CN112760356B - 一种副溶血性弧菌检测方法 - Google Patents

一种副溶血性弧菌检测方法 Download PDF

Info

Publication number
CN112760356B
CN112760356B CN202011542903.4A CN202011542903A CN112760356B CN 112760356 B CN112760356 B CN 112760356B CN 202011542903 A CN202011542903 A CN 202011542903A CN 112760356 B CN112760356 B CN 112760356B
Authority
CN
China
Prior art keywords
vibrio parahaemolyticus
working electrode
solution
concentration
antigen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011542903.4A
Other languages
English (en)
Other versions
CN112760356A (zh
Inventor
蒋晨豪
李昱权
孙雨玘
叶海芬
陈佳琪
宁景苑
张建锋
易晓梅
惠国华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang A&F University ZAFU
Original Assignee
Zhejiang A&F University ZAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang A&F University ZAFU filed Critical Zhejiang A&F University ZAFU
Priority to CN202011542903.4A priority Critical patent/CN112760356B/zh
Publication of CN112760356A publication Critical patent/CN112760356A/zh
Application granted granted Critical
Publication of CN112760356B publication Critical patent/CN112760356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/28Assays involving biological materials from specific organisms or of a specific nature from bacteria from Vibrionaceae (F)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种副溶血性弧菌检测方法。它包括以下步骤:S1:配置不同浓度的副溶血性弧菌悬浮液,检测每个浓度的副溶血性弧菌悬浮液对应的特征值Y,将这些值进行拟合得到浓度计算公式:Y=0.2+0.1×LgX,X为副溶血性弧菌的浓度;S2:取待测副溶血性弧菌悬浮液,检测其对应的特征值Y,根据浓度计算公式:Y=0.2+0.1×LgX,计算出待测副溶血性弧菌悬浮液的浓度。本发明能够准确检测出副溶血性弧菌浓度,操作简单。

Description

一种副溶血性弧菌检测方法
技术领域
本发明涉及细菌检测技术领域,尤其涉及一种副溶血性弧菌检测方法。
背景技术
食源性疾病指的是食品被致病菌污染后,通过摄食的方式进入到人体里,并致使人体感染或中毒,威胁人们身体健康健康和生命安全的一类疾病的统称。虽然现代科学技术的发展已到了一定的水平,但是不管在发达还是发展中国家,食源性疾病仍然严重地危害着人们的身体健康,近年来频频发生的食品安全事件也表明了食源性疾病尚未得到有效的控制,因此开发新型的准确检测食源性致病菌的检测技术至关重要,它对预防、控制食源性疾病,保障人们的健康有着重要的意义。
副溶血性弧菌能引起新生儿脑膜炎、败血症和坏死性小肠结膜炎等疾病,对人们身体健康和生命安全构成严重的威胁,因此研究准确检测副溶血性弧菌的方法具有重要意义。现有的副溶血性弧菌检测方法一般采用化学检测法,存在操作繁琐,重复性差的不足。
发明内容
本发明为了解决上述技术问题,提供了一种副溶血性弧菌检测方法,其能够准确检测出副溶血性弧菌浓度,操作简单。
为了解决上述问题,本发明采用以下技术方案予以实现:
本发明的一种副溶血性弧菌检测方法,包括以下步骤:
S1:配置不同浓度的副溶血性弧菌悬浮液,检测每个浓度的副溶血性弧菌悬浮液对应的特征值Y,将这些值进行拟合得到浓度计算公式:Y=0.2+0.1×LgX,X为副溶血性弧菌的浓度;
S2:取待测副溶血性弧菌悬浮液,检测其对应的特征值Y,根据浓度计算公式:Y=0.2+0.1×LgX,计算出待测副溶血性弧菌悬浮液的浓度。
作为优选,所述检测某个浓度的副溶血性弧菌悬浮液对应的特征值Y的方法包括以下步骤:
M1:将第一工作电极、第一对电极、第一参比电极组成第一电化学传感器阵列,将第二工作电极、第二对电极、第二参比电极组成第二电化学传感器阵列,第一工作电极上未培育副溶血性弧菌抗原,第二工作电极上培育有副溶血性弧菌抗原;
M2:采用同样方法对该浓度的副溶血性弧菌悬浮液进行m次检测,每次检测的检测步骤如下:
在未使用过的第一工作电极、未使用过的第二工作电极上都滴加2.5μl该浓度的副溶血性弧菌悬浮液,静置30分钟后,将第一电化学传感器阵列、第二电化学传感器阵列分别插入两个同样的缓冲溶液内并采用循环伏安法从小到大依次切换n种不同的扫描速率进行检测,得到n个还原峰电流差值ΔIpi1、ΔIpi2…ΔIpin,ΔIpin=Ip1in-Ip2in,ΔIpin为第i次检测中第n种扫描速率下的还原峰电流差值,Ip1in为第i次检测中第n种扫描速率下第一电化学传感器阵列对应的还原峰电流值,Ip2in为第i次检测中第n种扫描速率下第二电化学传感器阵列对应的还原峰电流值,1≤i≤m;
M3:根据m次检测的检测数据构建出特征矩阵D,
Figure BDA0002853039080000031
M4:将特征矩阵D的每行数据进行二次样条插值,得到m个与每行数据对应的曲线x(t),对m个曲线x(t)进行同样的数据处理,得到m个特征值F,对每个曲线x(t)进行的数据处理包括以下步骤:
将x(t)带入非线性定向饱和共振模型
Figure BDA0002853039080000032
中,
平缓反馈级联稳态势函数:
Figure BDA0002853039080000033
检测信号载入分量ing(t)=cos(kt+η)+x(t),
其中,t为插值变量,x(t)为特定扫描速率下获得的还原峰电流差值经过二次样条插值后获得的曲线,k为实参数,η为实参数,nois(t)为功率谱密度函数不平坦的有色噪声,P为实参数,Q为实参数,a、b、c为实数,δ为平缓延时参数,
调节t的值,非线性定向饱和共振模型在t=tr点位达到共振,计算共振状态的特征值F:
Figure BDA0002853039080000041
M5:将m个特征值F取平均,得到的平均值即为特征值Y的值。
对副溶血性弧菌悬浮液进行m次检测过程中,每次检测都采用新的未使用过的第一工作电极、第二工作电极。
作为优选,所述n种不同的扫描速率包括50mV/s、100mV/s、200mV/s、300mV/s、400mV/s、500mV/s。
作为优选,所述缓冲溶液的配置方法如下:将0.5mmol/l的H2O2溶液与1.0mol/l的Thi/HaC-NaAc溶液按体积比1∶2混合均匀。
作为优选,所述第一工作电极、第二工作电极都为铜膜电极,所述第一对电极、第二对电极都为Pt电极,所述第一参比电极、第二参比电极都为Ag/AgC1电极。
作为优选,第二工作电极上培育副溶血性弧菌抗原的方法如下:
N1:将银浆SL和海藻酸钠SA按照质量比1∶3比例混合制成10ml溶胶水溶液,接着超声分散15min,称取5mg的氧化石墨烯GO和1mg的氨基功能化的有机金属框架材料NH2-CuBTC溶解于溶胶水溶液中,超声震荡25min,得到GO/NH2-CuBTC/SL/SA混合液,取1.5μL的GO/NH2-CuBTC/SL/SA混合液滴加到第二工作电极表面,于室温干燥5h,在第二工作电极上形成一层GO/NH2-CuBTC/SL/SA薄膜;
N2:用PBS缓冲液将副溶血性弧菌多克隆抗体溶液稀释300倍后取4μl修饰在干燥后的第二工作电极上,在干燥皿中静置干燥;
N3:取3.5μl副溶血性弧菌抗原溶液滴涂在第二工作电极上,在30℃条件下培育25min,用蒸馏水洗掉第二工作电极上未结合的副溶血性弧菌抗原,晾干。
选取氧化石墨烯GO和氨基功能化的有机金属框架材料NH2-CuBTC作为第二工作电极修饰材料,以海藻酸钠SA和银浆SL作为分散剂将氧化石墨烯GO和氨基功能化的有机金属框架材料NH2-CuBTC进行分散使其稳定地固定于第二工作电极表面,利用NH2-CuBTC富集被测物质浓度,然后将副溶血性弧菌抗体固定于修饰好的第二工作电极上,在制备好的第二工作电极上孵育副溶血性弧菌抗原,用循环伏安法(CV)检测其还原峰电流值。
作为优选,所述副溶血性弧菌抗原溶液的制备方法如下:将浓度为2×108cfu/ml~2×109cfu/ml的副溶血性弧菌用8%~12%的福尔马林在25℃~39℃灭活,灭活后离心去除福尔马林,涂布平板进行无菌检验,确定无菌后,沉淀用等体积无菌生理盐水重新悬浮,从而得到副溶血性弧菌抗原溶液。
作为优选,所述副溶血性弧菌多克隆抗体溶液的制备方法如下:
兔饲养2周后,耳静脉采血15ml,取出血清作为阴性血清样品;副溶血性弧菌抗原免疫兔,间隔3天进行第二次免疫,再间隔6天加强免疫,加强免疫后第4天颈动脉一次性采血,室温放置45min,转入4℃过夜,次日4℃、5000rpm离心45min得抗血清保存;
将1.5ml亲和层析柱固定于蛋白纯化仪上,用去离子水洗出保护剂溶液,接着用PBS缓冲液平衡柱子,然后将1.5ml抗血清样品上柱,用PBS缓冲液洗脱杂质,最后用柠檬酸缓冲液洗脱副溶血性弧菌多克隆抗体,得到副溶血性弧菌多克隆抗体溶液。
本发明的有益效果是:能够准确检测出副溶血性弧菌浓度,操作简单。
附图说明
图1是本发明的流程图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:本实施例的一种副溶血性弧菌检测方法,如图1所示,包括以下步骤:
S1:配置不同浓度的副溶血性弧菌悬浮液,检测每个浓度的副溶血性弧菌悬浮液对应的特征值Y,将这些值进行拟合得到浓度计算公式:Y=0.2+0.1×LgX,X为副溶血性弧菌的浓度;
S2:取待测副溶血性弧菌悬浮液,检测其对应的特征值Y,根据浓度计算公式:Y=0.2+0.1×LgX,计算出待测副溶血性弧菌悬浮液的浓度。
在本方案中,以副溶血性弧菌悬浮液浓度为x轴,特征值Y为y轴建立直角坐标系,将每个副溶血性弧菌悬浮液浓度及对应的特征值Y在直角坐标系中标出对应的点,将这些点拟合得到浓度计算公式:Y=0.2+0.1×LgX。
检测某个浓度的副溶血性弧菌悬浮液对应的特征值Y的方法包括以下步骤:
M1:将第一工作电极、第一对电极、第一参比电极组成第一电化学传感器阵列,将第二工作电极、第二对电极、第二参比电极组成第二电化学传感器阵列,第一工作电极上未培育副溶血性弧菌抗原,第二工作电极上培育有副溶血性弧菌抗原;
M2:采用同样方法对该浓度的副溶血性弧菌悬浮液进行m次检测,每次检测的检测步骤如下:
在未使用过的第一工作电极、未使用过的第二工作电极上都滴加2.5μl该浓度的副溶血性弧菌悬浮液,静置30分钟后,将第一电化学传感器阵列、第二电化学传感器阵列分别插入两个同样的缓冲溶液内并采用循环伏安法从小到大依次切换n种不同的扫描速率进行检测,得到n个还原峰电流差值ΔIpi1、ΔIpi2…ΔIpin,ΔIpin=Ip1in-Ip2in,ΔIpin为第i次检测中第n种扫描速率下的还原峰电流差值,Ip1in为第i次检测中第n种扫描速率下第一电化学传感器阵列对应的还原峰电流值,Ip2in为第i次检测中第n种扫描速率下第二电化学传感器阵列对应的还原峰电流值,1≤i≤m;
M3:根据m次检测的检测数据构建出特征矩阵D,
Figure BDA0002853039080000071
M4:将特征矩阵D的每行数据进行二次样条插值,得到m个与每行数据对应的曲线x(t),对m个曲线x(t)进行同样的数据处理,得到m个特征值F,对每个曲线x(t)进行的数据处理包括以下步骤:
将x(t)带入非线性定向饱和共振模型
Figure BDA0002853039080000081
中,
平缓反馈级联稳态势函数:
Figure BDA0002853039080000082
检测信号载入分量ing(t)=cos(kt+η)+x(t),
其中,t为插值变量,x(t)为特定扫描速率下获得的还原峰电流差值经过二次样条插值后获得的曲线,k为实参数,η为实参数,nois(t)为功率谱密度函数不平坦的有色噪声,P为实参数,Q为实参数,a、b、c为实数,δ为平缓延时参数,
调节t的值,非线性定向饱和共振模型在t=tr点位达到共振,计算共振状态的特征值F:
Figure BDA0002853039080000083
M5:将m个特征值F取平均,得到的平均值即为特征值Y的值。
对副溶血性弧菌悬浮液进行m次检测过程中,每次检测都采用新的未使用过的第一工作电极、第二工作电极。
n种不同的扫描速率包括50mV/s、100mV/s、200mV/s、300mV/s、400mV/s、500mV/s。
缓冲溶液的配置方法如下:将0.5mmol/l的H2O2溶液与1.0mol/l的Thi/HaC-NaAc溶液按体积比1∶2混合均匀。
第一工作电极、第二工作电极都为铜膜电极,第一对电极、第二对电极都为Pt电极,第一参比电极、第二参比电极都为Ag/AgC1电极。
第二工作电极上培育副溶血性弧菌抗原的方法如下:
N1:将银浆SL和海藻酸钠SA按照质量比1∶3比例混合制成10ml溶胶水溶液,接着超声分散15min,称取5mg的氧化石墨烯GO和1mg的氨基功能化的有机金属框架材料NH2-CuBTC溶解于溶胶水溶液中,超声震荡25min,得到GO/NH2-CuBTC/SL/SA混合液,取1.5μL的GO/NH2-CuBTC/SL/SA混合液滴加到第二工作电极表面,于室温干燥5h,在第二工作电极上形成一层GO/NH2-CuBTC/SL/SA薄膜;
N2:用PBS缓冲液将副溶血性弧菌多克隆抗体溶液稀释300倍后取4μl修饰在干燥后的第二工作电极上,在干燥皿中静置干燥;
N3:取3.5μl副溶血性弧菌抗原溶液滴涂在第二工作电极上,在30℃条件下培育25min,用蒸馏水洗掉第二工作电极上未结合的副溶血性弧菌抗原,晾干。
选取氧化石墨烯GO和氨基功能化的有机金属框架材料NH2-CuBTC作为第二工作电极修饰材料,以海藻酸钠SA和银浆SL作为分散剂将氧化石墨烯GO和氨基功能化的有机金属框架材料NH2-CuBTC进行分散使其稳定地固定于第二工作电极表面,利用NH2-CuBTC富集被测物质浓度,然后将副溶血性弧菌抗体固定于修饰好的第二工作电极上,在制备好的第二工作电极上孵育副溶血性弧菌抗原,用循环伏安法(CV)检测其还原峰电流值。
副溶血性弧菌抗原溶液的制备方法如下:将浓度为2×108cfu/ml~2×109cfu/ml的副溶血性弧菌用8%~12%的福尔马林在25℃~39℃灭活,灭活后离心去除福尔马林,涂布平板进行无菌检验,确定无菌后,沉淀用等体积无菌生理盐水重新悬浮,从而得到副溶血性弧菌抗原溶液。
副溶血性弧菌多克隆抗体溶液的制备方法如下:
兔饲养2周后,耳静脉采血15ml,取出血清作为阴性血清样品;副溶血性弧菌抗原免疫兔,间隔3天进行第二次免疫,再间隔6天加强免疫,加强免疫后第4天颈动脉一次性采血,室温放置45min,转入4℃过夜,次日4℃、5000rpm离心45min得抗血清保存;
将1.5ml亲和层析柱固定于蛋白纯化仪上,用去离子水洗出保护剂溶液,接着用PBS缓冲液平衡柱子,然后将1.5ml抗血清样品上柱,用PBS缓冲液洗脱杂质,最后用柠檬酸缓冲液洗脱副溶血性弧菌多克隆抗体,得到副溶血性弧菌多克隆抗体溶液。

Claims (4)

1.一种非疾病诊断目的的副溶血性弧菌检测方法,其特征在于,包括以下步骤:
S1:配置不同浓度的副溶血性弧菌悬浮液,检测每个浓度的副溶血性弧菌悬浮液对应的特征值Y,将这些值进行拟合得到浓度计算公式:Y=0.2+0.1×LgX,X为副溶血性弧菌的浓度;
S2:取待测副溶血性弧菌悬浮液,检测其对应的特征值Y,根据浓度计算公式:Y=0.2+0.1×LgX,计算出待测副溶血性弧菌悬浮液的浓度;
所述检测某个浓度的副溶血性弧菌悬浮液对应的特征值Y的方法包括以下步骤:
M1:将第一工作电极、第一对电极、第一参比电极组成第一电化学传感器阵列,将第二工作电极、第二对电极、第二参比电极组成第二电化学传感器阵列,第一工作电极上未培育副溶血性弧菌抗原,第二工作电极上培育有副溶血性弧菌抗原;
M2:采用同样方法对该浓度的副溶血性弧菌悬浮液进行m次检测,每次检测的检测步骤如下:
在未使用过的第一工作电极、未使用过的第二工作电极上都滴加2.5μl该浓度的副溶血性弧菌悬浮液,静置30分钟后,将第一电化学传感器阵列、第二电化学传感器阵列分别插入两个同样的缓冲溶液内并采用循环伏安法从小到大依次切换n种不同的扫描速率进行检测,得到n个还原峰电流差值ΔIpi1、ΔIpi2…ΔIpin,ΔIpin=Ip1in-Ip2in,ΔIpin为第i次检测中第n种扫描速率下的还原峰电流差值,Ip1in为第i次检测中第n种扫描速率下第一电化学传感器阵列对应的还原峰电流值,Ip2in为第i次检测中第n种扫描速率下第二电化学传感器阵列对应的还原峰电流值,1≤i≤m;
M3:根据m次检测的检测数据构建出特征矩阵D,
Figure FDA0003576970450000021
M4:将特征矩阵D的每行数据进行二次样条插值,得到m个与每行数据对应的曲线x(t),对m个曲线x(t)进行同样的数据处理,得到m个特征值F,对每个曲线x(t)进行的数据处理包括以下步骤:将x(t)带入非线性定向饱和共振模型
Figure FDA0003576970450000022
中,平缓反馈级联稳态势函数:
Figure FDA0003576970450000023
检测信号载入分量ing(t)=cos(kt+η)+x(t),
其中,t为插值变量,k为实参数,η为实参数,nois(t)为功率谱密度函数不平坦的有色噪声,P为实参数,Q为实参数,a、b、c为实数,δ为平缓延时参数,
调节t的值,非线性定向饱和共振模型在t=tr点位达到共振,计算共振状态的特征值F:
Figure FDA0003576970450000031
M5:将m个特征值F取平均,得到的平均值即为特征值Y的值;第二工作电极上培育副溶血性弧菌抗原的方法如下:
N1:将银浆SL和海藻酸钠SA按照质量比1∶3比例混合制成10ml溶胶水溶液,接着超声分散15min,称取5mg的氧化石墨烯GO和1mg的氨基功能化的有机金属框架材料NH2-CuBTC溶解于溶胶水溶液中,超声震荡25min,得到GO/NH2-CuBTC/SL/SA混合液,取1.5μL的GO/NH2-CuBTC/SL/SA混合液滴加到第二工作电极表面,于室温干燥5h,在第二工作电极上形成一层GO/NH2-CuBTC/SL/SA薄膜;
N2:用PBS缓冲液将副溶血性弧菌多克隆抗体溶液稀释300倍后取4μl修饰在干燥后的第二工作电极上,在干燥皿中静置干燥;
N3:取3.5μl副溶血性弧菌抗原溶液滴涂在第二工作电极上,在30℃条件下培育25min,用蒸馏水洗掉第二工作电极上未结合的副溶血性弧菌抗原,晾干;
所述副溶血性弧菌抗原溶液的制备方法如下:将浓度为2×108cfu/ml~2×109cfu/ml的副溶血性弧菌用8%~12%的福尔马林在25℃~39℃灭活,灭活后离心去除福尔马林,涂布平板进行无菌检验,确定无菌后,沉淀用等体积无菌生理盐水重新悬浮,从而得到副溶血性弧菌抗原溶液;
所述副溶血性弧菌多克隆抗体溶液的制备方法如下:
兔饲养2周后,耳静脉采血15ml,取出血清作为阴性血清样品;副溶血性弧菌抗原免疫兔,间隔3天进行第二次免疫,再间隔6天加强免疫,加强免疫后第4天颈动脉一次性采血,室温放置45min,转入4℃过夜,次日4℃、5000rpm离心45min得抗血清保存;
将1.5ml亲和层析柱固定于蛋白纯化仪上,用去离子水洗出保护剂溶液,接着用PBS缓冲液平衡柱子,然后将1.5ml抗血清样品上柱,用PBS缓冲液洗脱杂质,最后用柠檬酸缓冲液洗脱副溶血性弧菌多克隆抗体,得到副溶血性弧菌多克隆抗体溶液。
2.根据权利要求1所述的一种非疾病诊断目的的副溶血性弧菌检测方法,其特征在于,所述n种不同的扫描速率包括50mV/s、100mV/s、200mV/s、300mV/s、400mV/s、500mV/s。
3.根据权利要求1所述的一种非疾病诊断目的的副溶血性弧菌检测方法,其特征在于,所述缓冲溶液的配置方法如下:将0.5mmol/1的H2O2溶液与1.0mol/1的Thi/HaC-NaAc溶液按体积比1∶2混合均匀。
4.根据权利要求1所述的一种非疾病诊断目的的副溶血性弧菌检测方法,其特征在于,所述第一工作电极、第二工作电极都为铜膜电极,所述第一对电极、第二对电极都为Pt电极,所述第一参比电极、第二参比电极都为Ag/AgCl电极。
CN202011542903.4A 2020-12-23 2020-12-23 一种副溶血性弧菌检测方法 Active CN112760356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011542903.4A CN112760356B (zh) 2020-12-23 2020-12-23 一种副溶血性弧菌检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011542903.4A CN112760356B (zh) 2020-12-23 2020-12-23 一种副溶血性弧菌检测方法

Publications (2)

Publication Number Publication Date
CN112760356A CN112760356A (zh) 2021-05-07
CN112760356B true CN112760356B (zh) 2022-06-24

Family

ID=75694918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011542903.4A Active CN112760356B (zh) 2020-12-23 2020-12-23 一种副溶血性弧菌检测方法

Country Status (1)

Country Link
CN (1) CN112760356B (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586157A (zh) * 2012-03-12 2012-07-18 上海海洋大学 一种高通量富集、捕获副溶血性弧菌的方法
CN103134933B (zh) * 2013-02-05 2015-07-01 江西中德生物工程有限公司 用于检测副溶血性弧菌的试纸条及其用途
CN103305441B (zh) * 2013-06-05 2015-01-28 南昌大学 一种高效快速的富集分离副溶血性弧菌方法
JP2016090939A (ja) * 2014-11-10 2016-05-23 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置、表示方法、及びプログラム
CN107045061B (zh) * 2017-06-05 2019-03-05 吉林大学 基于磁性分离和量子点标记的副溶血性弧菌检测试剂盒
CN109735604A (zh) * 2018-12-24 2019-05-10 华南农业大学 一种快速定量检测vbnc状态副溶血性弧菌的方法
CN110470840B (zh) * 2019-09-06 2022-05-27 齐鲁工业大学 一种检测副溶血性弧菌的方法
CN110734491B (zh) * 2019-11-21 2022-03-25 上海交通大学医学院 检测副溶血性弧菌的试剂盒及检测方法
CN111398582B (zh) * 2020-03-02 2022-06-14 浙江海洋大学 海鲜产品检测试剂盒及其制备方法
CN111735808B (zh) * 2020-07-21 2022-09-23 浙江农林大学 一种白芨霉变检测方法

Also Published As

Publication number Publication date
CN112760356A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
Mi et al. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: A review
Gayathri et al. An electrochemical immunosensor for efficient detection of uropathogenic E. coli based on thionine dye immobilized chitosan/functionalized-MWCNT modified electrode
Trivedi et al. Potentiometric biosensor for urea determination in milk
Mo et al. A sensitive and regenerative electrochemical immunosensor for quantitative detection of Escherichia coli O157: H7 based on stable polyaniline coated screen-printed carbon electrode and rGO-NR-Au@ Pt
CN102262115B (zh) 测定三聚氰胺含量的电化学免疫传感器及制备方法和应用
CN101655473B (zh) 纳米金免疫电极的制备方法
Hu et al. Enzyme immunosensor based on gold nanoparticles electroposition and Streptavidin-biotin system for detection of S. pullorum & S. gallinarum
CN103454426B (zh) 纳米金/壳聚糖-石墨烯-亚甲蓝修饰的免疫传感器的制备方法
CN112432979B (zh) 纳米复合材料、esat-6电化学适体传感器及其制备与检测方法
Qiang et al. A new potentiometric immunosensor for determination of α-fetoprotein based on improved gelatin–silver complex film
CN110632160A (zh) 一种三维细胞纸芯片传感器及在细菌脂多糖检测中的应用
Skládal et al. Electrochemical immunosensors for detection of microorganisms
Lu et al. A new phosphothreonine lyase electrochemical immunosensor for detecting Salmonella based on horseradish peroxidase/GNPs-thionine/chitosan
Zhang et al. Facile construction of a molecularly imprinted polymer–based electrochemical sensor for the detection of milk amyloid A
CN109709189B (zh) 一种心肌肌钙蛋白的夹心型电化学免疫传感器的制备方法
CN112760356B (zh) 一种副溶血性弧菌检测方法
CN105067694A (zh) 用于快速检测阪崎肠杆菌的纳米免疫传感器的制备方法及其检测方法
CN112763558B (zh) 一种金黄色葡萄球菌检测方法
CN112748172B (zh) 一种金黄色葡萄球菌检测装置及方法
Wang et al. Enzyme-functionalized electrochemical immunosensor based on electrochemically reduced graphene oxide and polyvinyl alcohol-polydimethylsiloxane for the detection of Salmonella pullorum & Salmonella gallinarum
CN112760221B (zh) 一种副溶血性弧菌检测装置及方法
CN104090116B (zh) 基于氧化锌纳米材料的牛伽马干扰素阻抗型免疫传感器的制备方法
Yang et al. An ultrasensitive sandwich-type electrochemical immunosensor based on functionalized mesoporous carbon for IgG detection
Wang et al. Development of a Graphene-Based Aptamer Sensor for Electrochemical Detection of Serum ECP Levels
Wang et al. A low-cost ion selective nitrate sensor based on self-assembled graphene microelectrode arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant