 제조 방법 | |
JP3615081B2 (ja) | GaN単結晶の作製方法 | |
JP3671215B2 (ja) | サファイア基板上への窒化インジウム積層方法 | |
CN115881514A (zh) | 单晶自支撑衬底的制作方法 | |
CN115101633A (zh) | InGaN基光电子器件及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |