CN112763556A - 一种多层膜结构的海洋探测器电极及其制备方法 - Google Patents

一种多层膜结构的海洋探测器电极及其制备方法 Download PDF

Info

Publication number
CN112763556A
CN112763556A CN202011427912.9A CN202011427912A CN112763556A CN 112763556 A CN112763556 A CN 112763556A CN 202011427912 A CN202011427912 A CN 202011427912A CN 112763556 A CN112763556 A CN 112763556A
Authority
CN
China
Prior art keywords
layer
boron
doped diamond
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011427912.9A
Other languages
English (en)
Other versions
CN112763556B (zh
Inventor
张学宇
盖志刚
郭凤祥
王宜豹
柴旭
陈志刚
张丽丽
王韶琰
姜辛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Original Assignee
Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceanographic Instrumentation Research Institute Shandong Academy of Sciences filed Critical Oceanographic Instrumentation Research Institute Shandong Academy of Sciences
Priority to CN202011427912.9A priority Critical patent/CN112763556B/zh
Publication of CN112763556A publication Critical patent/CN112763556A/zh
Application granted granted Critical
Publication of CN112763556B publication Critical patent/CN112763556B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Plasma & Fusion (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种多层膜结构的海洋探测器电极及其制备方法,该电极由下到上依次包括电极衬底、第一层硼掺杂金刚石膜、石墨烯层和第二层硼掺杂金刚石膜。本发明所公开的海洋探测器电极为两层硼掺杂金刚石膜中间夹一层石墨烯层的结构,利用石墨烯层提高电极的电导率,同时缓解金刚石膜的内应力,在金刚石层电化学窗口宽、背景电流低、机械强度高的基础上,利用石墨烯层高载流子浓度和化学稳定性的特点,能够进一步提高海洋探测器电极的灵敏度和稳定性。

Description

一种多层膜结构的海洋探测器电极及其制备方法
技术领域
本发明涉及一种海洋探测器电极,特别涉及一种多层膜结构的海洋探测器电极及其制备方法。
背景技术
石墨烯作为一种新型的二维碳纳米材料具有优异的光学、电学、热以及力学性能,在储能材料、显示屏、传感器、晶体管、航天航空等方面表现出广阔的应用前景。鉴于石墨烯有关材料优异的性能及其潜在的应用价值,研究者们正致力于在不同领域尝试优化和改进其性能以得到更广泛的应用。与陆地和天空上的应用不同,除海水淡化外石墨烯及其复合材料在海洋领域的应用报道较少。而其超级稳定的物理结构、超高的电导率、热导率、超大的比表面积等注定其会成为海洋器件制备上的优势材料。
现有的海洋探测器电极在灵敏度和稳定性方面还有待提高。
发明内容
为解决上述技术问题,本发明提供了一种多层膜结构的海洋探测器电极及其制备方法,在强化硼掺杂金刚石膜性能的同时,利用石墨烯层提高电极的电导率并降低金刚石膜的内应力,提高电极韧性,进而提高海洋探测器电极的灵敏度和稳定性。
为达到上述目的,本发明的技术方案如下:
一种多层膜结构的海洋探测器电极,该电极由下到上依次包括电极衬底、第一层硼掺杂金刚石膜、石墨烯层和第二层硼掺杂金刚石膜。
上述方案中,所述电极衬底材料为铌。
上述方案中,所述第一层硼掺杂金刚石膜的厚度为3μm。
上述方案中,所述石墨烯层为片层结构,且不超过3层。
上述方案中,所述石墨烯层的厚度小于2nm。
上述方案中,所述第二层硼掺杂金刚石膜的厚度为3μm。
一种多层膜结构的海洋探测器电极的制备方法,包括如下过程:
(1)电极衬底表面预处理:顺序采用物理抛光、后化学清洗的方法,对电极衬底表面进行清理;
(2)采用热丝化学气相沉积的方法,在电极衬底表面沉积第一层硼掺杂金刚石膜;
(3)在第一层硼掺杂金刚石膜表面通过化学气相沉积技术/等离子体增强化学气相沉积技术/金属诱导转变方法制备石墨烯层;
(4)采用热丝化学气相沉积的方法,在石墨烯层上再沉积第二层硼掺杂金刚石膜。
上述方案中,步骤(1)中的物理抛光包括砂纸和抛光布抛光,化学清洗包括丙酮和酒精各超声清洗10分钟。
上述方案中,步骤(2)和步骤(4)中,使用甲烷、氢气、三甲基硼烷,热丝15根,电流250A,沉积气压3Kpa,沉积第一层硼掺杂金刚石膜和第二层硼掺杂金刚石膜。
上述方案中,步骤(3)的具体方法如下:在第一层硼掺杂金刚石膜表面采用PVD方法先沉积一层500nm厚的铜膜,之后在真空管式炉中在900℃下保温70分钟,然后使用CuSO4和HCl混合溶液腐蚀掉剩余的铜,露出石墨烯层。
通过上述技术方案,本发明提供的多层膜结构的海洋探测器电极有益效果如下:
1、本发明用化学气相沉积的方法分别制备硼掺杂金刚石膜和石墨烯层,充分利用材料电化学窗口宽、背景电流低、机械强度高、化学性质稳定的优势,制备海洋探测器电极材料,有效提高器件的灵敏度和稳定性。
2、在强化硼掺杂金刚石膜性能的同时,利用石墨烯层提高电极的电导率并降低金刚石膜的内应力,提高电极韧性。石墨烯层可以调节其载流子浓度和电导率,以进一步提高海洋探测器电极的灵敏度和稳定性。
3、在具体指标上,控制石墨烯层的石墨烯层数不超过3层。在电导池和后端信号采集电路的高度匹配情况下,复合膜所制备的海洋盐度传感器的电导率测量范围:2-70mS/cm;测量误差:≤±0.007mS/cm。
4、本发明的电极为两层硼掺杂金刚石膜中间夹一层石墨烯的三明治结构,利用石墨烯层提高电极的电导率,同时缓解金刚石膜的内应力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本发明实施例所公开的一种多层膜结构的海洋探测器电极结构示意图。
图中,1、电极衬底;2、第一层硼掺杂金刚石膜;3、石墨烯层;4、第二层硼掺杂金刚石膜。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明提供了一种多层膜结构的海洋探测器电极,如图1所示,该电极由下到上依次包括电极衬底1、第一层硼掺杂金刚石膜2、石墨烯层3和第二层硼掺杂金刚石膜4。
本实施例中,电极衬底1材料为铌。第一层硼掺杂金刚石膜2的厚度为3μm。石墨烯层3为片层结构,且不超过3层。石墨烯层3的厚度为1nm。第二层硼掺杂金刚石膜4的厚度为3μm。
一种多层膜结构的海洋探测器电极的制备方法,包括如下过程:
(1)电极衬底1表面预处理:顺序采用物理抛光、后化学清洗的方法,对电极衬底1表面进行清理;
物理抛光包括砂纸和抛光布抛光,化学清洗包括丙酮和酒精各超声清洗10分钟。
(2)采用热丝化学气相沉积的方法,在电极衬底1表面沉积第一层硼掺杂金刚石膜2,具体如下:
使用甲烷(1%)、氢气、三甲基硼烷(4000ppm),热丝15根,电流250A,沉积气压3Kpa,沉积第一层硼掺杂金刚石膜2。
(3)在第一层硼掺杂金刚石膜2表面通过化学气相沉积技术/等离子体增强化学气相沉积技术/金属诱导转变方法制备石墨烯层3,具体如下:
在第一层硼掺杂金刚石膜2表面采用PVD方法先沉积一层500nm厚的铜膜,之后在真空管式炉中在900℃下保温70分钟,然后使用CuSO4和HCl混合溶液腐蚀掉剩余的铜,露出石墨烯层3。
(4)采用热丝化学气相沉积的方法,在石墨烯层3上再沉积第二层硼掺杂金刚石膜4,具体如下:
使用甲烷(1%)、氢气、三甲基硼烷(4000ppm),热丝15根,电流250A,沉积气压3Kpa,沉积第二层硼掺杂金刚石膜4。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种多层膜结构的海洋探测器电极,其特征在于,该电极由下到上依次包括电极衬底、第一层硼掺杂金刚石膜、石墨烯层和第二层硼掺杂金刚石膜。
2.根据权利要求1所述的一种多层膜结构的海洋探测器电极,其特征在于,所述电极衬底材料为铌。
3.根据权利要求1所述的一种多层膜结构的海洋探测器电极,其特征在于,所述第一层硼掺杂金刚石膜的厚度为3μm。
4.根据权利要求1所述的一种多层膜结构的海洋探测器电极,其特征在于,所述石墨烯层为片层结构,且不超过3层。
5.根据权利要求1所述的一种多层膜结构的海洋探测器电极,其特征在于,所述石墨烯层的厚度小于2nm。
6.根据权利要求1所述的一种多层膜结构的海洋探测器电极,其特征在于,所述第二层硼掺杂金刚石膜的厚度为3μm。
7.一种多层膜结构的海洋探测器电极的制备方法,其特征在于,包括如下过程:
(1)电极衬底表面预处理:顺序采用物理抛光、后化学清洗的方法,对电极衬底表面进行清理;
(2)采用热丝化学气相沉积的方法,在电极衬底表面沉积第一层硼掺杂金刚石膜;
(3)在第一层硼掺杂金刚石膜表面通过化学气相沉积技术/等离子体增强化学气相沉积技术/金属诱导转变方法制备石墨烯层;
(4)采用热丝化学气相沉积的方法,在石墨烯层上再沉积第二层硼掺杂金刚石膜。
8.根据权利要求7所述的一种多层膜结构的海洋探测器电极的制备方法,其特征在于,步骤(1)中的物理抛光包括砂纸和抛光布抛光,化学清洗包括丙酮和酒精各超声清洗10分钟。
9.根据权利要求7所述的一种多层膜结构的海洋探测器电极的制备方法,其特征在于,步骤(2)和步骤(4)中,使用甲烷、氢气、三甲基硼烷,热丝15根,电流250A,沉积气压3Kpa,沉积第一层硼掺杂金刚石膜和第二层硼掺杂金刚石膜。
10.根据权利要求7所述的一种多层膜结构的海洋探测器电极的制备方法,其特征在于,步骤(3)的具体方法如下:在第一层硼掺杂金刚石膜表面采用PVD方法先沉积一层500nm厚的铜膜,之后在真空管式炉中在900℃下保温70分钟,然后使用CuSO4和HCl混合溶液腐蚀掉剩余的铜,露出石墨烯层。
CN202011427912.9A 2020-12-07 2020-12-07 一种多层膜结构的海洋探测器电极及其制备方法 Active CN112763556B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011427912.9A CN112763556B (zh) 2020-12-07 2020-12-07 一种多层膜结构的海洋探测器电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011427912.9A CN112763556B (zh) 2020-12-07 2020-12-07 一种多层膜结构的海洋探测器电极及其制备方法

Publications (2)

Publication Number Publication Date
CN112763556A true CN112763556A (zh) 2021-05-07
CN112763556B CN112763556B (zh) 2022-12-02

Family

ID=75693414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011427912.9A Active CN112763556B (zh) 2020-12-07 2020-12-07 一种多层膜结构的海洋探测器电极及其制备方法

Country Status (1)

Country Link
CN (1) CN112763556B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102220A (zh) * 2009-12-22 2011-06-22 中国科学院物理研究所 金刚石(111)面上的石墨烯制备方法
CN104962876A (zh) * 2015-06-12 2015-10-07 西南科技大学 石墨表面掺硼金刚石薄膜材料及其制备方法
JP2016216288A (ja) * 2015-05-19 2016-12-22 国立大学法人九州工業大学 グラフェン層積層ダイヤモンド基板の製造方法
CN107119263A (zh) * 2017-05-04 2017-09-01 天津理工大学 一种垂直石墨烯/掺硼金刚石传感电极的制备方法
CN107142462A (zh) * 2017-04-11 2017-09-08 山东省科学院海洋仪器仪表研究所 一种金刚石基海水盐度传感器电极材料
EP3527538A1 (en) * 2018-02-20 2019-08-21 FCC Aqualia, S.A. Bioelectrochemical system for simultaneous production of water disinfection agents and carbon-neutral compounds
US20200048776A1 (en) * 2016-10-21 2020-02-13 Central South University Boron doped diamond electrode and preparation method and applications thereof
US20200362455A1 (en) * 2019-05-13 2020-11-19 National Cheng Kung University Method of diamond nucleation and structure formed thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102102220A (zh) * 2009-12-22 2011-06-22 中国科学院物理研究所 金刚石(111)面上的石墨烯制备方法
JP2016216288A (ja) * 2015-05-19 2016-12-22 国立大学法人九州工業大学 グラフェン層積層ダイヤモンド基板の製造方法
CN104962876A (zh) * 2015-06-12 2015-10-07 西南科技大学 石墨表面掺硼金刚石薄膜材料及其制备方法
US20200048776A1 (en) * 2016-10-21 2020-02-13 Central South University Boron doped diamond electrode and preparation method and applications thereof
CN107142462A (zh) * 2017-04-11 2017-09-08 山东省科学院海洋仪器仪表研究所 一种金刚石基海水盐度传感器电极材料
CN107119263A (zh) * 2017-05-04 2017-09-01 天津理工大学 一种垂直石墨烯/掺硼金刚石传感电极的制备方法
EP3527538A1 (en) * 2018-02-20 2019-08-21 FCC Aqualia, S.A. Bioelectrochemical system for simultaneous production of water disinfection agents and carbon-neutral compounds
US20200362455A1 (en) * 2019-05-13 2020-11-19 National Cheng Kung University Method of diamond nucleation and structure formed thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAN LIU ET AL.: "Structural properties of protective diamond-like-carbon thin films grown on multilayer graphene", 《JOURNAL OF PHYSICS: CONDENSED MATTER》 *
JINGXUAN PEI ET AL.: "In-situ graphene modified self-supported boron-doped diamond electrode for Pb(II) electrochemical detection in seawater", 《APPLIED SURFACE SCIENCE》 *

Also Published As

Publication number Publication date
CN112763556B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
CN102020271B (zh) 制造石墨烯的方法和通过该方法制造的石墨烯
CN105126642B (zh) 一种金属有机骨架膜的制备与分离气体应用
WO2011077755A1 (ja) 燃料電池用セパレータおよびその製造方法
Wang et al. van der Waals epitaxial growth of 2D metal–porphyrin framework derived thin films for dye‐sensitized solar cells
CN104218114A (zh) 一种二维异质结太阳能电池及其制备方法
CN104374486A (zh) 一种基于石墨烯纳米墙的柔性温度传感器及其制备方法
CN110615440B (zh) 一种大尺寸、富含氧官能团的MXene纳米片及其制备方法和应用
CN108565130A (zh) 一种石墨烯薄膜电极及其制备方法、表面具有导电线路的石墨烯复合薄膜叉指电极、电容器
CN113991134A (zh) 一种燃料电池金属双极板用非晶碳涂层及制备方法
CN103681965A (zh) 柔性基底硅纳米线异质结太阳电池的制备方法
Du et al. Facile synthesis of three‐dimensional graphene networks by magnetron sputtering for supercapacitor electrode
Sun et al. Microstructure, electrical and gas sensing properties of meso-porous silicon and macro-porous silicon
CN103646789B (zh) 一种石墨烯-铂超级电容器复合电极材料的制备方法
CN109722650A (zh) 一种六方氮化硼材料及其制备方法和转移方法
CN110726763B (zh) 一种低功耗的氢气检测方法及其装置和制备方法
CN104183299A (zh) 一种柔性导电石墨烯薄膜及其制备方法和应用
CN109368685A (zh) 一种高度透明导电的p型碘化亚铜薄膜的制备方法
CN112763556B (zh) 一种多层膜结构的海洋探测器电极及其制备方法
Hou et al. ALD-grown oxide protective layers on Ta3N5–Cu2O n–p nanoarray heterojunction for improved photoelectrochemical water splitting
CN109029801B (zh) 一种金属纳米线复合膜压力传感器及其制备方法
CN102732921B (zh) 一种制备三维有序大孔锗硅、锗铝异质薄膜材料的离子液体电沉积方法
CN112458420B (zh) 具有纳米棒阵列的碲化银-硫化银薄膜及其制法
Liu et al. Flexible and highly sensitive graphene/carboxymethyl cellulose films for bending sensing
CN103193396B (zh) 一种石墨烯与还原氧化石墨烯复合薄膜的制备方法
CN104183700A (zh) 一种柔性透明导电石墨烯薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant