CN112777586B - 一种氨气传感器用传感膜的制备及应用 - Google Patents

一种氨气传感器用传感膜的制备及应用 Download PDF

Info

Publication number
CN112777586B
CN112777586B CN201911086321.7A CN201911086321A CN112777586B CN 112777586 B CN112777586 B CN 112777586B CN 201911086321 A CN201911086321 A CN 201911086321A CN 112777586 B CN112777586 B CN 112777586B
Authority
CN
China
Prior art keywords
polyaniline
graphene oxide
sensing film
solution
reduced graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911086321.7A
Other languages
English (en)
Other versions
CN112777586A (zh
Inventor
冯亮
常俊玉
孟虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201911086321.7A priority Critical patent/CN112777586B/zh
Publication of CN112777586A publication Critical patent/CN112777586A/zh
Application granted granted Critical
Publication of CN112777586B publication Critical patent/CN112777586B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/126Composition of the body, e.g. the composition of its sensitive layer comprising organic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明提供了一种氨气传感器用传感膜的制备及应用,属于气体传感器技术领域。该传感膜材料为聚苯胺/还原氧化石墨烯复合材料;聚苯胺为纳米尖刺状结构、且其生长于还原氧化石墨烯层状结构表面。本发明制备的基于聚苯胺/还原氧化石墨烯复合材料的氨气传感膜具有高灵敏度、高选择性,且重复性强、稳定性好,室温传感大大降低了传感器使用过程中的功耗,提高了传感器使用的便携性,对于本技术领域具有重要的实践和研究价值。

Description

一种氨气传感器用传感膜的制备及应用
技术领域
本发明属于气体传感器技术领域,具体地涉及一种可以作为氨气传感膜的纳米复合材料。
背景技术
随着人们生活质量的提高,对工业生产以及生活条件的要求越来越高,人们对气体传感器的需求也越来越大。气体传感器的研发,尤其是有毒有害气体传感器的研究更是得到迅猛发展。氨气是一种工业应用广泛的有毒气体,无色,有刺激性恶臭味,它对动物或人体的上呼吸道有刺激和腐蚀作用,常被吸附在皮肤粘膜和眼结膜上,严重时会危及生命。目前检测氨气的气敏传感器已被广泛运用于市政、消防、燃气、电信、石油、化工、煤炭、电力、制药、冶金、焦化、储运等行业。普遍使用的金属氧化物材料(如氧化钨、氧化锌、氧化锡等),其工作温度远高于室温(>200℃),较高的使用温度会带来较大能耗,致使传感器的长期工作稳定性变差,而且不适宜在存在易爆炸气体的场所使用,使其应用受到一定限制。
近年来,碳材料研究一直十分活跃,从零维的富勒烯,到一维碳纳米管、二维石墨烯、三维石墨稀泡沫等等,在各种领域广受关注。而它们在传感材料的制备及性能改进上的研究也备受重视。已有研究发现多孔微球碳材料与导电聚合物气敏材料复合可明显提高其相应灵敏度,并加快响应,有望实现室温下的高灵敏度气体响应。这方面研究目前已成为传感器研究的重要方向之一,发展非常迅速。
现有的基于石墨烯材料的氨气传感器,采用的传感膜通常为金属半导体氧化物修饰的还原氧化石墨烯材料或采用各种还原方法制备的还原氧化石墨烯材料,具有灵敏度低、选择性差、响应和回复时间长的缺陷,不能实现在室温下及在多种干扰气体存在的情况下对微量氨气的检测需求。
发明内容
为了解决上述问题,本发明的目的是制备一种氨气传感器,能够排除挥发性有机物的干扰,即便在室温环境下也具有高选择性和高灵敏度,且具有很好的响应回复性和重复性,能够实现在室温下及在多种干扰气体存在的情况下对微量氨气的检测需求。
本发明的技术方案是:
一种氨气传感器用的传感膜,其特征在于:所述传感膜采用材料为聚苯胺与还原氧化石墨烯复合材料;所述聚苯胺为纳米尖刺状结构、且其生长于还原氧化石墨烯层状结构表面。
所述的传感膜,其特征在于:所述传感膜的厚度为10-1000nm。
所述的传感膜,其特征在于:尖刺状结构是指纳米棒状结构的直径由一端向另一端逐渐减小,所述聚苯胺尖刺底部的直径为20-100nm,长度10-500nm。
所述的传感膜,其特征在于:所述聚苯胺与还原氧化石墨烯复合材料中聚苯胺的质量百分含量为30-90%,还原氧化石墨烯为片层状结构。
所述的传感膜,其特征在于:所述传感器的工作温度为0-100℃;其原理在于,氨气流通前后,聚苯胺与还原氧化石墨烯复合材料发生质子酸掺杂和脱掺杂过程,其电阻会发生明显改变。
所述的传感膜的制备方法如下:
(1)配制浓度为0.01-5mg/mL氧化石墨烯水溶液;
(2)采用原位聚合法制备了PANI复合纳米片:将苯胺加入甲苯中(苯胺与甲苯体积比1:10-50)搅拌,形成均匀的混合溶液,称为溶液A;
于离子水中先后加入氧化石墨烯水溶液、过硫酸铵和浓盐酸(苯胺单体、过硫酸铵、盐酸的摩尔比为:1:0.01-0.3:100-5000,最终混合液中苯胺单体摩尔浓度为0.01-0.5M)为溶液B,
(3)将溶液A加入到溶液B中进行聚合(A、B溶液体积比为0.1:10),室温下搅拌2-24h,期间聚苯胺在还原氧化石墨烯表层均匀生长;
(3)反应后得到一种均匀分散的溶液,用甲醇和1M的盐酸水溶液分别依次洗涤三到五次;
(4)洗涤后产物置于去离子水中,在90-200℃下微波水热反应10-100分钟;
(5)反应产物于30-80℃下干燥后,即得聚苯胺/还原氧化石墨烯复合材料。
该传感膜的在氨气传感器中的应用。
本发明将聚苯胺/还原氧化石墨烯复合材料作为敏感元素,将敏感元素涂覆在表面有叉指金电极的陶瓷管基体上形成传感膜,制得电阻型薄膜氨气传感器;传感器信号是测定聚苯胺/还原氧化石墨烯复合材料膜的电阻值在空气和以空气为背景的氨气气体氛围下的变化。
复合材料中聚苯胺为尖刺状,属于类似一维纳米结构,具有较高的比表面积,当它与具有二维平面结构的还原氧化石墨烯结合时,可形成三维纳米结构,能有效阻止石墨烯片的堆积,因此复合材料具有极大的比表面积;另外,复合材料在合成中以浓盐酸进行了酸的掺杂,酸化后的聚苯胺本身即对氨气有极好的响应效果,在氨气流通时,转化为本征态,进而提高电阻;而还原石墨稀可以作为一种有效催化剂,对材料传感性能的提高也起了重要作用。本发明的聚苯胺/还原氧化石墨烯复合材料能够方便地固定在电极对和基体上,如采用涂覆、压膜等方式构建传感器。
本发明具有如下优点:
1.所制备的聚苯胺/还原氧化石墨烯复合材料具有精细的三维纳米结构,大的比表面积,使传感器在室温下具有高灵敏度、快速响应和良好的响应可逆性,解决了半导体气体传感膜通常需要高温工作条件的问题。
2.与传统的半导体气体传感膜相比,本发明的传感膜材料可以通过简单的方式(如滴涂、旋涂等)将传感膜固定在电极对和基体上,成膜方法简单,加工性好,有利于在不同形状的电极上进行加工,解决了传统气体传感膜需要高温烧结,加工复杂的问题。
3.与传统掺杂半导体材料的合成过程相比,本合成过程基本不涉及高温操作,操作简单,便于大量制备。
4.本发明的传感器与现有的基于石墨烯材料的氨气传感膜相比,能够排除挥发性有机物的干扰,在室温和高温环境下均具有高选择性和高灵敏度,且具有很好的响应回复性和重复性,能够实现在室温下及在多种干扰气体存在的情况下对微量氨气的检测需求。
5.本发明的传感膜的工作温度范围较宽,且能在室温下工作,大大降低了功耗,无需额外的加热设备,具有节能、便携的优点。
附图说明
图1是传感膜材料的微观结构。
图2是传感膜在室温下对不同浓度氨气的动态响应曲线。
图3是传感膜在室温下对极低浓度氨气的响应曲线。
图4是传感膜在室温下对氨气的响应灵敏度随气体浓度变化曲线。
图5是传感膜对15ppm氨气室温响应的重复性曲线。
图6是传感膜在室温下对氨气及多种干扰气体的感应信号的对比图。
图7是不同合成过程制备的传感膜对氨气的响应灵敏度随气体浓度变化曲线。
具体实施方式
下面结合附图和实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1
聚苯胺/还原氧化石墨烯复合材料传感膜的制备,包括以下步骤:
配制浓度为2mg/mL氧化石墨烯水溶液,将1.1mL苯胺加入20mL甲苯中搅拌30分钟,形成均匀的混合溶液,为溶液A;40mL去离子水中先后加入55mL氧化石墨烯水溶液、2.7g过硫酸铵和6mL浓盐酸,超声混匀,为溶液B。将溶液A缓慢加入到溶液B中进行聚合,室温下搅拌6h。用甲醇和1M的盐酸水溶液将反应后得到的墨绿色产物洗涤三次。而后置于25mL去离子水中,在150℃下微波水热反应60分钟。水热反应产物于60℃下干燥后,得聚苯胺/还原氧化石墨烯复合材料。制得聚苯胺/还原氧化石墨烯复合材料,以X射线电子能谱进行表征,其中聚苯胺的质量比为45%。在扫描电子显微镜下观察,聚苯胺尖刺的底部直径为20-40nm,长度约30nm,且直径由一端向另一端逐渐减小。具体微观结构见图1。
实施例2
氨气传感器的构建
为测试传感膜性能,搭建了一种氨气传感器,由传感膜、电极对、绝缘基体组成。其中,绝缘基体材料为陶瓷,形状为空心圆柱体,尺寸为:外径1.2mm,内径1.0mm,长4.0mm;两端电极为叉指金电极;传感膜为实施例1所述的传感膜;二个叉指金电极相间隔(约3.0mm)地固定在陶瓷基体外表面,传感膜覆于叉指金电极和叉指金电极之间的陶瓷基体上,叉指金电极上有引线用于传输电信号。
将实施例1所述的聚苯胺/还原氧化石墨烯复合材料滴涂在具有陶瓷基底的叉指金电极表面,传感膜厚度为500nm。室温风干,制得基于聚苯胺/还原氧化石墨烯复合材料的室温氨气传感器。
传感器的测试:通过利用数字万用表测量传感器在空气和在以空气为背景的不同浓度的氨气氛围下的电阻值的变化,作为传感器的信号。
所述氨气传感器在室温下对不同浓度氨气的动态响应曲线见图2。可以看出,传感器对于不同浓度的氨气均具有快速响应,且极为灵敏,信号变动幅度较大,而且响应具有良好的可逆性。
所述氨气传感器在室温下对极低浓度氨气(200ppb)也有极好的响应,如图3所示,证明传感器在极低浓度氨气检测与预警中有极好的应用前景。
所述氨气传感器在室温下对不同浓度氨气的响应灵敏度曲线见图4。可以看出,该传感器在室温下对低浓度氨气具有较高的响应灵敏度,对于10ppm氨气达到0.3左右,且对氨气具有很好的线性响应。
制备的基于聚苯胺/还原氧化石墨烯复合材料的氨气传感器在室温下对于15ppm氨气的响应重复性曲线见图5。可以看出在室温下经过多个循环测试,其响应曲线形状几乎不变,表明该传感器具有良好的响应重复性。
制备的基于聚苯胺/还原氧化石墨烯复合材料的氨气传感器在室温下对氨气及多种干扰气体的感应信号的对比图6。可以看出,所开发的传感器在室温下表现出良好的氨气感应性能及对的选择性能。
实施例3
如实施例1所述的制备方法,其中合成时间分别为4h、8h、12h,制备得到的聚苯胺/还原氧化石墨烯复合材料,其中三氧化二铁纳米棒的百分含量分别为20%、45%、62%。按照实施例2中方法,制备成传感器,通过利用数字万用表测量传感器在空气和在以空气为背景的不同浓度的氨气氛围下的电阻值的变化,作为传感器的信号。对比三种传感器对氨气的传感效果,见图7。可以看出,所开发的传感器在室温下均表现出对氨气良好的传感性能。
实施例4
如实施例1所述的制备方法,其中氧化石墨烯水溶液浓度为8mg/mL,加入30mL氧化石墨烯水溶液和2mL苯胺单体,苯胺单体、过硫酸铵、盐酸的摩尔比为:1:0.2:1000,室温搅拌6h。制得聚苯胺的百分含量为50%,聚苯胺的直径50nm,长度30nm。以实施例2所述的方法制备成氨气传感器测试传感膜性能,对于20ppm氨气响应灵敏度为0.7。
实施例5
如实施例1所述的制备方法,其中氧化石墨烯水溶液浓度为0.3mg/mL,加入70mL氧化石墨烯水溶液,5mL苯胺单体,其中苯胺单体、过硫酸铵、盐酸的摩尔比为1:0.08:3000),室温搅拌9h。制得聚苯胺的百分含量为20%,聚苯胺的直径20nm,长度13nm。以实施例2所述的方法制备成氨气传感器测试传感膜性能,对于20ppm氨气响应灵敏度为0.2。
实施例6
如实施例1所述的制备方法,其中氧化石墨烯水溶液浓度为,5mg/mL,水中加入30mL氧化石墨烯水溶液,30mL甲苯中加入1mL苯胺单体为溶液A。溶液B中苯胺单体、过硫酸铵、盐酸的摩尔比为1:0.03:5000),室温搅拌2h。制得聚苯胺的百分含量为24%,聚苯胺的直径30nm,长度18nm。以实施例2所述的方法制备成氨气传感器测试传感膜性能,对于20ppm氨气响应灵敏度为0.14。

Claims (4)

1.一种氨气传感器用的传感膜,其特征在于:所述传感膜采用材料为聚苯胺与还原氧化石墨烯复合材料;所述聚苯胺为纳米尖刺状结构、且其生长于还原氧化石墨烯层状结构表面;
所述尖刺状结构是指纳米棒状结构的直径由一端向另一端逐渐减小,所述聚苯胺尖刺底部的直径为20-100 nm,长度10-500 nm;
所述聚苯胺与还原氧化石墨烯复合材料中聚苯胺的质量百分含量为30-90%,还原氧化石墨烯为片层状结构;
所述传感膜按照以下步骤进行制备:
(1)配制浓度为0.01-5 mg/mL氧化石墨烯水溶液;
(2)采用原位聚合法制备PANI复合纳米片:按照苯胺与甲苯体积比1:10-50将苯胺加入甲苯中搅拌,形成均匀的混合溶液,称为溶液A;
于离子水中先后加入氧化石墨烯水溶液、过硫酸铵和浓盐酸为溶液B;
将溶液A加入到溶液B中进行聚合,A、B溶液体积比为0.1:10,其中苯胺单体、过硫酸铵、盐酸的摩尔比为:1:0.01-0.3:100-5000,最终混合液中苯胺单体摩尔浓度为0.01-0.5 M;室温下搅拌2-24h,期间聚苯胺在还原氧化石墨烯表层均匀生长;
(3)反应后得到一种均匀分散的溶液,用甲醇和1M的盐酸水溶液分别依次洗涤三到五次;
(4)洗涤后产物置于去离子水中,在90-200 ℃下微波水热反应10-100分钟;
(5)反应产物于30-80℃下干燥后,即得聚苯胺/还原氧化石墨烯复合材料。
2.根据权利要求1所述的传感膜,其特征在于:所述传感膜的厚度为10-1000 nm。
3.根据权利要求1所述的传感膜,其特征在于:所述传感器的工作温度为0-100℃;其原理在于,氨气流通前后,聚苯胺与还原氧化石墨烯复合材料发生质子酸掺杂和脱掺杂过程,其电阻会发生明显改变。
4.一种权利要求1-3任一所述的传感膜在氨气传感器中的应用。
CN201911086321.7A 2019-11-08 2019-11-08 一种氨气传感器用传感膜的制备及应用 Active CN112777586B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911086321.7A CN112777586B (zh) 2019-11-08 2019-11-08 一种氨气传感器用传感膜的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911086321.7A CN112777586B (zh) 2019-11-08 2019-11-08 一种氨气传感器用传感膜的制备及应用

Publications (2)

Publication Number Publication Date
CN112777586A CN112777586A (zh) 2021-05-11
CN112777586B true CN112777586B (zh) 2022-11-08

Family

ID=75748307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911086321.7A Active CN112777586B (zh) 2019-11-08 2019-11-08 一种氨气传感器用传感膜的制备及应用

Country Status (1)

Country Link
CN (1) CN112777586B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984850A (zh) * 2021-11-02 2022-01-28 西华大学 二维黑磷修饰聚苯胺的氨气传感器、制备方法及测试系统
CN115148957B (zh) * 2022-09-05 2022-12-20 楚能新能源股份有限公司 一种具有双面自支撑结构的聚苯胺电极及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585174A (zh) * 2012-01-09 2012-07-18 南京大学 石墨烯/聚(3,4-乙烯二氧噻吩)复合物纳米材料的制法
CN104072764A (zh) * 2014-07-08 2014-10-01 南京邮电大学 一种聚苯胺-石墨烯复合材料的制备方法
CN104297301A (zh) * 2014-10-20 2015-01-21 薛洁 基于聚苯胺/石墨烯纳米带/二氧化硅/硅的氨气传感器
CN104559176A (zh) * 2015-01-27 2015-04-29 西南科技大学 一种三维还原氧化石墨烯/聚苯胺复合材料的制备方法
CN107400358A (zh) * 2017-09-05 2017-11-28 济南大学 一种手性石墨烯‑聚苯胺复合材料的制备方法和应用
CN109342522A (zh) * 2018-10-16 2019-02-15 吉林大学 一种基于聚吡咯/石墨烯复合材料的电阻型nh3传感器、制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585174A (zh) * 2012-01-09 2012-07-18 南京大学 石墨烯/聚(3,4-乙烯二氧噻吩)复合物纳米材料的制法
CN104072764A (zh) * 2014-07-08 2014-10-01 南京邮电大学 一种聚苯胺-石墨烯复合材料的制备方法
CN104297301A (zh) * 2014-10-20 2015-01-21 薛洁 基于聚苯胺/石墨烯纳米带/二氧化硅/硅的氨气传感器
CN104559176A (zh) * 2015-01-27 2015-04-29 西南科技大学 一种三维还原氧化石墨烯/聚苯胺复合材料的制备方法
CN107400358A (zh) * 2017-09-05 2017-11-28 济南大学 一种手性石墨烯‑聚苯胺复合材料的制备方法和应用
CN109342522A (zh) * 2018-10-16 2019-02-15 吉林大学 一种基于聚吡咯/石墨烯复合材料的电阻型nh3传感器、制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
High-performance room temperature NH3 gas sensors based on polyaniline-reduced graphene oxide nanocomposite sensitive membrane;Ching-Ting Lee et al.;《Journal of Alloys and Compounds》;20190308;第789卷;694页第1栏2.Experiment部分 *

Also Published As

Publication number Publication date
CN112777586A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
Wang et al. One-step synthesis of polypyrrole/Fe2O3 nanocomposite and the enhanced response of NO2 at low temperature
Roy et al. Polyaniline-multiwalled carbon nanotube (PANI-MWCNT): Room temperature resistive carbon monoxide (CO) sensor
Liu et al. Layered MXene heterostructured with In2O3 nanoparticles for ammonia sensors at room temperature
Zhou et al. Hydrothermal synthesis of hierarchical ultrathin NiO nanoflakes for high-performance CH4 sensing
Naganaboina et al. Graphene-CeO2 based flexible gas sensor: monitoring of low ppm CO gas with high selectivity at room temperature
Xu et al. NO2 gas sensing with SnO2–ZnO/PANI composite thick film fabricated from porous nanosolid
Navale et al. Camphor sulfonic acid doped PPy/α-Fe 2 O 3 hybrid nanocomposites as NO 2 sensors
Jin et al. Synthesis and gas sensing properties of Fe2O3 nanoparticles activated V2O5 nanotubes
Zhang et al. Highly sensitive ammonia sensor based on PSS doped ZIF-8-derived porous carbon/polyaniline hybrid film coated on quartz crystal microbalance
Husain et al. Electrical conductivity and alcohol sensing studies on polythiophene/tin oxide nanocomposites
Duan et al. Non-enzymatic sensors based on a glassy carbon electrode modified with Au nanoparticles/polyaniline/SnO 2 fibrous nanocomposites for nitrite sensing
Weng et al. Preparation of one-dimensional (1D) polyaniline–polypyrrole coaxial nanofibers and their application in gas sensor
Pal et al. Efficient room temperature methanol sensors based on polyaniline/graphene micro/nanocomposites
CN112777586B (zh) 一种氨气传感器用传感膜的制备及应用
Zheng et al. Growth of ZnFe2O4 nanosheets on reduced graphene oxide with enhanced ethanol sensing properties
CN109839408B (zh) 一种以纳米复合材料为传感膜的氨气传感器
Du et al. Preparation of modified MWCNTs-doped PANI nanorods by oxygen plasma and their ammonia-sensing properties
Yu et al. Novel gas sensoring materials based on CuS hollow spheres
Qu et al. Highly sensitive and selective toluene sensor based on Ce-doped coral-like SnO2
Yan et al. Enhanced sensing properties of CuO nanosheets for volatile organic compounds detection
CN110806431B (zh) 基于原位聚合二元纳米复合材料的氨气传感器制备方法及应用
Khalifa et al. Highly sensitive and wearable NO2 gas sensor based on PVDF nanofabric containing embedded polyaniline/g-C3N4 nanosheet composites
Marimuthu et al. NiCo 2 O 4 functionalized with rGO catalyst as an active layer for ammonia sensing
George et al. Synthesis of nanotubular NiO-CNT composite and its application in temperature independent CO2 gas sensors fabricated using interdigitated silver electrode
Li et al. Dual functionalized Ni substitution in shuttle-like In2O3 enabling high sensitivity NH3 detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant