CN112797119A - 一种多头双导程线接触偏置蜗杆的加工方法 - Google Patents

一种多头双导程线接触偏置蜗杆的加工方法 Download PDF

Info

Publication number
CN112797119A
CN112797119A CN202110029639.2A CN202110029639A CN112797119A CN 112797119 A CN112797119 A CN 112797119A CN 202110029639 A CN202110029639 A CN 202110029639A CN 112797119 A CN112797119 A CN 112797119A
Authority
CN
China
Prior art keywords
worm
axis
base circle
tooth
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110029639.2A
Other languages
English (en)
Other versions
CN112797119B (zh
Inventor
于立娟
郭新旭
张学成
雷健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202110029639.2A priority Critical patent/CN112797119B/zh
Publication of CN112797119A publication Critical patent/CN112797119A/zh
Application granted granted Critical
Publication of CN112797119B publication Critical patent/CN112797119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F11/00Making worm wheels, e.g. by hobbing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F13/00Making worms by methods essentially requiring the use of machines of the gear-cutting type
    • B23F13/003Making worms by methods essentially requiring the use of machines of the gear-cutting type making worms of conical or barrel shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • F16H55/0846Intersecting-shaft arrangement of the toothed members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/22Toothed members; Worms for transmissions with crossing shafts, especially worms, worm-gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)
  • Gear Transmission (AREA)

Abstract

一种多头双导程线接触偏置蜗杆的加工方法,属于机械设计与制造领域。该方法是:针对多头双导程线接触偏置蜗杆传动副的齿面特点,设计用于加工的成形车刀,并提出蜗杆两齿面的加工步骤。多头双导程线接触偏置蜗杆传动具有传动平稳、传动效率高和承载能力强等特点。

Description

一种多头双导程线接触偏置蜗杆的加工方法
技术领域
本发明是申请号201810692155.4的分案申请。本发明涉及机械传动技术领域,特别涉及一种多头双导程直线接触偏置蜗杆的加工方法。
背景技术
多头双导程直线接触偏置蜗杆蜗轮传动是一种效率高、承载能力好、润滑效果佳的新型传动方式。此种传动方式可拟补锥蜗杆传动比在10-20之间的空缺,蜗轮的材质能用钢材代替有色金属铜。多头双导程直线接触偏置蜗杆是变导程螺旋面,因此称之为偏置蜗杆。对多头双导程直线接触偏置蜗杆蜗轮传动副的研究、应用并不多,原因是啮合原理复杂,齿面形成复杂。但是,此种多头传动副存在显著的加工特点,对探索新的传动技术有很好的科研前景,对开发新的商业市场前景广阔。
发明内容
本发明提出了一种多头双导程直线接触偏置蜗杆的加工方法,可实现精密传动、承载能力强和传动效率高。发明此种新型的多头双导程线接触偏置蜗杆传动副,为此采用了如下技术方案:首先设计传动副的具体参数,包括,蜗轮、蜗杆的设计参数,传动副的安装参数;接着,根据传动副的设计参数存在的齿形角偏大,蜗杆理论齿高偏小,传动效率偏低等问题,提出了优化传动副参数的方法;最后,提出了多头双导程线接触偏置蜗杆的加工方法,即采用车床,利用特殊设计的车刀车削蜗杆齿面。
如图1至图9所示;
一、本发明之多头双导程线接触偏置蜗杆传动副的设计方法
根据啮合原理,当两齿轮齿轮齿面的公共包络面是具有零度齿形角的齿条齿面,且中心距为两齿轮基圆半径之和时,一对空间相错轴共轭传动的螺旋齿圆柱齿轮的齿面瞬时接触状态是一条直线,并且该直线与两齿轮基圆柱上的螺旋线相切。当相错角为直角时,蜗杆2与蜗轮1空间相错传动。蜗杆2一个齿面与对应的蜗轮1一个齿面为外啮合。对于蜗杆2的齿面,基圆半径为Rb2,基圆螺旋角为βb2,齿面为右旋渐开螺旋齿面;对于蜗轮1基圆半径为Rb1,基圆螺旋角为βb1,齿面为右旋渐开螺旋齿面。两轴间轴交角为
Figure BDA0002891506440000021
两轴间中心距为A1=Rb1+Rb2。蜗杆2另一个齿面与对应的蜗轮1另一个齿面为内啮合。对于蜗杆2的齿面,基圆半径为R′b2,基圆螺旋角为β′b2,齿面为右旋渐开螺旋齿面;对于蜗轮1的基圆半径为R′b1,基圆螺旋角为β′b1,齿面为左旋渐开螺旋齿面。两轴间轴交角为
Figure BDA0002891506440000022
两轴间中心距为A2=R′b1-R′b2
当相错角为90°时,外啮合侧被加工蜗轮1齿面基圆螺旋角等于外啮合侧滚刀齿面基圆螺旋升角λ,内啮合侧被加工蜗轮齿面基圆螺旋角等于内啮合侧滚刀齿面基圆螺旋升角λ’。
多头双导程直线接触偏置蜗杆蜗轮传动的基本原理和基本几何参数如图3所示。在公切面Q中,蜗轮蜗杆的螺旋齿面分别为Σ12,外啮合状态;在公切面Q’中,蜗轮蜗杆的螺旋齿面分别为Σ′1,Σ'2,内啮合状态。根据蜗杆头数分别对应同等组数的公切面Q、Q’。其中:
Rb1为外啮合蜗轮齿面基圆半径;Rb2为外啮合蜗杆齿面基圆半径;
R'b1为内啮合蜗轮齿面基圆半径;R'b2为内啮合蜗杆齿面基圆半径;
βb1为外啮合蜗轮齿面基圆螺旋角;βb2为外啮合蜗杆齿面基圆螺旋角;
β′b1为外啮合蜗轮齿面基圆螺旋角;β′b2为外啮合蜗杆齿面基圆螺旋角;
1)、基本参数
传递功率P,扭矩T,传动比i21
2)、基本结构设计
2.1)中心距A:
Figure BDA0002891506440000031
式中:P为蜗杆蜗轮所传递的功率,单位为kw;
Km为材科系数;当锥蜗轮、蜗杆均用钢制造时,使用极压润滑油润滑,取其为0.002
Kv为速度系数,由下式确定:对于低速传动,Kv=n1 0.546-7,n为蜗杆转速;
Ki为传动比系数,由下式确定:
Figure BDA0002891506440000032
2.2)蜗轮齿数和蜗杆头数
Figure BDA0002891506440000033
式中,z为蜗轮齿数,z2为蜗杆头数,一般去2或3
2.3)多头双导程直线接触蜗轮基圆半径Rb1与蜗杆基圆半径Rb2的计算
Figure BDA0002891506440000034
Figure BDA0002891506440000035
式中:βb1为外啮合蜗轮齿面基圆螺旋角;β′b1为外啮合蜗轮齿面基圆螺旋角;
2.4)初选内外啮合螺旋角βb1、β′b1
保证以下关系:
Figure BDA0002891506440000041
2.5)粗略计算蜗杆平均半径R
d=kA=2R,k=1/2~7/12
一般取n=(0.1-0.12)*z
3)、多头双导程直线接触蜗轮的参数设计步骤如下:
3.1)多头双导程直线接触蜗轮外径(Ra)
Figure BDA0002891506440000042
式中:R′b1,R′b2分别为内啮合面蜗轮渐开螺旋面基圆半径、内啮合面蜗杆渐开螺旋面基圆半径,n为同时啮合齿数,R为蜗杆平均半径;β′b1为内啮合蜗轮基圆螺旋角,λ'为内啮合螺旋升角;
3.2)多头双导程直线接触蜗轮分度圆直径(Rm)定义为以蜗轮轴截面中心为圆心的圆,在此圆上齿厚与齿槽宽相等,过该圆的截面为分度圆截面,计算方程如下:
Figure BDA0002891506440000043
式中:Rb1为外啮合齿轮渐开螺旋面基圆半径,r=Ra,z为蜗轮齿数;
3.3)计算分度圆截面上两齿面渐开线起始点的相错角
Figure BDA0002891506440000044
Figure BDA0002891506440000045
3.4)计算分度圆截面上蜗轮模数(m)
Figure BDA0002891506440000051
3.5)计算多头双导程直线接触蜗轮内径(Ri)
Figure BDA0002891506440000052
Figure BDA0002891506440000053
式中:r=Ri
3.6)计算多头双导程直线接触蜗轮齿高(h),根据分度圆半径和理论齿根高。
ha=m,
hf=m+C*
h=ha+hf
式中:ha为齿顶高,hf为齿根高,C*为顶隙系数,C*一般取(0.1~0.2)m,m为模数。
3.7)计算多头双导程直线接触蜗轮蜗轮锥角(θ1)
Figure BDA0002891506440000054
式中:t'max=t'|r=Ri,另
Figure BDA0002891506440000055
Figure BDA0002891506440000056
式中:βb1为外啮合蜗轮基圆螺旋角
4)、多头双导程直线接触偏置蜗杆的参数设计步骤如下:
4.1)计算双导程直线接触偏置蜗杆齿高(h2)
Figure BDA0002891506440000061
式中:
Figure BDA0002891506440000062
因为蜗杆内外啮合面存在基圆半径不等,啮合面关于蜗杆轴线不对称原因,所以具体蜗杆齿高h2可根据具体情况稍作调整。
4.2)计算双导程直线接触偏置蜗杆锥角(θ2)
Figure BDA0002891506440000063
式中,
Figure BDA0002891506440000064
4.3)计算双导程直线接触偏置蜗杆螺纹长度(L)
Figure BDA0002891506440000065
4.4)计算双导程直线接触偏置蜗杆大、小端直径Dd、Ds
Dd=d+L tan θ2,Ds=d-L tan θ2
式中:d为蜗杆平均外径
4.5)计算双导程直线接触偏置蜗杆蜗轮传动副安装偏距(E)
E=r2ctgβ'b1+m tan β′b1
4.6)计算双导程直线接触偏置蜗杆蜗轮传动副安装高度a,即蜗杆轴线与蜗轮分度圆截面的垂直距离
a=r2-ha
式中,
Figure BDA0002891506440000066
4.7)计算双导程直线接触偏置蜗杆两基圆螺旋面起始点相对位置(S),即两基圆螺旋渐开面起点在蜗杆轴向上距离
Figure BDA0002891506440000071
式中,efmin=r2ctgβ'b1+m tan β′b1
4.8)计算滚刀齿面外啮合导程(p)、内啮合导程(p’)
p=2Rb2π tan λ
p'=2R'b2π tan λ'
式中:λ为外啮合蜗轮螺旋升角
二、本发明之多头双导程线接触偏置蜗杆传动副齿形优化方法
根据多头双导程线接触偏置蜗杆传动副参数变化规律,在选择合适的基本参数(设计要求的传功比,合适的齿形角)情况下,蜗杆会存在第一齿厚S1偏小、理论齿高偏小等问题。多头双导程线接触偏置蜗杆存在不等的内、外啮合齿面导程p、p’,且一般情况下p’>p,因此,这种偏置蜗杆的齿厚沿蜗杆小端到大端方向增大。
根据几何关系,蜗杆齿厚S:
S=S1+k(p'-p)
式中:S1为蜗杆第一齿厚;k为从蜗杆小端起导程数,k=0,1,2,3.......;
由于多头双导程线接触偏置蜗杆传动副具有齿面导程不相等这一特点,我们提出解决针对蜗杆第一齿厚S1偏小问题的传动副扩充方法,即适当截去蜗杆小端齿厚偏小的部分,截去后剩余部分的第一个齿的齿厚S变大,S可根据公式计算,S=S,其中k根据截去部分长度确定,一般截去1~3个齿距。同样,根据同时啮合齿数要求适当延长蜗杆大端部分,延长部分长度为La。此方法分为多头双导程线接触偏置蜗杆传动副蜗轮内径扩充和多头双导程线接触偏置蜗杆传动副蜗轮外径扩充。
a)多头双导程线接触偏置蜗杆传动副蜗轮内径扩充
Figure BDA0002891506440000081
式中,Xi为蜗杆小端端面与蜗轮轴线之间的偏距,Ri为扩充前蜗轮内径,Li为蜗杆截去部分长度,Ri’为扩充后蜗轮内径。
整理得扩充后蜗轮内径Ri’为:
Figure BDA0002891506440000082
b)多头双导程线接触偏置蜗杆传动副蜗轮外径扩充,根据几何关系得:
Figure BDA0002891506440000083
La=Xa+L
式中,Xa为蜗杆大端端面与蜗轮轴线之间的偏距,Ra为扩充前蜗轮外径,La为蜗杆延长部分长度,Ra’为扩充后蜗轮外径,蜗杆螺纹部分长度L。整理得扩充后蜗轮外径Ra’为:
Figure BDA0002891506440000084
经过扩充后,蜗轮蜗杆传动副形成了新的设计参数,其中,蜗杆截去小端部分齿面,延长大端部分齿面;蜗轮按照齿面啮合要求同时扩大内径、外径。多头双导程线接触偏置蜗杆传动副的扩充方法可以有效解决蜗杆第一齿厚S偏小引起的蜗杆理论齿高偏小,齿面承载能力下降等问题,并且扩充方法简单、有效,不影响蜗轮蜗杆之间的安装参数。另外,多头双导程线接触偏置蜗杆传动副的扩充作为一种解决问题的方法,其扩充蜗杆大端齿面长度必须要求在一定范围内,若超出范围可能引起蜗杆大端齿厚过大,传递效率低等问题。
三、本发明之多头双导程线接触偏置蜗杆的加工方法,如图10所示,
多头双导程线接触偏置蜗杆工作面为渐开螺旋面,可以在数控车床车削加工。蜗杆两齿面是基圆不同的渐开螺旋面,用车削的方式分别加工。
多头双导程线接触偏置蜗杆的齿面属于渐开螺旋面,其车削加工方法包括以下步骤:
a)首先根据蜗杆齿形参数设计成形车刀,粗车出蜗杆齿槽。
b)根据被加工蜗杆基圆半径和基圆螺旋角确定车刀外形尺寸和刀刃角度。刀刃与刀柄之间距离为蜗杆基圆半径。直线刀刃在刀体上表面,刀刃与蜗杆轴线之间的角度为蜗杆基圆螺旋角。刀刃长度由蜗杆最大外径确定。
c)定义车床主轴方向为z轴,竖直方向为y轴,水平方向为x轴,蜗杆端面与主轴的交点为原点O。车刀安装在刀架后,便确定y轴方向上的定位。车床z轴方向的定位由蜗杆端面确定。
x轴方向定位由蜗杆小端内径确定,根据几何关系
Figure BDA0002891506440000091
式中,x1为刀尖在x轴上坐标,Ri小为蜗杆小端内径,Rb为基圆半径。
d)正确对刀后,机床主轴旋转一周,车刀沿蜗杆轴向移动的距离为加工齿面的导程。车削结束位置为:z轴方向由蜗杆长度L确定;y轴方向保值不变;x轴方向位置由蜗杆大端内径确定,根据几何关系
Figure BDA0002891506440000092
式中,x2为刀尖在x轴上坐标,Ri大为蜗杆大端内径,Rb为基圆半径。
附图说明
图1为多头双导程线接触偏置蜗杆传动副示意图。
图2为多头双导程线接触偏置蜗杆结构图。
图3为多头双导程线接触偏置蜗杆传动副啮合原理示意图。
图4为多头双导程直线接触蜗轮蜗杆分度圆截面示意图。
图5为蜗轮内径扩充示意图。
图6为蜗轮外径扩充示意图。
图7为车刀结构示意图。
图8为蜗杆小端定位示意图。
图9为蜗杆大端定位示意图。
图10车削加工示意图。

Claims (1)

1.一种多头双导程线接触偏置蜗杆的加工方法,其特征在于:
多头双导程线接触偏置蜗杆的齿面属于渐开螺旋面,其车削加工方法包括以下步骤:
a)首先根据蜗杆齿形参数设计成形车刀,粗车出蜗杆齿槽;
b)根据被加工蜗杆基圆半径和基圆螺旋角确定车刀外形尺寸和刀刃角度;刀刃与刀柄之间距离为蜗杆基圆半径;直线刀刃在刀体上表面,刀刃与蜗杆轴线之间的角度为蜗杆基圆螺旋角;刀刃长度由蜗杆最大外径确定;
c)定义车床主轴方向为z轴,竖直方向为y轴,水平方向为x轴,蜗杆端面与主轴的交点为原点O;车刀安装在刀架后,便确定y轴方向上的定位;车床z轴方向的定位由蜗杆端面确定;
x轴方向定位由蜗杆小端内径确定,根据几何关系
Figure FDA0002891506430000011
式中,x1为刀尖在x轴上坐标,Ri小为蜗杆小端内径,Rb为基圆半径;
d)正确对刀后,机床主轴旋转一周,车刀沿蜗杆轴向移动的距离为加工齿面的导程;车削结束位置为:z轴方向由蜗杆长度L确定;y轴方向保值不变;x轴方向位置由蜗杆大端内径确定,根据几何关系
Figure FDA0002891506430000012
式中,x2为刀尖在x轴上坐标,Ri大为蜗杆大端内径,Rb为基圆半径。
CN202110029639.2A 2018-06-29 2018-06-29 一种多头双导程线接触偏置蜗杆的加工方法 Active CN112797119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110029639.2A CN112797119B (zh) 2018-06-29 2018-06-29 一种多头双导程线接触偏置蜗杆的加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110029639.2A CN112797119B (zh) 2018-06-29 2018-06-29 一种多头双导程线接触偏置蜗杆的加工方法
CN201810692155.4A CN108843739B (zh) 2018-06-29 2018-06-29 一种多头双导程线接触偏置蜗杆传动副齿形角优化方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201810692155.4A Division CN108843739B (zh) 2018-06-29 2018-06-29 一种多头双导程线接触偏置蜗杆传动副齿形角优化方法

Publications (2)

Publication Number Publication Date
CN112797119A true CN112797119A (zh) 2021-05-14
CN112797119B CN112797119B (zh) 2023-02-07

Family

ID=64200878

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810692155.4A Active CN108843739B (zh) 2018-06-29 2018-06-29 一种多头双导程线接触偏置蜗杆传动副齿形角优化方法
CN202110029639.2A Active CN112797119B (zh) 2018-06-29 2018-06-29 一种多头双导程线接触偏置蜗杆的加工方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201810692155.4A Active CN108843739B (zh) 2018-06-29 2018-06-29 一种多头双导程线接触偏置蜗杆传动副齿形角优化方法

Country Status (1)

Country Link
CN (2) CN108843739B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112643143B (zh) * 2020-11-13 2022-05-06 重庆大学 一种磨削面齿轮的鼓形蜗杆砂轮廓形设计方法
CN113309821A (zh) * 2021-06-24 2021-08-27 浙江台玖精密机械有限公司 用于无人机驱动的高精度双导程钢蜗轮减速器
CN114184502B (zh) * 2022-02-15 2022-05-20 西南石油大学 一种pdc微钻头、岩石可钻性测试装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB669122A (en) * 1948-08-21 1952-03-26 Fellows Gear Shaper Co Method and means for producing spiral face gears by continuous action
CN1184219A (zh) * 1997-12-29 1998-06-10 赵翼瀚 点-线接触偏置蜗杆传动装置及其制造方法
CN101028660A (zh) * 2007-04-06 2007-09-05 吉林大学 齿轮精滚刀构形方法及其所构形的精滚刀
CN101710350A (zh) * 2009-05-27 2010-05-19 吉林大学 双导程直线接触偏置蜗杆传动的设计与制造方法
CN102059403A (zh) * 2010-11-04 2011-05-18 吉林大学 准双曲面齿轮副的加工方法与加工机床
CN102151911A (zh) * 2009-05-27 2011-08-17 吉林大学 双导程直线接触偏置蜗杆传动的加工方法
CN102797829A (zh) * 2012-09-02 2012-11-28 吉林大学 准双导程锥蜗杆蜗轮设计方法
CN103286387A (zh) * 2013-05-10 2013-09-11 吉林大学 准双导程锥蜗杆蜗轮加工方法
CN104493305A (zh) * 2014-12-30 2015-04-08 西安交通大学 一种基于齿轮加工机床调整的车齿加工方法
CN106292531A (zh) * 2016-09-09 2017-01-04 西华大学 一种计算加工zn1蜗杆盘状成形刀具廓形边界的算法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3876101B2 (ja) * 2000-01-19 2007-01-31 株式会社ジェイテクト ウォームの加工方法及び加工装置
CN1796033A (zh) * 2004-12-21 2006-07-05 睦茗精密齿轮股份有限公司 蜗杆的成型刀具及其应用
CN100427270C (zh) * 2005-11-30 2008-10-22 国营北京曙光电机厂 一种维修专用数控机床塑料套筒的方法
CN103658870A (zh) * 2012-08-31 2014-03-26 中钢集团衡阳重机有限公司 加工蜗轮蜗杆副的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB669122A (en) * 1948-08-21 1952-03-26 Fellows Gear Shaper Co Method and means for producing spiral face gears by continuous action
CN1184219A (zh) * 1997-12-29 1998-06-10 赵翼瀚 点-线接触偏置蜗杆传动装置及其制造方法
CN101028660A (zh) * 2007-04-06 2007-09-05 吉林大学 齿轮精滚刀构形方法及其所构形的精滚刀
CN101710350A (zh) * 2009-05-27 2010-05-19 吉林大学 双导程直线接触偏置蜗杆传动的设计与制造方法
CN102151911A (zh) * 2009-05-27 2011-08-17 吉林大学 双导程直线接触偏置蜗杆传动的加工方法
CN102059403A (zh) * 2010-11-04 2011-05-18 吉林大学 准双曲面齿轮副的加工方法与加工机床
CN102797829A (zh) * 2012-09-02 2012-11-28 吉林大学 准双导程锥蜗杆蜗轮设计方法
CN103286387A (zh) * 2013-05-10 2013-09-11 吉林大学 准双导程锥蜗杆蜗轮加工方法
CN104493305A (zh) * 2014-12-30 2015-04-08 西安交通大学 一种基于齿轮加工机床调整的车齿加工方法
CN106292531A (zh) * 2016-09-09 2017-01-04 西华大学 一种计算加工zn1蜗杆盘状成形刀具廓形边界的算法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
厉泽林: "准双导程锥蜗杆传动副加工制造方法研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
岳芹: "偏置圆柱蜗杆传动啮合性能分析及蜗杆加工方法研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
张学成,聂建辉: "双导程直线接触偏置蜗杆传动Ⅱ——齿面切削加工方法", 《北京工业大学学报》 *
户立杰,李清,彭学玉等: "偏置蜗杆面齿轮传动的参数化建模与接触分析", 《机械设计与研究》 *

Also Published As

Publication number Publication date
CN108843739B (zh) 2021-04-27
CN112797119B (zh) 2023-02-07
CN108843739A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
CN108843739B (zh) 一种多头双导程线接触偏置蜗杆传动副齿形角优化方法
Jelaska Gears and gear drives
CN104819266B (zh) 无退刀槽圆弧螺旋线混合型人字齿轮及其加工方法
US9145964B2 (en) Load rating optimized bevel gear toothing
US20060288809A1 (en) Rack and pinion transmission
CN110242704B (zh) 一种基于滚动摩擦的传动装置及其传动方法
CN104308279A (zh) 基于数学建模宏程序加工直廓环面蜗杆的方法及其产品
US3362059A (en) Gear rolling dies and method for manufacturing external tooth gears
CN101710350A (zh) 双导程直线接触偏置蜗杆传动的设计与制造方法
CN101780569A (zh) 圆柱齿轮的车削制齿加工法
CN102672283A (zh) 一种偏置蜗杆蜗轮传动设计与制造方法
CN102151911B (zh) 双导程直线接触偏置蜗杆传动的加工方法
CN112935420A (zh) 一种渐开线齿轮剃齿刀及其三维建模方法与剃齿加工方法
CN103286387B (zh) 准双导程锥蜗杆蜗轮加工方法
CN110701269B (zh) 一种改善滚柱受力的行星滚柱丝杠副的滚柱
CN111097973A (zh) 指状刀具半展成加工人字齿轮的方法
CN212225921U (zh) 一种齿轮轴
WO2018086441A1 (zh) 用于加工rov推进器修型齿轮的刀具
CN115013482A (zh) 一种组合齿廓的内啮合纯滚动齿轮机构
CN210789529U (zh) 一种平行轴线齿轮滚刀
WO2004102036A2 (en) Enveloping worm transmission and machining of enveloping worm transmission
CN112460217A (zh) 一种新型行星滚柱丝杠
CN118088639B (zh) 一种螺柱形人字齿轮齿条传动机构及其设计方法
US20050115071A1 (en) Manufacturing for face gears
CN110851973A (zh) 一种弧齿锥齿轮复合传动误差设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant