CN112746256A - 高强度高塑性层状异构铝基复合材料及其制备方法 - Google Patents
高强度高塑性层状异构铝基复合材料及其制备方法 Download PDFInfo
- Publication number
- CN112746256A CN112746256A CN202011525918.XA CN202011525918A CN112746256A CN 112746256 A CN112746256 A CN 112746256A CN 202011525918 A CN202011525918 A CN 202011525918A CN 112746256 A CN112746256 A CN 112746256A
- Authority
- CN
- China
- Prior art keywords
- metal layer
- nanocrystalline
- layer
- magnetron sputtering
- nanocrystalline metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/043—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/16—Layered products comprising a layer of metal next to a particulate layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B18/00—Layered products essentially comprising ceramics, e.g. refractory products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B33/00—Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/06—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/10—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
- B32B37/1018—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using only vacuum
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0635—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/081—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Physical Vapour Deposition (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
本发明公开一种高强度高塑性层状异构铝基复合材料及其制备方法。包括如下步骤:(1):在粗晶铝合金基片上依次成型纳米晶金属层和纳米陶瓷颗粒层,形成具有不同尺寸晶粒区域的复合板;(2):对多个步骤(1)得到的复合板进行预处理,并按照细晶区在上、粗晶区在下的方式叠放;(3):叠放后的板材进行真空热压处理,使纳米晶层和粗晶层在真空高温高压下发生回复和再结晶,实现层与层间紧密的结合。本发明通过磁控溅射将纳米晶金属层和增强相颗粒均匀覆盖在金属基体表面,并借助其沉积附着效应使二者紧密结合,然后通过真空热压保温过程中再结晶烧结作用使其结合更紧密,同时该过程发生异质元素的扩散在边界处形成梯度的扩散层。
Description
技术领域
本发明属于金属复合材料制备领域,具体涉及一种高强度高塑性层状异构铝基复合材料及其制备方法。
背景技术
铝和铝基复合材料是工业中应用最广泛的有色金属结构材料,铝本身其密度小,仅为2.7g/cm3,约为铜或钢的1/3,比强度高,成形性较好,泛应用于航空航天、建筑、汽车、轨道交通等领域。工业纯铝化学性质活泼,强度较低,塑性较好,而通过合金化及第二相粒子强化的铝合金强度得到了较大提升但塑性下降非常严重,强度低及塑性差的特点严重限制了其应用范围。
2011年T.H.Fang等人在期刊《Science》上发表题为“Revealing ExtraordinaryIntrinsic Tensile Plasticity in Gradient Nano-Grained Copper”(2011,331(6024):1587-1590)的文章,指出通过SMGT技术可成功在粗晶铜材料中制造出梯度结构,该种异构结构使材料包含多种尺度晶粒尺寸(纳米晶到微晶),从表面晶粒尺寸20nm,深入内部60-150μm后逐渐粗化为300nm,到150μm后则为微米级,这种异构结构材料和粗晶材料相比,屈服强度提高了两倍(63MPa→129MPa)而延伸率几乎保持不变(30%),表明了在材料中设计异构结构是提高强度和塑性的有效方法。2015年,武晓雷等人在期刊《Proceedings of theNational Academy of Sciences》上发表题为“Heterogeneous lamella structureunites ultrafine-grain strength with coarse-grain ductility”(2015,112(47):14501-14505)的文章,揭示了通过异步轧制和局部再结晶工艺在金属Ti中实现多尺度晶粒共存的异构结构,该结构下金属Ti具有的强度和超细晶Ti相近且同时保持了和粗晶Ti相当的延展性,再次验证了异构结构对提高材料强度和塑性的重要意义。
目前在铝基复合材料板材中实现异构结构的主要方法为累积叠轧(Accumulative-Roll-Bonding),即对铝板进行打磨抛光清洗后叠放,在高温或室温下通过轧机施加较大应力使其结合并多次重复。该工艺虽能制备异构铝基复合材料,但存在以下问题:1材料界面结合不稳定,层间结合脆弱,2随着叠轧次数增多材料界面处氧化层增厚,3效率低,过程复杂繁琐。
发明内容
本发明的目的在于提供一种高强度高塑性层状异构铝基复合材料及其制备方法。
实现本发明目的的技术解决方案为:一种高强度高塑性层状异构铝基复合材料的制备方法,包括如下步骤:
步骤(1):在粗晶铝合金基片上依次成型纳米晶金属层和纳米陶瓷颗粒层,形成具有不同尺寸晶粒区域的复合板;
步骤(2):对多个步骤(1)得到的复合板进行预处理,并按照细晶区在上、粗晶区在下的方式叠放;
步骤(3):叠放后的板材进行真空热压处理,使纳米晶层和粗晶层在真空高温高压下发生回复和再结晶,实现层与层间紧密的结合。
进一步的,所述步骤(1)中在粗晶铝合金基片上成型纳米晶金属层的方法为电镀、磁控溅射或真空蒸镀;
所述步骤(1)中在纳米晶金属层上成型纳米陶瓷颗粒层的方法为磁控溅射。
进一步的,所述步骤(1)中在粗晶铝合金基片上成型纳米晶金属层的方法为磁控溅射。
进一步的,所述粗晶铝合金基片的材质为Al/AlN复合铝板或Al-Li板;
所述纳米晶金属层的材质为Al-5Mg或Al-Zn;
所述纳米陶瓷颗粒层的材质为SiC、TiN或Al2O3。
进一步的,所述磁控溅射的工艺参数如下:工作压力0.1-1.0Pa,功率为100-500W,纳米晶金属层的磁控溅射时间为100-250min,纳米陶瓷颗粒层的磁控溅射时间为30-100min。
进一步的,步骤(2)中的预处理具体为:分别用丙酮和无水乙醇超声处理磁控溅射后的复合板。
进一步的,步骤(3)中的真空热压处理的参数如下:在真空度为0.1-0.2Pa,温度为400-450℃,保温时间为60-180min,压力大小为40-80MPa,下压量为50-75%。
一种采用上述的方法制备的高强度高塑性层状异构铝基复合材料。
本发明与现有技术相比,其显著优点在于:
(1)本发明的方法通过磁控溅射和真空热压技术在铝基复合材料中实现异质结构。磁控溅射在粗晶金属基体表面镀上一层纳米晶金属层并在其外覆盖一层纳米级陶瓷颗粒,实现复合材料在晶粒尺度上的异构结构,使材料在承受应变时由于粗晶和超细晶区域力学性能不同形成应变分配,产生异质变形诱导的强化(hetero-deformation induced)效果;而陶瓷颗粒在变形时充当位错源并起到钉扎效果阻碍晶界和位错运动,进一步强化材料强度。
(2)本发明的方法使用磁控溅射技术使纳米晶金属层和陶瓷颗粒通过沉积附着效应在基体表面高速而致密的沉积,并在后续VHP(真空热压)过程中通过再结晶烧结作用更紧密的相互结合在一起;且对含有不同合金元素的铝合金而言异质元素在热压过程中发生扩散行为,形成扩散层,一方面构成成分梯度异构,另一方面对Al基体起到固溶强化效果。
(3)本发明的方法可通过调控磁控溅射靶材和溅射时间控制陶瓷颗粒种类及其在复合材料中的体积分数;调控VHP过程中的保温温度、保温时间以及压下量控制晶粒尺寸、扩散层厚度和施加的应变量,可实现多方位多角度对复合材料性能的调控。
附图说明
图1为本发明的磁控溅射后复合材料组织结构示意图。
图2为本发明的铝基复合材料热压扩散后元素分布的梯度结构示意图。
图3为实施例1的Al/AlN和Al-5Mg复合材料的SEM示意图。
图4为实施例1的Al/AlN和Al-5Mg复合材料中保温扩散3h后Mg元素在Al中的扩散梯度的EDS能谱.
附图标记说明:
1-增强相颗粒覆盖层,2-细晶层,3-粗晶基板,4-细晶层包含的异质元素分布,5-异质元素扩散层,6-粗晶中的基体元素分布。
具体实施方式
下面结合附图对本发明作进一步详细描述。
如图1-2所示,本发明涉及的是高强度高塑性层状异构铝基复合材料及其制备方法,属于复合材料制备领域,具体是利用磁控溅射等技术(以磁控溅射为例),将纳米晶金属层和增强相颗粒层均匀分布在粗晶基体板材表面并使其紧密结合,而后通过真空热压将多块板材制备成一种层状异构复合材料,该材料在变形过程中可通过异质变形诱导的强化和固溶强化等作用展现出高强度高塑性。该方法包含以下步骤1)金属基体表面处理和磁控溅射,2)磁控溅射处理后材料的表面处理和堆叠,3)真空热压。本发明通过磁控溅射技术将纳米晶金属层和增强相颗粒均匀覆盖在金属基体表面,并借助其沉积附着效应使二者紧密结合,然后通过真空热压保温过程中再结晶烧结作用使其结合更紧密,同时该过程发生异质元素的扩散在边界处形成梯度的扩散层。在变形过程中纳米级颗粒和梯度扩散层的存在分别对基体起到Orowan强化作用和固溶强化作用,且粗晶区和细晶区通过异质变形诱导的强化作用使材料表现出高强度高塑性。
实施例1
步骤一:取尺寸为200mm*50mm*2mm的Al/AlN复合铝板作为基板,对其进行砂纸打磨后采用OPS抛光液进行机械抛光,然后分别在丙酮和无水乙醇中超声处理15min。选取Al-5Mg板材和直径为76mm的SiC作为靶材,在Ar氛围下,采用工作压力为0.2Pa,功率为200W的条件对Al/AlN复合铝板进行Al-5Mg和SiC的磁控溅射,溅射时间分别为180min和60min。
步骤二:磁控溅射完毕后分别用丙酮和无水乙醇超声处理Al/AlN复合铝板10min待用
步骤三:取上述处理的Al/AlN复合铝板五块并叠放,然后在真空度为0.133Pa,温度为450℃,保温时间为180min,压力大小为50MPa,下压量为50%的条件下进行真空热压,该情况下Al/AlN复合铝板和Al-5Mg的SEM图谱如下图3所示,而Mg元素在Al板中扩散的EDS能谱图如下图4所示,由图中可以看出界面结合良好,无缝隙、裂纹,真空热压处理后Mg元素在Al中形成了较为明显的梯度分布。
实施例2
步骤一:取尺寸为300mm*60mm*1.5mm的Al-Li板材,打磨去除表面氧化层,对Al-Li板材用OPS抛光液进行机械抛光,然后分别在丙酮和无水乙醇中超声处理15min。选取Al-5Mg板材和直径为50mm的TiN作为靶材,在Ar氛围下,采用工作压力为0.5Pa,功率为350W的条件对Al-Li板材进行Al-5Mg和TiN的磁控溅射,溅射时间分别为120min和45min。
步骤二:磁控溅射完毕后分别用丙酮和无水乙醇超声处理Al-Li板材10min待用
步骤三:取上述处理的Al-Li板材七块并叠放,然后在真空度为0.2Pa,温度为400℃,保温时间为60min,压力大小为40MPa,下压量为60%的条件下进行真空热压。
实施例3
步骤一:取尺寸为300mm*60mm*2mm的Al-Li板材打磨去除表面氧化层,对Al-Li板材用OPS抛光液进行机械抛光,然后分别在丙酮和无水乙醇中超声处理15min。选取Al-Zn板材和直径为45mm的Al2O3作为靶材,在Ar氛围下,采用工作压力为0.3Pa,功率为400W的条件对Al-Li板材进行Al-Zn和Al2O3的磁控溅射,溅射时间分别为200min和80min。
步骤二:磁控溅射完毕后分别用丙酮和无水乙醇超声处理Al-Li板材10min待用
步骤三:取上述处理的Al-Li板材六块并叠放,然后在真空度为0.15Pa,温度为420℃,保温时间为100min,压力大小为70MPa,下压量为75%的条件下进行真空热压。
Claims (8)
1.一种高强度高塑性层状异构铝基复合材料的制备方法,其特征在于,包括如下步骤:
步骤(1):在粗晶铝合金基片上依次成型纳米晶金属层和纳米陶瓷颗粒层,形成具有不同尺寸晶粒区域的复合板;
步骤(2):对多个步骤(1)得到的复合板进行预处理,并按照细晶区在上、粗晶区在下的方式叠放;
步骤(3):叠放后的板材进行真空热压处理,使纳米晶层和粗晶层在真空高温高压下发生回复和再结晶,实现层与层间紧密的结合。
2.根据权利要求1所述的方法,其特征在于,所述步骤(1)中在粗晶铝合金基片上成型纳米晶金属层的方法为电镀、磁控溅射或真空蒸镀;
所述步骤(1)中在纳米晶金属层上成型纳米陶瓷颗粒层的方法为磁控溅射。
3.根据权利要求2所述的方法,其特征在于,所述步骤(1)中在粗晶铝合金基片上成型纳米晶金属层的方法为磁控溅射。
4.根据权利要求3所述的方法,其特征在于,所述粗晶铝合金基片的材质为Al/AlN复合铝板或Al-Li板;
所述纳米晶金属层的材质为Al-5Mg或Al-Zn;
所述纳米陶瓷颗粒层的材质为SiC、TiN或Al2O3。
5.根据权利要求4所述的方法,其特征在于,所述磁控溅射的工艺参数如下:工作压力0.1-1.0Pa,功率为100-500W,纳米晶金属层的磁控溅射时间为100-250min,纳米陶瓷颗粒层的磁控溅射时间为30-100min。
6.根据权利要求5所述的方法,其特征在于,步骤(2)中的预处理具体为:分别用丙酮和无水乙醇超声处理磁控溅射后的复合板。
7.根据权利要求6所述的方法,其特征在于,步骤(3)中的真空热压处理的参数如下:在真空度为0.1-0.2Pa,温度为400-450℃,保温时间为60-180min,压力大小为40-80MPa,下压量为50-75%。
8.一种采用权利要求1-7任一项所述的方法制备的高强度高塑性层状异构铝基复合材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011525918.XA CN112746256B (zh) | 2020-12-22 | 2020-12-22 | 高强度高塑性层状异构铝基复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011525918.XA CN112746256B (zh) | 2020-12-22 | 2020-12-22 | 高强度高塑性层状异构铝基复合材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112746256A true CN112746256A (zh) | 2021-05-04 |
CN112746256B CN112746256B (zh) | 2022-05-20 |
Family
ID=75648661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011525918.XA Active CN112746256B (zh) | 2020-12-22 | 2020-12-22 | 高强度高塑性层状异构铝基复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112746256B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115094277A (zh) * | 2022-07-11 | 2022-09-23 | 上海交通大学 | 一种混晶结构铝合金及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101736302A (zh) * | 2009-12-18 | 2010-06-16 | 西安交通大学 | 一种同质多层纳米金属薄膜材料的制备方法 |
KR20190109863A (ko) * | 2018-03-19 | 2019-09-27 | 삼성전자주식회사 | 고내식-고광택 알루미늄계 스퍼터링 타겟 합금 조성, 미세구조 및 그 제조 방법 |
CN110343982A (zh) * | 2019-07-30 | 2019-10-18 | 南京理工大学 | 一种纳米双峰异构铝镁合金制备方法 |
CN110592412A (zh) * | 2019-10-18 | 2019-12-20 | 南京理工大学 | 纳米AlN颗粒增强混晶耐热铝基复合材料及制备方法 |
CN110747380A (zh) * | 2019-12-10 | 2020-02-04 | 西南交通大学 | 一种纳米陶瓷颗粒增强铝基复合材料及其制备方法 |
CN111676430A (zh) * | 2020-06-22 | 2020-09-18 | 国电锅炉压力容器检验有限公司 | 一种高强度高塑性异构层状5083铝合金及其制备方法 |
-
2020
- 2020-12-22 CN CN202011525918.XA patent/CN112746256B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101736302A (zh) * | 2009-12-18 | 2010-06-16 | 西安交通大学 | 一种同质多层纳米金属薄膜材料的制备方法 |
KR20190109863A (ko) * | 2018-03-19 | 2019-09-27 | 삼성전자주식회사 | 고내식-고광택 알루미늄계 스퍼터링 타겟 합금 조성, 미세구조 및 그 제조 방법 |
CN110343982A (zh) * | 2019-07-30 | 2019-10-18 | 南京理工大学 | 一种纳米双峰异构铝镁合金制备方法 |
CN110592412A (zh) * | 2019-10-18 | 2019-12-20 | 南京理工大学 | 纳米AlN颗粒增强混晶耐热铝基复合材料及制备方法 |
CN110747380A (zh) * | 2019-12-10 | 2020-02-04 | 西南交通大学 | 一种纳米陶瓷颗粒增强铝基复合材料及其制备方法 |
CN111676430A (zh) * | 2020-06-22 | 2020-09-18 | 国电锅炉压力容器检验有限公司 | 一种高强度高塑性异构层状5083铝合金及其制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115094277A (zh) * | 2022-07-11 | 2022-09-23 | 上海交通大学 | 一种混晶结构铝合金及其制备方法和应用 |
CN115094277B (zh) * | 2022-07-11 | 2023-01-24 | 上海交通大学 | 一种混晶结构铝合金及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN112746256B (zh) | 2022-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106180729A (zh) | 一种制备金属封装金属间化合物基叠层复合装甲的方法 | |
CN109365803B (zh) | 一种粉末表面稀土改性的铝合金复杂构件增材制造方法 | |
CN101063203A (zh) | 带镀层金属板的制造方法 | |
CN112517637B (zh) | 一种增强增韧金属基层状复合材料及其制备方法 | |
CN102501457A (zh) | 陶瓷-TiAl微叠层复合材料板材及其制备方法 | |
JP6062066B2 (ja) | アルミニウム−マグネシウムコーティング鋼板およびその製造方法 | |
CN112746256B (zh) | 高强度高塑性层状异构铝基复合材料及其制备方法 | |
CN112323013A (zh) | 一种在钛合金表面制备高膜-基结合力复合涂层的方法 | |
CN109913678B (zh) | 一种TiAl3颗粒增强铝基复合材料及其制备方法和应用 | |
US10214801B2 (en) | Nanoparticle-reinforced composites and methods of manufacture and use | |
CN111251691A (zh) | 一种多尺度结构钛合金材料的制备方法 | |
CN111471957B (zh) | 一种多层异质结构高熵合金的制备方法 | |
CN111441026A (zh) | 一种双相结构高熵合金的制备方法 | |
CN110042353A (zh) | 一种纳米叠层铝基复合材料及制备方法 | |
CN112845587B (zh) | 一种增量-累积叠轧制备梯度结构金属材料的方法 | |
Sun et al. | Synergistic mechanism of strengthening and toughening of tissue regulation response to Mg/Al composite laminates by hard plate accumulative roll bonding | |
CN112974528A (zh) | 一种高强度高塑性层状异构镁锂复合材料及其制备方法 | |
CN116372344A (zh) | 一种Mg-Ta层状复合金属板材热等静压扩散连接制备方法 | |
CN107881469B (zh) | 类金刚石复合涂层及其制备方法与用途以及涂层工具 | |
CN112962060B (zh) | 一种Cr3Al/Zr多层薄膜及其制备方法 | |
CN112108653B (zh) | 一种3d打印钛铝复合材料及其制备方法 | |
CN113634597A (zh) | 一种微纳米层状铜/铜合金复合板材及其制备方法 | |
CN114481030A (zh) | 一种固体中子转换层及其制备方法和应用 | |
CN113386405A (zh) | 一种高强韧层状钛基复合材料的制备方法 | |
CN112157268B (zh) | 钛铝层状复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |