CN112812770A - 锌掺杂Ag-In-S量子点发光材料及其制备方法和应用 - Google Patents

锌掺杂Ag-In-S量子点发光材料及其制备方法和应用 Download PDF

Info

Publication number
CN112812770A
CN112812770A CN202110102312.3A CN202110102312A CN112812770A CN 112812770 A CN112812770 A CN 112812770A CN 202110102312 A CN202110102312 A CN 202110102312A CN 112812770 A CN112812770 A CN 112812770A
Authority
CN
China
Prior art keywords
quantum dot
zinc
luminescent material
acetate
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110102312.3A
Other languages
English (en)
Inventor
戴武斌
樊烨明
陈洋
李孝斌
吴锐敏
刘凯
徐慢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202110102312.3A priority Critical patent/CN112812770A/zh
Publication of CN112812770A publication Critical patent/CN112812770A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及一种锌掺杂Ag‑In‑S量子点发光材料及其制备方法和应用。首先按照化学计量比准备乙酸银、乙酸铟、硫粉和乙酸锌,然后将乙酸银、乙酸铟、乙酸锌与一定量1‑十八碳烯、油胺混合加热至160‑200℃,再加入由硫粉、油胺混合而成的硫前体溶液,保温反应一段时间后固液分离,得到掺杂量为5%‑30%的Ag‑In‑S量子点发光材料。按照本发明方法制得的量子点发光材料为类球形,平均直径为(5.0±0.5)nm,吸收强度较高,在可见光到近红外光区域均具有高发光强度,Zn2+的掺杂使其荧光量子产率从8.34%提高到32.90%,功率转换效率也得到了提高,在量子点敏化太阳能电池领域具有良好的应用前景。

Description

锌掺杂Ag-In-S量子点发光材料及其制备方法和应用
技术领域
本发明涉及发光材料技术领域,具体涉及一种锌掺杂Ag-In-S量子点发光材料及其制备方法和应用。
背景技术
由于具有高吸收系数、带隙可调性和高荧光量子产率等独特的光物理性质,量子点(quantum dots,QDs)作为光电领域的一种新兴材料受到了高度关注,并已被广泛应用于发光二极管、光催化、生物成像和太阳能电池等领域。量子点可作为液接敏化太阳能电池(liquid junction sensitized solar cells,QDSCs)的优秀光吸收剂,这是因为其内置偶极矩有利于载流子分离和多激子产生,可极大的提高功率转换效率(power conversionefficiencies,PCE),提升太阳能电池的光电性能。
目前研究最多的具有较高荧光量子产率的量子点主要为重金属二元量子点,例如CdSe、PbS和CdTe,但是这些量子点通常包含剧毒元素(如镉或铅),使其大量制备和使用不仅对人体有很大的危害,还会引起生态和环境等问题。相比于二元量子点,三元量子点具有更宽的可调带隙、更大的斯托克斯位移等优异性能,因此迫切需要研发出具有较高荧光量子产率的低毒性三元量子点,例如AgInS2(AIS)、CuInS2(CIS)或核/壳AIS/ZnS和CIS/ZnS量子点。以上核/壳结构量子点通过引入宽带隙材料ZnS,利用ZnS过度生长形成准I型核/壳结构消除表面缺陷,由此对AIS(CIS)敏化QDSCs性能进行了重大改进,使其功率转换效率与重金属二元量子点相当甚至更好,但是该核/壳结构外壳同时也会阻碍电子从量子点注入金属氧化物基质(TiO2),限制了QDSCs的光伏性能提升。
已经公开的Zn掺杂Ag-In-S量子点制备步骤较繁琐,且未详细进行太阳能电池领域的分析研究,这些缺点和不足限制了量子点发光材料的发展及其在太阳能电池领域的应用。本发明提出了新的化学计量比和Zn掺杂浓度计算公式,采用的一步热注入法步骤更为简单、合成周期更短,制备得到的量子点性能优良。此外本发明还从荧光量子产率、带隙值、PL强度和微观形貌等角度,详细分析了目标产物在量子点敏化太阳能电池领域的应用前景。
发明内容
本发明的目的之一在于解决现有技术存在的上述问题,提供一种锌掺杂Ag-In-S量子点发光材料,通过热注入法将Zn2+扩散掺杂到形成四元量子点的缺陷部位,由此得到的量子点发光材料不含汞、铅和镉等重金属有毒元素,从可见光到近红外光区域均具有高发光度,并且功率转换效率较高,在量子点敏化太阳能电池领域有较好的应用前景。
一种锌掺杂Ag-In-S量子点发光材料(记作AISZ(x)),该材料中Ag、In、S三种元素的化学计量比为1:3:4,Zn2+的掺杂量取值范围为5%-30%,优选为20%。考虑到Zn在Ag、In位点均有掺杂,设置掺杂量x的计算公式为:x=Zn元素的摩尔量/(Ag+In元素的摩尔总量)。掺杂的Zn2+离子占据AIS量子点内部原子空位或者替换量子点中的原始离子,并没有形成多余的外壳。
进一步的,该量子点发光材料为颗粒状固体,颗粒粒径分布在2-8nm区间范围内,平均粒径为(5.0±0.5)nm。
本发明的另一目的在于提供一种上述锌掺杂Ag-In-S量子点发光材料的制备方法,该方法包括以下步骤:(a)按照化学计量比,将银源、铟源、锌源与复合表面活性剂混合均匀备用;(b)将硫粉与油胺混合均匀,得到硫前驱体溶液;(c)保护气氛下,将步骤(b)中的硫前驱体溶液注入步骤(a)所得混合物中反应,固液分离即可。
进一步的,所述银源具体为乙酸银,所述铟源具体为乙酸铟,所述锌源具体为乙酸锌,所述复合表面活性剂具体为体积比2-4:1的1-十八碳烯、油胺混合物。
进一步的,步骤(a)中银源、铟源、锌源的总摩尔量与复合表面活性剂的总体积之比为(0.84-1.04)mmol:24mL。
进一步的,步骤(b)中硫粉与油胺混合时的用量比为0.8mmol:(1-2)mL。
进一步的,步骤(c)中在160-200℃、保护气氛(氩气)下将硫前驱体溶液注入步骤(a)所得混合物中反应10-30min。
进一步的,步骤(c)反应完将混合物自然冷却至室温,然后加入足量有机溶剂(丙酮)进行沉淀,最后固液分离、干燥即可。
本发明的第三重目的在于提供一种上述锌掺杂Ag-In-S量子点发光材料在量子点敏化太阳能电池中的应用。
现有同类量子点材料的原料中Zn盐通常选用乙酸锌、硬脂酸锌或乙酰丙酮锌,Ag盐通常选用乙酸银、硝酸银或乙酰丙酮银,In盐通常选用硝酸铟、氯化铟、乙酸铟或乙酰丙酮铟。本发明确定的制备方法为液相合成法,因此选用了易溶于水和有机溶剂的乙酸盐(乙酸银、乙酸铟、乙酸锌)作为原料,这样有利于快速反应,缩短合成周期。
本发明选用复配的1-十八碳烯和油胺作为表面活性剂,有效防止了纳米粒子的团聚,保证了产物优异的分散性。与其他掺杂浓度条件所得量子点相比,锌掺杂浓度为20%的Ag-In-S量子点发光材料AISZ(0.2)具有较强的发光强度,其在300nm(紫外光)-700nm(红光)的波长范围内均具有较强的吸收强度,最重要的是该量子点的荧光量子产率最高,能更好地应用于量子点敏化太阳能电池领域。
与现有技术相比,本发明的有益效果体现在以下几个方面:(1)本发明采用的一步热注入法简单可行、反应快速、成本较低;(2)制得的量子点发光材料不含汞、铅和镉等重金属有毒元素,绿色环保;(3)采用了新的化学计量比和Zn掺杂浓度计算公式,制得的量子点发光材料为类球形,平均直径为(5.0±0.5)nm,吸收强度较高,在可见光到近红外光区域均具有高发光强度,Zn2+的掺杂使其荧光量子产率从8.34%提高到32.90%,具有更高的功率转换效率,在量子点敏化太阳能电池领域具有良好的应用前景。
附图说明
图1为实施例1产物AISZ(0.2)、实施例2产物AISZ(0.05)、实施例4产物AISZ(0.3)、对比例1产物AIS的XRD对比图;
图2为实施例1产物AISZ(0.2)、实施例2产物AISZ(0.05)、实施例3产物AISZ(0.1)、实施例4产物AISZ(0.3)、对比例1产物AIS的荧光量子产率对比图;
图3为实施例1产物AISZ(0.2)、实施例2产物AISZ(0.05)、实施例3产物AISZ(0.1)、实施例4产物AISZ(0.3)、对比例1产物AIS的带隙值对比图;
图4为实施例1产物AISZ(0.2)、实施例4产物AISZ(0.3)、对比例1产物AIS的吸收光谱和PL光谱对照图;
图5为实施例1产物AISZ(0.2)量子点的XPS谱图;
图6为实施例1产物AISZ(0.2)量子点的TEM图;
图7为实施例1产物AISZ(0.2)量子点的粒径分布图。
具体实施方式
为使本领域普通技术人员充分理解本发明的技术方案和有益效果,以下结合具体实施例及附图进行进一步说明。
本发明各实施例采用的原料均为普通市售产品,各金属乙酸盐化合物和硫粉的纯度均在99%以上。
实施例1
一种锌掺杂Ag-In-S量子点发光材料AISZ(0.2),其Zn2+的掺杂量Zn/(Ag+In)=20%。该量子点发光材料的制备方法包括如下步骤:
1)按照Ag-In-S量子点Ag/In/S=1:3:4的化学计量比,准确称取以下原料:0.2mmol乙酸银,0.6mmol乙酸铟,0.8mmol硫粉。将称量好的硫粉溶解在1.2mL油胺中,得到硫前体溶液。另外按照Zn/(Ag+In)=20%的掺杂比例,准确称取0.16mmol乙酸锌。
2)将称量好的乙酸银、乙酸铟、乙酸锌与16mL 1-十八碳烯、8.0mL油胺一起加入到50mL三颈烧瓶中,混合均匀后在氩气保护下加热至180℃。将硫前体溶液注入到系统中,保温反应约20分钟。待系统冷却至室温后,加入丙酮使纳米颗粒从合成溶液中沉淀出来,离心所得固体产物即为目标样品AISZ(0.2)量子点。
实施例2
本实施例与实施例1的制备方法大致相同,不同之处在于:Zn2+的掺杂量Zn/(Ag+In)=5%,即原料调整为0.2mmol乙酸银,0.6mmol乙酸铟,0.8mmol硫粉,0.04mmol乙酸锌。由此制得的目标样品为AISZ(0.05)量子点。
实施例3
本实施例与实施例1的制备方法大致相同,不同之处在于:Zn2+的掺杂量Zn/(Ag+In)=10%,即原料调整为0.2mmol乙酸银,0.6mmol乙酸铟,0.8mmol硫粉,0.08mmol乙酸锌。由此制得的目标样品为AISZ(0.1)量子点。
实施例4
本实施例与实施例1的制备方法大致相同,不同之处在于:Zn2+的掺杂量Zn/(Ag+In)=30%,即原料调整为0.2mmol乙酸银,0.6mmol乙酸铟,0.8mmol硫粉,0.24mmol乙酸锌。由此制得的目标样品为AISZ(0.3)量子点。
对比例1
本对比例与实施例1的制备方法大致相同,不同之处在于:Zn2+的掺杂量为0,即原料调整为0.2mmol乙酸银,0.6mmol乙酸铟,0.8mmol硫粉。由此制得的目标样品为AIS量子点。
为充分了解本发明各实施例制得的量子点荧光粉产物的性能和特点,分别对实施例1-4、对比例1的产物进行了组成、形貌以及发光性能等检测,具体步骤如下:
1.XRD测试
在45kV和40mA条件下,以Cu的Kα辐射
Figure BDA0002916377110000051
为基准,使用Bruker D8Discover衍射仪在2θ的20-60°范围内进行了不同量子点样品的X射线衍射测试。其中实施例1产物AISZ(0.2)、实施例2产物AISZ(0.05)、实施例4产物AISZ(0.3)、对比例1产物AIS的XRD图谱如图1所示,以AgInS2的标准数据(JCPDS:75-0117)为参考。由图1可知,未掺杂和掺杂AIS的XRD图谱显示了宽的衍射峰,这些衍射峰均与AgInS2(JCPDS:75-0117)图谱一致,这一结果表明Zn2+掺杂量子点没有发生相分离或多余的成核。
2.不同掺杂浓度AISZ的荧光量子产率对比测试
使用Fluoromax-4分光荧光计(Horiba Jobin Yvon Inc.)测量待测样品的荧光量子产率,其中实施例1产物AISZ(0.2)、实施例2产物AISZ(0.05)、实施例3产物AISZ(0.1)、实施例4产物AISZ(0.3)、对比例1产物AIS的荧光量子产率对比图如图2所示。由图2可知,Zn2+掺杂将AIS量子点的荧光量子产率从8.34%提高到32.90%;当掺杂浓度增加时,量子点荧光量子产率先增加然后下降,其临界掺杂浓度为Zn/(Ag+In)=20%;这表明Zn2+的最佳掺杂浓度为Zn/(Ag+In)=20%,由此得到的量子点为AISZ(0.2)。由于AISZ(0.2)的荧光量子产率显示出最高值,因此我们选择其作为样本进行深入研究。
3.不同掺杂浓度AISZ的带隙值对比测试
使用岛津紫外可见分光光度计UV-3600,并利用Tauc公式计算得到样品的光学带隙(Eg),其中实施例1产物AISZ(0.2)、实施例2产物AISZ(0.05)、实施例3产物AISZ(0.1)、实施例4产物AISZ(0.3)、对比例1产物AIS的带隙值对比图如图3所示。由图3可知,当Zn2+的掺杂浓度从0.05升高到0.3时,AISZ量子点带隙值从2.05eV升高到2.75eV。量子点敏化剂的导带边缘更高,有利于提供更强的驱动力给光激发电子注入基质,从而提高电子注入速率并提高量子点敏化太阳能电池的功率转换效率。
4.吸收光谱和光致发光(photoluminescence,PL)光谱测试
使用岛津紫外可见分光光度计UV-3600和Varian Cary Eclipse荧光分光光度计测量待测样品的吸收光谱和PL光谱,其中实施例1产物AISZ(0.2)、实施例4产物AISZ(0.3)、对比例1产物AIS的吸收光谱和PL光谱如图4所示。由图4可知,量子点吸收光谱延伸到近红外约700nm;PL光谱为宽带,PL强度最大处位于约650nm,Zn2+的掺杂对AIS的PL强度有极大的提升。
5.X射线光电子能谱测试
使用PHI VersaProbe II X射线光电子能谱仪测量待测样品的X射线光电子能谱(X-ray photoelectron spectroscopy,XPS),其中实施例1产物AISZ(0.2)量子点的XPS谱图如图5所示。由图5可知,在图中出现明显的Zn 2p峰,表明成功将Zn2+离子引入了AIS量子点中,AISZ量子点制备成功。
6.TEM测试
使用JEOL JEM-2100F场发射透射电子显微镜测量待测样品的TEM图像,其中实施例1产物AISZ(0.2)量子点的TEM图像如图6所示,插图显示FFT模式下的高分辨率TEM图像。由图6可知,该AISZ(0.2)量子点颗粒结晶度高,形貌均一且为类球形,其(112)平面间距
Figure BDA0002916377110000061
这与AgInS2一致。
7.粒径分布测试
从实施例1产物AISZ(0.2)量子点的微观照片中随机选取100个颗粒,统计其粒径后如图7所示。由图7可知,所制备的AISZ(0.2)量子点单分散性良好,平均粒径约为(5.0±0.5)nm,小的粒径可以显著提高量子点的荧光量子产率。
以上测试结果均表明,本发明提供的AISZ量子点发光材料在量子点敏化太阳能电池领域具有良好的应用前景。

Claims (10)

1.一种锌掺杂Ag-In-S量子点发光材料,其特征在于:该材料中Ag、In、S三种元素的化学计量比为1:3:4,Zn2+的掺杂量Zn/(Ag+In)的取值范围为5%-30%。
2.如权利要求1所述的一种锌掺杂Ag-In-S量子点发光材料,其特征在于:Zn2+的掺杂量为20%。
3.如权利要求1所述的一种锌掺杂Ag-In-S量子点发光材料,其特征在于:该材料为颗粒状固体,颗粒粒径分布在2-8nm区间范围内,平均粒径为(5.0±0.5)nm。
4.权利要求1-3任一项所述锌掺杂Ag-In-S量子点发光材料的制备方法,其特征在于该方法包括以下步骤:(a)按照化学计量比,将银源、铟源、锌源与复合表面活性剂混合均匀备用;(b)将硫粉与油胺混合均匀,得到硫前驱体溶液;(c)保护气氛下,将步骤(b)中的硫前驱体溶液注入步骤(a)所得混合物中反应,固液分离即可。
5.如权利要求4所述的方法,其特征在于:所述银源具体为乙酸银,所述铟源具体为乙酸铟,所述锌源具体为乙酸锌,所述复合表面活性剂具体为体积比2-4:1的1-十八碳烯、油胺混合物。
6.如权利要求4所述的方法,其特征在于:步骤(a)中银源、铟源、锌源的总摩尔量与复合表面活性剂的总体积之比为(0.84-1.04)mmol:24mL。
7.如权利要求4所述的方法,其特征在于:步骤(b)中硫粉与油胺混合时的用量比为0.8mmol:(1-2)mL。
8.如权利要求4所述的方法,其特征在于:步骤(c)中在160-200℃、氩气保护气氛下将硫前驱体溶液注入步骤(a)所得混合物中反应10-30min。
9.如权利要求4所述的方法,其特征在于:步骤(c)反应完将混合物自然冷却至室温,然后加入足量丙酮进行沉淀,最后固液分离、干燥即可。
10.权利要求1-3任一项所述锌掺杂Ag-In-S量子点发光材料在量子点敏化太阳能电池中的应用。
CN202110102312.3A 2021-01-26 2021-01-26 锌掺杂Ag-In-S量子点发光材料及其制备方法和应用 Pending CN112812770A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110102312.3A CN112812770A (zh) 2021-01-26 2021-01-26 锌掺杂Ag-In-S量子点发光材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110102312.3A CN112812770A (zh) 2021-01-26 2021-01-26 锌掺杂Ag-In-S量子点发光材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN112812770A true CN112812770A (zh) 2021-05-18

Family

ID=75859852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110102312.3A Pending CN112812770A (zh) 2021-01-26 2021-01-26 锌掺杂Ag-In-S量子点发光材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112812770A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316988A (zh) * 2021-12-29 2022-04-12 武汉大学 一种近红外IIb区金属离子(M=Zn,Mn)掺杂碲化银量子点的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096128A1 (en) * 2005-10-31 2007-05-03 Kyocera Corporation Wavelength Converter, Lighting System, and Lighting System Assembly
JP2010031115A (ja) * 2008-07-28 2010-02-12 Osaka Univ 半導体ナノ粒子の製造方法、および半導体ナノ粒子
KR20130095603A (ko) * 2012-02-20 2013-08-28 한국화학연구원 아연-실버-인듐-설파이드의 조성을 갖는 발광특성이 향상된 발광나노입자와 조합화학을 이용한 이의 제조방법
CN103265948A (zh) * 2013-04-28 2013-08-28 温州大学 一种掺杂型四元多色荧光Ag-Zn-In-S量子点的制备方法
CN104560033A (zh) * 2014-12-18 2015-04-29 宁波工程学院 一种新型高效发光Mn掺杂量子点的制备方法
CN108291143A (zh) * 2016-01-19 2018-07-17 株式会社村田制作所 发光体、发光体的制造方法和生物体物质标记剂
CN110729389A (zh) * 2019-10-24 2020-01-24 南昌航空大学 一种基于i-iii-vi族量子点的白光发光二极管的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096128A1 (en) * 2005-10-31 2007-05-03 Kyocera Corporation Wavelength Converter, Lighting System, and Lighting System Assembly
JP2010031115A (ja) * 2008-07-28 2010-02-12 Osaka Univ 半導体ナノ粒子の製造方法、および半導体ナノ粒子
KR20130095603A (ko) * 2012-02-20 2013-08-28 한국화학연구원 아연-실버-인듐-설파이드의 조성을 갖는 발광특성이 향상된 발광나노입자와 조합화학을 이용한 이의 제조방법
CN103265948A (zh) * 2013-04-28 2013-08-28 温州大学 一种掺杂型四元多色荧光Ag-Zn-In-S量子点的制备方法
CN104560033A (zh) * 2014-12-18 2015-04-29 宁波工程学院 一种新型高效发光Mn掺杂量子点的制备方法
CN108291143A (zh) * 2016-01-19 2018-07-17 株式会社村田制作所 发光体、发光体的制造方法和生物体物质标记剂
CN110729389A (zh) * 2019-10-24 2020-01-24 南昌航空大学 一种基于i-iii-vi族量子点的白光发光二极管的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUA ZHANG ET AL.,: "Zn-Ag-In-S quantum dot sensitized solar cells with enhanced efficiency by tuning defects", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
WEIDONG XIANG ET AL.,: "Studies on highly luminescent AgInS2 and Ag–Zn–In–S quantum dots", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316988A (zh) * 2021-12-29 2022-04-12 武汉大学 一种近红外IIb区金属离子(M=Zn,Mn)掺杂碲化银量子点的制备方法及其应用
CN114316988B (zh) * 2021-12-29 2023-03-10 武汉大学 一种近红外IIb区金属离子(M=Zn,Mn)掺杂碲化银量子点的制备方法及其应用

Similar Documents

Publication Publication Date Title
EP2675618B1 (en) Enhancement of light emission quantum yield in treated broad spectrum nanocrystals
Mei et al. A facile route for highly efficient color-tunable Cu-Ga-Se/ZnSe quantum dots
Mansur et al. Eco-friendly AgInS2/ZnS quantum dot nanohybrids with tunable luminescent properties modulated by pH-sensitive biopolymer for potential solar energy harvesting applications
EP3296257B1 (en) Core-shell particles, method for manufacturing core-shell particles, and film
KR101246338B1 (ko) 셀레늄화구리인듐 나노입자 및 그의 제조 방법
Wang et al. Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and applications in light-emitting diodes and bioimaging
Li et al. Highly luminescent copper gallium selenium based multicomponent quantum dots: Formation process and tunable white-light emission
Li et al. Chemical synthesis and applications of colloidal metal phosphide nanocrystals
Wei et al. Emission tuning of highly efficient quaternary Ag-Cu-Ga-Se/ZnSe quantum dots for white light-emitting diodes
WO2017038487A1 (ja) 半導体ナノ粒子、分散液、フィルムおよび半導体ナノ粒子の製造方法
Khan et al. Recent developments of lead-free halide-perovskite nanocrystals: Synthesis strategies, stability, challenges, and potential in optoelectronic applications
Zhang et al. Phosphine-free synthesis of ZnSe: Mn and ZnSe: Mn/ZnS doped quantum dots using new Se and S precursors
Jiang et al. Improved optical properties of lead-free double perovskite Cs2NaBiCl6 nanocrystal via K ions doping
CN112812770A (zh) 锌掺杂Ag-In-S量子点发光材料及其制备方法和应用
Raj et al. Synthesis and optical properties of cerium doped zinc sulfide nano particles
WO2016185932A1 (ja) コアシェル粒子、コアシェル粒子の製造方法およびフィルム
Gao et al. Synthesis and luminescence properties of CdSe: Eu NPs and their surface polymerization of poly (MMA-co-MQ)
CN114653382B (zh) 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用
Kumar et al. Benzoyl halide as alternative precursor for synthesis of lead free double perovskite Cs3Bi2Br9 nanocrystals
CN112852417B (zh) 一种金属离子掺杂碳点溶液的制备方法
CN111518540B (zh) Zn-CuInSe2/ZnSe核壳量子点的合成方法
Xu et al. Facile synthesis of ZnS–CdIn2S4-alloyed nanocrystals with tunable band gap and its photocatalytic activity
Xu et al. “Flash” synthesis of “giant” Mn-doped CdS/ZnS nanocrystals for high photostability
Zhao et al. Improving efficiency of silicon solar cells by integrating SiO2-coated lead-free Cs3Bi2Br9 perovskites quantum dots as luminescence down-shifting layer
Chopade et al. 1Department of Physics, Savitribai Phule Pune University, Pune, India, 2Department of Instrumentation Science, Savitribai Phule Pune University, Pune, India

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210518