CN112737583B - A high-precision pipeline ADC and front-end calibration method - Google Patents
A high-precision pipeline ADC and front-end calibration method Download PDFInfo
- Publication number
- CN112737583B CN112737583B CN202011581048.8A CN202011581048A CN112737583B CN 112737583 B CN112737583 B CN 112737583B CN 202011581048 A CN202011581048 A CN 202011581048A CN 112737583 B CN112737583 B CN 112737583B
- Authority
- CN
- China
- Prior art keywords
- module
- adc
- pipeline
- output
- output code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000003990 capacitor Substances 0.000 claims abstract description 43
- AFYCEAFSNDLKSX-UHFFFAOYSA-N coumarin 460 Chemical compound CC1=CC(=O)OC2=CC(N(CC)CC)=CC=C21 AFYCEAFSNDLKSX-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000005070 sampling Methods 0.000 claims description 24
- 238000004364 calculation method Methods 0.000 claims description 13
- 230000005540 biological transmission Effects 0.000 claims description 8
- 230000003321 amplification Effects 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000013139 quantization Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
- H03M1/1014—Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
- H03M1/1019—Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error by storing a corrected or correction value in a digital look-up table
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
技术领域technical field
本发明属于高精度流水线ADC校准领域,具体涉及一种高精度的流水线ADC及其前端校准方法。The invention belongs to the field of high-precision pipeline ADC calibration, in particular to a high-precision pipeline ADC and a front-end calibration method thereof.
背景技术Background technique
传统流水线ADC系统结构如图1(a)所示,输入信号直接注入第一流水线子级进行采样,各流水线子级在两相非交叠时钟的控制下交替进行采样与残差放大。在每一流水线子级内部,采样相位时,乘法数模转换器MDAC与辅助模数转换器SubADC同时对输入信号进行采样且同时结束采样,保证乘法数模转换器MDAC与辅助模数转换器SubADC中的比较器采样到同一个输入信号点,辅助模数转换器SubADC通过比较器的比较结果产生数字码Di;残差放大相位时,数字码Di经乘法数模转换器MDAC与输入信号Vin相减产生残差信号,并由乘法数模转换器MDAC进行残差信号的放大,产生的残差放大信号送入下一流水线子级,作为下一流水线子级的输入信号,重复此过程。传统乘法数模转换器MDAC原理图如图2(a)所示,传统乘法数模转换器MDAC的输入输出关系如下:The structure of the traditional pipeline ADC system is shown in Figure 1(a). The input signal is directly injected into the first pipeline sub-stage for sampling, and each pipeline sub-stage performs sampling and residual amplification alternately under the control of two-phase non-overlapping clocks. Inside each pipeline sub-stage, when sampling the phase, the multiplying digital-to-analog converter MDAC and the auxiliary analog-to-digital converter SubADC simultaneously sample the input signal and end the sampling at the same time, ensuring that the multiplying digital-to-analog converter MDAC and the auxiliary analog-to-digital converter SubADC The comparator in the sample is sampled to the same input signal point, and the auxiliary analog-to-digital converter SubADC generates a digital code D i through the comparison result of the comparator; when the residual amplifies the phase, the digital code D i passes through the multiplying digital-to-analog converter MDAC and the input signal. The residual signal is generated by the subtraction of V in , and the residual signal is amplified by the multiplying digital-to-analog converter MDAC. The generated residual amplified signal is sent to the next pipeline sub-stage as the input signal of the next pipeline sub-stage. Repeat this process. process. The schematic diagram of the traditional multiplying digital-to-analog converter MDAC is shown in Figure 2(a). The input-output relationship of the traditional multiplying digital-to-analog converter MDAC is as follows:
其中Vout是经乘法数模转换器MDAC进行残差放大后输出到下一流水线子级的输出信号,Vref是参考电压,Ci为单位采样电容,k为所述流水线ADC每流水线子级的位数,StageGain是级间增益。在低速低精度流水线ADC中,可以较为简单的实现运放的高增益指标,使得级间增益StageGain可以近似等于常数,此时可以认为不存在增益误差。但是随着流水线ADC向着高速高精度的方向发展,高速要求运放有大带宽,高精度又要求运放有高增益,同时满足高增益大带宽的运放是很难实现的,这使得级间增益StageGain不能近似为常数,从而出现增益误差,影响流水线ADC性能。近年来高速高精度流水线ADC往往采用牺牲增益的方式保证运放带宽较大,保证运放和流水线ADC的工作速度,二者无法兼顾。Wherein V out is the output signal output to the next pipeline sub-stage after residual amplification by the multiplying digital-to-analog converter MDAC, V ref is the reference voltage, C i is the unit sampling capacitor, k is the pipeline ADC per pipeline sub-stage The number of bits, StageGain is the gain between stages. In the low-speed and low-precision pipeline ADC, the high-gain index of the op amp can be easily realized, so that the inter-stage gain StageGain can be approximately equal to a constant, and it can be considered that there is no gain error at this time. However, with the development of pipeline ADC in the direction of high speed and high precision, high speed requires the op amp to have a large bandwidth, and high precision requires the op amp to have high gain. The gain StageGain cannot be approximated as a constant, resulting in gain errors that affect pipeline ADC performance. In recent years, high-speed and high-precision pipeline ADCs often use the method of sacrificing gain to ensure a larger operational amplifier bandwidth and ensure the operating speed of operational amplifiers and pipeline ADCs. The two cannot be balanced.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术中无法兼顾运放增益和运放速度的不足之处,本发明提供了一种高精度流水线ADC及有效的前端校准方法,利用此方法校准流水线各个流水线子级的级间增益,需要对ADC的总数字输出编码进行减法计算,并依据其计算结果改变流水线ADC内部模拟电路的连接方式,达到增益校准的目的。通过外接信号源输给流水线ADC的两个差模直流电压输入信号处于同一区段,可以避免其他如电容失配一类的因素导致的误差,保证了校准算法的精确性。In view of the above-mentioned deficiencies in the prior art that the gain of the operational amplifier and the speed of the operational amplifier cannot be taken into account, the present invention provides a high-precision pipeline ADC and an effective front-end calibration method, which is used to calibrate the inter-stage gain of each pipeline sub-stage of the pipeline. , the total digital output code of the ADC needs to be subtracted, and the connection mode of the analog circuit inside the pipeline ADC needs to be changed according to the calculation result, so as to achieve the purpose of gain calibration. The two differential-mode DC voltage input signals input to the pipeline ADC by an external signal source are in the same section, which can avoid errors caused by other factors such as capacitance mismatch, and ensure the accuracy of the calibration algorithm.
本发明所述的一种高精度的流水线ADC,其采用的技术方案为:包括主体电路、输出编码存储模块、输出编码减法模块、差值比较模块、反馈电容控制模块、输入电压选择模块;The high-precision pipeline ADC of the present invention adopts the technical scheme as follows: comprising a main circuit, an output coding storage module, an output coding subtraction module, a difference comparison module, a feedback capacitance control module, and an input voltage selection module;
其中,所述主体电路输出总数字输出编码至输出编码存储模块;Wherein, the main body circuit outputs the total digital output code to the output code storage module;
所述输出编码存储模块对所述主体电路的总数字输出编码进行存储;The output code storage module stores the total digital output code of the main circuit;
所述输出编码减法模块将输出编码存储模块存储的总数字输出编码进行减法运算,并将所得结果输出到所述差值比较模块;The output code subtraction module performs a subtraction operation on the total digital output code stored in the output code storage module, and outputs the obtained result to the difference comparison module;
所述差值比较模块将输出编码减法模块的输出结果与事先在差值比较模块中设定好的理想总数字输出编码差值进行比较,并将得到的差值比较结果输出给所述反馈电容控制模块;The difference comparison module compares the output result of the output code subtraction module with the ideal total digital output code difference set in the difference comparison module in advance, and outputs the obtained difference comparison result to the feedback capacitor control module;
所述反馈电容控制模块依据差值比较模块的输出结果产生控制信号,对主体电路中的反馈电容进行控制;The feedback capacitance control module generates a control signal according to the output result of the difference comparison module, and controls the feedback capacitance in the main circuit;
输入电压选择模块接收差值比较模块的输出结果,若输出结果为存在增益误差,则继续进行校准,这时输入电压选择模块还会产生输出编码存储模块、输出编码减法模块、差值比较模块、反馈电容控制模块的使能信号,控制校准的进行,如果比较结果为增益误差不存在,则结束校准,将外部输入信号Vin接入所述流水线ADC,所述流水线ADC开始正常工作。The input voltage selection module receives the output result of the difference comparison module. If the output result is a gain error, it will continue to calibrate. At this time, the input voltage selection module will also generate an output code storage module, an output code subtraction module, a difference comparison module, The enable signal of the feedback capacitor control module is used to control the calibration. If the comparison result is that the gain error does not exist, the calibration is ended, and the external input signal V in is connected to the pipeline ADC, and the pipeline ADC starts to work normally.
进一步的,所述主体电路包括若干个流水线子级、最后一级的闪存式ADC、延迟同相模块、冗余校准模块;Further, the main circuit includes several pipeline sub-stages, a flash-memory ADC at the last stage, a delayed in-phase module, and a redundant calibration module;
其中,若干个流水线子级依次连接,后一个流水线子级输入端接前一个流水线子级的模拟输出端,第一流水线子级输入端接输入信号Vin,最后一个流水线子级的模拟输出端接最后一级的闪存式ADC;Among them, several pipeline sub-stages are connected in sequence, the input terminal of the latter pipeline sub-stage is connected to the analog output terminal of the previous pipeline sub-stage, the input terminal of the first pipeline sub-stage is connected to the input signal V in , and the analog output terminal of the last pipeline sub-stage Connect to the flash ADC of the last stage;
所述延迟同相模块的输入端分别连接各流水线子级及最后一级的闪存式ADC的数字输出端;所述冗余校准模块的输入端连接延迟同相模块的输出端;The input end of the delay in-phase module is respectively connected to the digital output end of each pipeline sub-stage and the flash-type ADC of the last stage; the input end of the redundancy calibration module is connected to the output end of the delay in-phase module;
所述延迟同相模块接收各流水线子级输出编码和最后一级的闪存式ADC的输出编码,并输出到冗余校准模块;冗余校准模块对所接收的输出编码进行校准并输出流水线ADC总数字输出编码Dout。The delay in-phase module receives the output code of each pipeline sub-stage and the output code of the flash ADC of the last stage, and outputs it to the redundancy calibration module; the redundancy calibration module calibrates the received output code and outputs the total number of the pipeline ADC Output encoding D out .
进一步的,每个流水线子级均由乘法数模转换器MDAC模块和辅助模数转换器SubADC模块构成,二者同时接收输入信号Vin,并由辅助模数转换器SubADC模块控制乘法数模转换器MDAC模块产生模拟输出传输至后一个流水线子级,辅助模数转换器SubADC模块产生数字输出传输至所述延迟同相模块。Further, each pipeline sub-stage is composed of a multiplying digital-to-analog converter MDAC module and an auxiliary analog-to-digital converter SubADC module, both of which receive the input signal V in at the same time, and the auxiliary analog-to-digital converter SubADC module controls the multiplying digital-to-analog conversion. The MDAC module generates an analog output for transmission to the next pipeline sub-stage, and the auxiliary analog-to-digital converter SubADC module generates a digital output for transmission to the delayed in-phase module.
对上述的一种高精度的流水线ADC前端校准方法,包括以下步骤:For the above-mentioned high-precision pipeline ADC front-end calibration method, the following steps are included:
步骤1:通过外接信号源输给所述流水线ADC一个差模直流电压输入信号Vin1,得到所述流水线ADC的总数字输出编码Dout1,存储在输出编码存储模块中;Step 1: input a differential mode DC voltage input signal V in1 to the pipeline ADC through an external signal source, obtain the total digital output code D out1 of the pipeline ADC, and store it in the output code storage module;
步骤2:通过外接信号源输给所述流水线ADC一个差模直流电压输入信号Vin2,得到所述流水线ADC的总数字输出编码Dout2,存储在输出编码存储模块中;Step 2: inputting a differential mode DC voltage input signal V in2 to the pipeline ADC through an external signal source to obtain the total digital output code D out2 of the pipeline ADC, and store it in the output code storage module;
两个直流差模电压输入信号Vin1和Vin2处于传输曲线的同一个区段内,且Vin1大于Vin2。The two DC differential mode voltage input signals V in1 and V in2 are in the same segment of the transfer curve, and V in1 is greater than V in2 .
步骤3:依据各级传输曲线以及冗余相加校准算法,通过手动理论计算,计算出当Vin1和Vin2分别输入所述流水线ADC时对应的理想总数字输出编码Dout1_id和Dout2_id,将理想总数字输出编码Dout1_id和Dout2_id做差,即Dout1_id-Dout2_id=ΔDout_id,得到在理想情况下,所述流水线ADC两个总数字输出编码的差值ΔDout_id,并存储在差值比较模块中;Step 3: Calculate the ideal total digital output codes D out1_id and D out2_id when V in1 and V in2 are respectively input to the pipeline ADC through manual theoretical calculation according to the transmission curves of all levels and the redundancy addition calibration algorithm, and set the The difference between the ideal total digital output codes D out1_id and D out2_id , that is, D out1_id -D out2_id =ΔD out_id , obtains the difference ΔD out_id between the two total digital output codes of the pipeline ADC under ideal conditions, and stores it in the difference value in the compare module;
步骤4:输出编码减法模块将步骤1和步骤2得到的所述流水线ADC存储在输出编码存储模块中的两个数字输出Dout1和Dout2进行减法操作,即Dout1-Dout2=ΔDout,得到做差结果ΔDout,即实际情况下所述流水线ADC分别输入Vin1和Vin2时的总数字输出编码差值;Step 4: The output coding subtraction module performs a subtraction operation on the two digital outputs D out1 and D out2 stored in the output coding storage module by the pipeline ADC obtained in
步骤5:差值比较模块将ΔDout和ΔDout_id进行比较,得以下三种情况:Step 5: The difference comparison module compares ΔD out and ΔD out_id , and obtains the following three cases:
若ΔDout>ΔDout_id,此时所述流水线ADC实际级间增益大于理想级间增益,又依据流水线ADC实际级间增益的模拟域计算公式,反馈电容控制模块将使有效反馈电容Cf_eq变小,使级间增益变小,然后重复步骤1、步骤2和步骤4,直到实际级间增益等于理想级间增益;If ΔD out >ΔD out_id , the actual inter-stage gain of the pipeline ADC is greater than the ideal inter-stage gain, and according to the analog domain calculation formula of the actual inter-stage gain of the pipeline ADC, the feedback capacitance control module will make the effective feedback capacitance C f_eq smaller , make the inter-stage gain smaller, and then repeat
若ΔDout<ΔDout_id,此时所述流水线ADC实际级间增益小于理想级间增益,又依据流水线ADC实际级间增益的模拟域计算公式,反馈电容控制模块将使有效反馈电容Cf_eq变大,使级间增益变大,然后重复步骤1、步骤2和步骤4,直到级间增益等于理想级间增益;If ΔD out <ΔD out_id , the actual inter-stage gain of the pipeline ADC is smaller than the ideal inter-stage gain, and according to the analog domain calculation formula of the actual inter-stage gain of the pipeline ADC, the feedback capacitance control module will increase the effective feedback capacitance C f_eq , make the inter-stage gain larger, and then repeat
若ΔDout=ΔDout_id,此时所述流水线ADC实际级间增益等于理想值,校准停止,固化可调反馈电容控制信号,使有效反馈电容容值Cf_eq不再变化。If ΔD out = ΔD out_id , the actual inter-stage gain of the pipeline ADC is equal to the ideal value, the calibration is stopped, and the adjustable feedback capacitor control signal is cured, so that the effective feedback capacitor value C f_eq does not change.
进一步的,在这里提出流水线ADC理想级间增益StageGainid的计算公式为:Further, the calculation formula of the ideal inter-stage gain StageGain id of the pipeline ADC is proposed here:
所述流水线ADC由校准电路检测出来的级间增益StageGaindet的计算公式为:The calculation formula of the inter-stage gain StageGain det detected by the calibration circuit of the pipeline ADC is:
因为Vin1和Vin2是设定好的固定的差模直流输入信号,所以ΔVin为常数,故所述流水线ADC实际总数字输出编码之间的差ΔDout与所述流水线ADC理论总数字输出编码之间的差ΔDout_id的大小之比即为级间增益的比,即若ΔDout>ΔDout_id,则说明实际级间增益StageGain大于理想级间增益StageGainid;若ΔDout<ΔDout_id,说明实际级间增益StageGain小于理想级间增益StageGainid;若ΔDout=ΔDout_id,则说明实际级间增益StageGain等于理想级间增益StageGainid,此时说明增益误差已经得到消除,可以固化可调反馈电容控制信号并结束所述前台增益校准方法了。Because V in1 and V in2 are set fixed differential mode DC input signals, ΔV in is a constant, so the difference ΔD out between the actual total digital output codes of the pipeline ADC and the theoretical total digital output of the pipeline ADC The ratio of the difference between codes ΔD out_id is the ratio of the inter-stage gain, that is, if ΔD out >ΔD out_id , it means that the actual inter-stage gain StageGain is greater than the ideal inter-stage gain StageGain id ; if ΔD out <ΔD out_id , it means that The actual inter-stage gain StageGain is less than the ideal inter-stage gain StageGain id ; if ΔD out = ΔD out_id , it means that the actual inter-stage gain StageGain is equal to the ideal inter-stage gain StageGain id , which means that the gain error has been eliminated, and the adjustable feedback capacitor can be cured. control signal and end the foreground gain calibration method.
在模拟域预估所述流水线ADC级间增益StageGainana计算公式为:The calculation formula of StageGain ana to estimate the inter-stage gain of the pipeline ADC in the analog domain is:
其中A为所述流水线ADC采样保持电路中运算放大器的开环增益,Cs为所述流水线ADC采样保持电路处于采样相位时的总采样电容;β为流水线ADC采样保持电路的闭环反馈因子(β=Cf_eq/Cs),Cf_eq为所述流水线ADC采样保持电路处于放大相位时的有效反馈电容,Cx为所述流水线ADC采样保持电路处于放大相位时接参考电压的电容,Cs=Cf_eq+Cx,K=Cx/Cf_eq。Wherein A is the open-loop gain of the operational amplifier in the sampling and holding circuit of the pipeline ADC, C s is the total sampling capacitance when the sampling and holding circuit of the pipeline ADC is in the sampling phase; β is the closed-loop feedback factor of the sampling and holding circuit of the pipeline ADC (β =C f_eq /C s ), C f_eq is the effective feedback capacitance when the pipeline ADC sample and hold circuit is in the amplification phase, C x is the capacitance connected to the reference voltage when the pipeline ADC sample and hold circuit is in the amplification phase, C s = C f_eq +C x , K=C x /C f_eq .
由此可知,当减小Cf_eq时,K变大,级间增益减小;当增大Cf_eq时,K变小,级间增益变大;达到了调整级间增益的目的,且通过式(1)和式(4)可知,校准误差主要来自于电容的匹配性和运放的开环增益A的大小,这两者均不随工作条件发生变化,均可通过前台校准的方法实现校准。It can be seen from this that when C f_eq is reduced, K becomes larger and the inter-stage gain decreases; when C f_eq is increased, K becomes smaller and the inter-stage gain becomes larger; the purpose of adjusting the inter-stage gain is achieved, and by formula It can be seen from equation (1) and equation (4) that the calibration error mainly comes from the matching of capacitors and the size of the open-loop gain A of the op amp, both of which do not change with the working conditions, and can be calibrated by the method of foreground calibration.
本发明所述的有益效果为:本发明改善了高速高精度流水线ADC中传统算法复杂且精度较低的缺点,只需要存储,减法加比较即可实现算法逻辑,且通过同区段取值做差的方式得到级间增益,可以很大程度上避免其他误差的影响;本发明的输出编码存储模块、输出编码减法模块、差值比较模块、反馈电容控制模块可以直接集成到片内实现,也可以通过FPGA板在片外实现,节约芯片面积,并可以自动开始和自动停止,具有高效快速灵活且精确的特点,比较适用于高速高精度流水线ADC校准。The beneficial effects of the present invention are as follows: the present invention improves the shortcomings of complex and low-precision traditional algorithms in high-speed and high-precision pipeline ADCs, and only needs to store, subtract, add and compare to realize the algorithm logic, and the algorithm logic can be realized by taking values in the same section. The inter-stage gain is obtained in a poor way, which can largely avoid the influence of other errors; the output coding storage module, the output coding subtraction module, the difference comparison module, and the feedback capacitance control module of the present invention can be directly integrated into the chip for realization, and also It can be implemented off-chip through an FPGA board, saving chip area, and can automatically start and stop automatically. It is efficient, fast, flexible and accurate, and is more suitable for high-speed and high-precision pipeline ADC calibration.
附图说明Description of drawings
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明。In order to make the content of the present invention easier to understand clearly, the present invention will be described in further detail below according to specific embodiments and in conjunction with the accompanying drawings.
图1(a)是传统流水线ADC的整体系统结构图;Figure 1(a) is the overall system structure diagram of the traditional pipeline ADC;
图1(b)是本发明的整体系统结构图;Fig. 1 (b) is the overall system structure diagram of the present invention;
图2(a)是传统流水线ADC中流水线子级乘法数模转换器MDAC的电路结构示意图;Figure 2 (a) is a schematic diagram of the circuit structure of the pipeline sub-stage multiplying digital-to-analog converter MDAC in the traditional pipeline ADC;
图2(b)是本发明中流水线子级乘法数模转换器MDAC的电路结构示意图;Fig. 2 (b) is the circuit structure schematic diagram of pipeline sub-stage multiplying digital-to-analog converter MDAC in the present invention;
图3是本发明中输出编码存储模块、输出编码减法模块、差值比较模块、反馈电容控制模块和输入电压选择模块的工作流程原理图;3 is a schematic diagram of the work flow of an output code storage module, an output code subtraction module, a difference comparison module, a feedback capacitance control module and an input voltage selection module in the present invention;
图4(a)是流水线子级乘法数模转换器MDAC理想传输曲线示意图;Figure 4(a) is a schematic diagram of the ideal transfer curve of the pipeline sub-stage multiplying digital-to-analog converter MDAC;
图4(b)是流水线子级乘法数模转换器MDAC理想传输曲线拟合曲线示意图;Figure 4(b) is a schematic diagram of the fitting curve of the ideal transfer curve of the pipeline sub-stage multiplying digital-to-analog converter MDAC;
图4(c)是考虑电容失配的流水线子级乘法数模转换器MDAC理想传输曲线拟合曲线;Figure 4(c) is a fitting curve of the ideal transfer curve of the pipeline sub-stage multiplying digital-to-analog converter MDAC considering capacitance mismatch;
图5是本发明的校准方法流程图。FIG. 5 is a flow chart of the calibration method of the present invention.
具体实施方式Detailed ways
如图1(b)所示,本发明所述的一种高精度的流水线ADC,包括主体电路、输出编码存储模块、输出编码减法模块、差值比较模块、反馈电容控制模块、输入电压选择模块;As shown in Figure 1(b), a high-precision pipeline ADC according to the present invention includes a main circuit, an output code storage module, an output code subtraction module, a difference comparison module, a feedback capacitor control module, and an input voltage selection module. ;
其中,所述主体电路包括i个流水线子级、最后一级的闪存式ADC(FLASH ADC)、延迟同相模块、冗余校准模块;其中,第一流水线子级输入端接输入信号Vin,第二流水线子级输入端接第一流水线子级模拟输出端,第二流水线子级输入信号即为第一流水线子级输出信号;第三流水线子级输入端接第二流水线子级模拟输出端,第三流水线子级输入信号即为第二流水线子级输出信号,以此类推直到第i子级为止,第i子级模拟输出端接最后一级的闪存式ADC输入端,所述延迟同相模块的输入端分别连接各流水线子级及最后一级的闪存式ADC的数字输出端,接收各流水线子级输出编码和最后一级的闪存式ADC的输出编码并输出到冗余校准模块;所述冗余校准模块的输入端连接延迟同相模块的输出端,对所接收的输出编码进行校准并输出流水线ADC总数字输出编码Dout;The main circuit includes i pipeline sub-stages, a flash ADC (FLASH ADC) at the last stage, a delay in-phase module, and a redundant calibration module; wherein, the input terminal of the first pipeline sub-stage is connected to the input signal V in , and the first pipeline sub-stage is connected to the input signal V in . The input terminal of the second pipeline sub-stage is connected to the analog output terminal of the first pipeline sub-stage, the input signal of the second pipeline sub-stage is the output signal of the first pipeline sub-stage; the input terminal of the third pipeline sub-stage is connected to the analog output terminal of the second pipeline sub-stage, The input signal of the third pipeline sub-stage is the output signal of the second pipeline sub-stage, and so on until the i-th sub-stage. The input terminals of the MCU are respectively connected to the digital output terminals of each pipeline sub-stage and the flash-type ADC of the last stage, receive the output code of each pipeline sub-stage and the output code of the flash-type ADC of the last stage, and output to the redundancy calibration module; The input end of the redundant calibration module is connected to the output end of the delay in-phase module, the received output code is calibrated and the total digital output code D out of the pipeline ADC is output;
每个所述流水线子级均由乘法数模转换器MDAC模块和辅助模数转换器SubADC模块构成,二者同时接收输入信号Vin,并由辅助模数转换器SubADC模块控制乘法数模转换器MDAC模块产生模拟输出传输至后一个流水线子级,辅助模数转换器SubADC模块产生数字输出传输至所述延迟同相模块;Each of the pipeline sub-stages is composed of a multiplying digital-to-analog converter MDAC module and an auxiliary analog-to-digital converter SubADC module, both of which receive the input signal V in at the same time, and the auxiliary analog-to-digital converter SubADC module controls the multiplying digital-to-analog converter. The MDAC module generates an analog output and transmits it to the next pipeline sub-stage, and the auxiliary analog-to-digital converter SubADC module generates a digital output and transmits it to the delay in-phase module;
所述输出编码存储模块对所述主体电路的总数字输出编码进行存储;The output code storage module stores the total digital output code of the main circuit;
所述输出编码减法模块将输出编码存储模块存储的总数字输出编码进行减法运算,并将所得结果输出到所述差值比较模块;The output code subtraction module performs a subtraction operation on the total digital output code stored in the output code storage module, and outputs the obtained result to the difference comparison module;
所述差值比较模块将输出编码减法模块的输出结果与事先在差值比较模块中设定好的理想总数字输出编码差值进行比较,并将得到的差值比较结果输出给所述反馈电容控制模块;The difference comparison module compares the output result of the output code subtraction module with the ideal total digital output code difference set in the difference comparison module in advance, and outputs the obtained difference comparison result to the feedback capacitor control module;
所述反馈电容控制模块依据差值比较结果产生控制信号,控制乘法数模转换器MDAC中的反馈电容,对反馈电容进行调整或者固化;若对反馈电容进行了调整,则重复校准流程,若对反馈电容进行固化,则所述流水线ADC结束前台校准,开始正常接收输入信号;The feedback capacitance control module generates a control signal according to the difference comparison result, controls the feedback capacitance in the multiplying digital-to-analog converter MDAC, and adjusts or solidifies the feedback capacitance; if the feedback capacitance is adjusted, repeat the calibration process. After the feedback capacitor is cured, the pipeline ADC ends the foreground calibration and starts to receive the input signal normally;
输入电压选择模块受差值比较模块控制,接收差值比较模块传输的差值比较结果,若比较结果为存在增益误差,则继续进行校准,这时输入电压选择模块还会产生输出编码存储模块、输出编码减法模块、差值比较模块、反馈电容控制模块的使能信号,控制校准的进行,如果比较结果为增益误差不存在,则结束校准,将外部输入信号Vin接入所述流水线ADC,所述流水线ADC开始正常工作。The input voltage selection module is controlled by the difference comparison module, and receives the difference comparison result transmitted by the difference comparison module. If the comparison result is that there is a gain error, the calibration is continued. At this time, the input voltage selection module will also generate the output code storage module, Output the enable signal of the coding subtraction module, the difference comparison module, and the feedback capacitance control module to control the calibration. If the comparison result is that the gain error does not exist, the calibration is ended, and the external input signal V in is connected to the pipeline ADC, The pipelined ADC starts to work normally.
本申请把反馈电容的其中一个单位电容按照二进制权重分为了若干个,并依据应用情况增添了电容,将它们分别进控制,达到增大或减小反馈电容的目的。所述乘法数模转换器MDAC的电路结构如图2(b)所示。In this application, one of the unit capacitors of the feedback capacitor is divided into several units according to the binary weight, and the capacitors are added according to the application situation, and they are controlled separately to achieve the purpose of increasing or decreasing the feedback capacitor. The circuit structure of the multiplying digital-to-analog converter MDAC is shown in FIG. 2(b).
其中Cx_1,Cx_2,……,Cx_n的电容值之和等于Cx,且Cf_k=[(N-1)/N]*Cf,Cf_k-1=Cf/(N*20),Cf_k-2=Cf/(N*21),……,Cf_0=Cf/(N*2k-1),其中Cf_k-1,Cf_k-2,……,Cf_0为可调反馈电容,Cf是传统流水线ADC应接入电路的反馈电容大小。Wherein the sum of capacitance values of C x_1 , C x_2 , ..., C x_n is equal to C x , and C f_k =[(N-1)/N]*C f , C f_k-1 =C f /(N*2 0 ), C f_k-2 =C f /(N*2 1 ),..., C f_0 =C f /(N*2 k-1 ), where C f_k-1 , C f_k-2 ,..., C f_0 is the adjustable feedback capacitance, and C f is the size of the feedback capacitance that the traditional pipeline ADC should be connected to the circuit.
图2(b)中k为反馈电容控制模块输出数字码Dctr的二进制位数,N为可调反馈电容与有效反馈电容Cf_eq的比例系数,可以依据需求自行设定。从理论上来讲N越大,可调反馈电容越小,对电路级间增益的调整幅度也会较小,而k取值则是越大越好,k的取值越大,可调反馈电容最小单位即最小校准步长越小,最小校准步长越小所述前台校准算法就越精确,但是较小的电容比较难以精确实现,所以需要在电容精度和所述前台校准算法的精度进行折中。In Figure 2(b), k is the binary digit of the digital code Dctr output by the feedback capacitance control module, and N is the proportional coefficient between the adjustable feedback capacitance and the effective feedback capacitance C f_eq , which can be set according to requirements. Theoretically speaking, the larger the N is, the smaller the adjustable feedback capacitance will be, and the adjustment range of the gain between the circuit stages will be smaller, and the larger the value of k, the better. The larger the value of k, the smaller the adjustable feedback capacitance. The unit, that is, the smaller the minimum calibration step size, the smaller the minimum calibration step size, the more accurate the foreground calibration algorithm is, but the smaller capacitance is more difficult to achieve accurately, so it is necessary to make a compromise between the capacitance accuracy and the accuracy of the foreground calibration algorithm .
在图2(b)中,Cx_1,Cx_2,……,Cx_n实际上分别受到三个开关的控制:分别控制Cx_1,Cx_2,……,Cx_n的开关的其中之一一端接电容下极板,一端接输入信号Vin,这个开关即为采样开关,采样开关受采样时钟控制;分别控制Cx_1,Cx_2,……,Cx_n的开关其中的另一个开关可称为运算开关,运算开关一端接参考电压±Vref,一端接电容下级板,受Sub ADC的输出编码Di控制,且与残差放大时钟同相;最后,Cx_1,Cx_2,……,Cx_n的上极板都接到同一个开关上,这个开关在这里称为接地开关,接地开关的一端接Cx_1,Cx_2,……,Cx_n的上级板,另一端接参考电压Vicm,接地开关受采样时钟控制,与同相但更早进入低电平使开关断开。In Figure 2(b), C x_1 , C x_2 , ..., C x_n are actually controlled by three switches: one end of the switches that control C x_1 , C x_2 , ..., C x_n respectively It is connected to the lower plate of the capacitor, and one end is connected to the input signal V in . This switch is the sampling switch, and the sampling switch is affected by the sampling clock. Control; control the switches of C x_1 , C x_2 , ..., C x_n respectively. Another switch among them can be called an operation switch. One end of the operation switch is connected to the reference voltage ±V ref , and the other end is connected to the lower-level board of the capacitor, and is encoded by the output of the Sub ADC. D i control, and with the residual amplification clock In the same phase; finally, the upper plates of C x_1 , C x_2 , ..., C x_n are all connected to the same switch, this switch is called the grounding switch here, and one end of the grounding switch is connected to C x_1 , C x_2 , ..., The upper-level board of C x_n , the other end is connected to the reference voltage V icm , the grounding switch is subject to the sampling clock control, and In-phase but going low earlier turns the switch off.
在图2(b)中,Cf_k-1,Cf_k-2,……,Cf_0实际上分别受到三个开关的控制,分别控制Cf_k-1,Cf_k-2,……,Cf_0的开关的其中之一一端接输入信号Vin,一端接电容下极板,这个开关也是采样开关,受采样时钟控制,但不同于Cx_1,Cx_2,……,Cx_n和Cf_k的是,Cf_k-1,Cf_k-2,……,Cf_0的上极板还要接了另一个开关,即反馈电容调整开关,这个开关一端接Cf_k-1,Cf_k-2,……,Cf_0的上极板,另一端接到其他所有电容的上极板,反馈电容调整开关受到反馈电容调整模块输出输出数字码Dctr的控制,其中第k位可调反馈电容Cf_k-1受反馈电容调整模块输出数字码Dctr的第k位控制,即Dctr_k-1,其中第k位可调反馈电容Cf_k-2受反馈电容调整模块输出数字码Dctr的第k-1位控制,即Dctr_k-2,以此类推,第j个可调反馈电容Cf_j受反馈电容调整模块输出数字码Dctr的第j-1位控制,即Dctr_j-1,若反馈电容调整开关断开,则Cf_k-1,Cf_k-2,……,Cf_0的上极板悬空,不参与输入信号的采样,也不接入环路,所以此时断开的反馈电容调整开关所对应的电容在电路中是不起作用的,反馈电容调整模块就是通过反馈电容调整开关来调整接入电路的有效反馈电容Cf_eq的值的;图2(b)中Cf_k-1,Cf_k-2,……,Cf_0所接的第三个开关,一端接到电容下级板,一端接到运放输出端,这个开关在这里称为环路开关,受到残差放大时钟的控制。In Fig. 2(b), C f_k-1 , C f_k-2 , ..., C f_0 are actually controlled by three switches, respectively controlling C f_k-1 , C f_k-2 , ..., C f_0 One of the switches is connected to the input signal V in , and the other end is connected to the lower plate of the capacitor. This switch is also a sampling switch and is affected by the sampling clock. Control, but different from C x_1 , C x_2 , ..., C x_n and C f_k is that the upper plate of C f_k-1 , C f_k-2 , ..., C f_0 is connected to another switch, namely Feedback capacitor adjustment switch, one end of this switch is connected to the upper plate of C f_k-1 , C f_k-2 , ..., C f_0 , and the other end is connected to the upper plate of all other capacitors. The feedback capacitance adjustment switch is subject to the feedback capacitance adjustment module The control of the output digital code Dctr, in which the k-th adjustable feedback capacitor C f_k-1 is controlled by the k-th bit of the output digital code Dctr of the feedback capacitance adjustment module, namely Dctr_k-1, where the k-th adjustable feedback capacitor C f_k -2 is controlled by the k-1 bit of the digital code Dctr output by the feedback capacitance adjustment module, namely Dctr_k-2, and so on, the jth adjustable feedback capacitance C f_j is controlled by the jth of the digital code Dctr output by the feedback capacitance adjustment module 1-bit control, namely Dctr_j-1, if the feedback capacitance adjustment switch is turned off, then the upper plate of C f_k-1 , C f_k-2 , ..., C f_0 is left floating, does not participate in the sampling of the input signal, nor is it connected loop, so the capacitance corresponding to the disconnected feedback capacitance adjustment switch does not work in the circuit. The feedback capacitance adjustment module adjusts the value of the effective feedback capacitance C f_eq of the access circuit through the feedback capacitance adjustment switch. ; The third switch connected to C f_k-1 , C f_k-2 , ..., C f_0 in Figure 2(b), one end is connected to the capacitor lower-level board, and the other end is connected to the output of the op amp, this switch is called here is a loop switch and is subject to a residual amplified clock control.
图2(b)中OPA为运算放大器,运算放大器负输入端分别接电容Cx_1、Cx_2、……、Cx_n、Cf_k上极板,正输入端接地GND,输出端Vouti接环路开关。In Figure 2(b), the OPA is an operational amplifier. The negative input terminal of the operational amplifier is connected to the upper plate of the capacitors C x_1 , C x_2 , ..., C x_n , and C f_k respectively. The positive input terminal is grounded to GND, and the output terminal V outi is connected to the loop switch.
在图2(b)中,Cf_k受三个开关控制,其中两个与采样开关和接地开关相同,故也分别称为采样开关和接地开关,第三个开关与环路开关相同,故也是环路开关。In Figure 2(b), C f_k is controlled by three switches, two of which are the same as the sampling switch and the grounding switch, so they are also called the sampling switch and the grounding switch respectively, and the third switch is the same as the loop switch, so it is also loop switch.
从图1(b)中可知,流水线ADC主体电路会将总数字输出编码输给输出编码存储模块,又如图3所示,输出编码存储模块内部有两个存储模块,输出编码存储阵列1对Dout1进行存储,输出编码存储阵列1对Dout2进行存储,然后再通过两个输出端口同时把存储下来的编码输出给下一级的输出编码减法模块。输出编码存储模块有四个主要输入端口,其中CLK为系统时钟;Dout端口用来直接接收流水线ADC主体电路的总数字输出编码;En_r1和En_r2分别是输出编码存储阵列1和输出编码存储阵列2的使能信号。当En_r1使能,则存储输出编码存储阵列1对Dout进行存储,即为Dout1。如果En_r2使能,则存储输出编码存储阵列2对Dout进行存储,即为Dout2。En_r1应在输入Vin1时使能,En_r2应在输入Vin2时使能,确保两个存储阵列存储到正确的值,En_r1和En_r2都不使能时,输出编码存储阵列1和输出编码存储阵列2执行锁存操作。As can be seen from Figure 1(b), the main circuit of the pipeline ADC will output the total digital output code to the output code storage module. As shown in Figure 3, there are two storage modules inside the output code storage module, and one pair of output code storage arrays D out1 is stored, the output
如图3所示,输出编码减法模块同样有四个主要输入端口,其中CLK为系统时钟;En_su是他的使能端口,只有在En_su使能时,输出编码减法模块才进行减法操作,其余时刻处于锁存保持状态,避免给后级输入不必要的值影响算法运作,同时保证后级能稳定的接收到输入信号;另外两个端口中,一个用来接收输出编码存储模块输过来的Dout1,另一个用来接收输出编码存储模块输过来的Dout2,使能并且接收到输入信号后,这个模块执行Dout1减Dout2的操作,并输出减法运算结果ΔDout供差值比较模块使用。As shown in Figure 3, the output coding subtraction module also has four main input ports, of which CLK is the system clock; En_su is its enable port. Only when En_su is enabled, the output coding subtraction module performs the subtraction operation, and at other times It is in the latch hold state to avoid inputting unnecessary values to the post-stage to affect the operation of the algorithm, and at the same time to ensure that the post-stage can receive the input signal stably; one of the other two ports is used to receive the D out1 output from the output code storage module. , and the other is used to receive D out2 from the output coding storage module. After enabling and receiving the input signal, this module performs the operation of subtracting D out1 from D out2 , and outputs the subtraction result ΔD out for the difference comparison module.
如图3所示,差值比较模块有三个主要输入端口,其中CLK为系统时钟;其二是使能端,受En_cmp控制,在使能信号不使能时,差值比较模块执行锁存操作,使能信号使能时,差值比较模块执行比较操作;另一个输入端接收输出编码减法模块的输出信号ΔDout,差值比较模块将ΔDout与事先存储在差值比较模块中的ΔDout_id进行比较,若ΔDout等于ΔDout_id,即不存在增益误差,则D_equ为高电平,D_big、D_small为低电平;若ΔDout大于ΔDout_id,即级间增益偏大,则D_big为高电平,D_equ、D_small为低电平;若ΔDout小于ΔDout_id,即级间增益偏小,则D_small为高电平,D_equ、D_big为低电平。差值比较模块三个输出端口分别把D_small,D_equ、D_big送入反馈电容控制模块和输入电压选择模块,对它们进行控制。As shown in Figure 3, the difference comparison module has three main input ports, of which CLK is the system clock; the second is the enable terminal, which is controlled by En_cmp. When the enable signal is not enabled, the difference comparison module performs a latch operation , when the enable signal is enabled, the difference comparison module performs the comparison operation; the other input terminal receives the output signal ΔD out of the output coding subtraction module, and the difference comparison module compares ΔD out with the ΔD out_id stored in the difference comparison module in advance For comparison, if ΔD out is equal to ΔD out_id , that is, there is no gain error, then D_equ is high, and D_big and D_small are low; if ΔD out is greater than ΔD out_id , that is, the inter-stage gain is too large, then D_big is high. If ΔD out is smaller than ΔD out_id , that is, the inter-stage gain is small, D_small is high, and D_equ and D_big are low. The three output ports of the difference comparison module respectively send D_small, D_equ and D_big to the feedback capacitor control module and the input voltage selection module to control them.
如图3所示,反馈电容控制模块的功能类似与计数器,它有五个主要输入端口,其中CLK为系统时钟,En_ctr接收使能信号,另外三个接收D_small,D_equ、D_big三个输入信号。反馈电容控制模块共有k位输出,即Dctr_k-1,Dctr_k-2,……,Dctr_0,接入到所述乘法数模转换器MDAC中,对反馈电容调整开关进行控制。当D_equ为高电平,D_big、D_small为低电平时,不存在增益误差,此时反馈电容控制模块输出保持不变;当D_big为高电平,D_equ、D_small为低电平时,级间增益偏大,此时应该调小有效反馈电容Cf_eq,反馈电容控制模块进行减1操作,将原来锁存住的编码减1,对应有效反馈电容Cf_eq减小一个最小步长;当D_small为高电平,D_equ、D_big为低电平时,级间增益偏小,此时应该调大有效反馈电容Cf_eq,反馈电容控制模块进行加1操作,将原来锁存住的编码加1,对应有效反馈电容Cf_eq增大一个最小步长。As shown in Figure 3, the function of the feedback capacitor control module is similar to that of the counter. It has five main input ports, of which CLK is the system clock, En_ctr receives the enable signal, and the other three receive three input signals of D_small, D_equ, and D_big. The feedback capacitance control module has a total of k-bit outputs, namely Dctr_k-1, Dctr_k-2, ..., Dctr_0, which are connected to the multiplying digital-to-analog converter MDAC to control the feedback capacitance adjustment switch. When D_equ is high and D_big and D_small are low, there is no gain error, and the output of the feedback capacitor control module remains unchanged; when D_big is high and D_equ and D_small are low, the gain bias between stages At this time, the effective feedback capacitance C f_eq should be reduced, and the feedback capacitance control module performs a decrement operation, decrementing the original latched code by 1, corresponding to the effective feedback capacitance C f_eq reducing a minimum step size; when D_small is high When D_equ and D_big are low level, the inter-stage gain is small. At this time, the effective feedback capacitor C f_eq should be increased, and the feedback capacitor control module will add 1 to the original latched code by 1, corresponding to the effective feedback capacitor. C f_eq is increased by a minimum step size.
如图3所示,输入电压选择模块有八个主要输入端口,其中之一是校准方法使能信号En_cal,当En_cal不使能时,校准方法不工作,当En_cal使能时,校准流程开始进行;其中之二系统时钟CLK,其中另三个接收D_small,D_equ、D_big三个输入信号;最后三个接三种输入信号Vin,Vin1和Vin2。Vin是所述流水线ADC正常工作时应接的输入信号,Vin1是步骤1中所需直流差模输入电压,Vin2是步骤2中所需直流差模输入电压,它们一起接入输入电压选择模块,输入电压有选择的将它们接入流水线ADC主体电路,即VinS。在所述校准方法工作时,输入电压选择模块依据校准进行的步骤,通过使能信号En_r1、En_r2、En_su、En_cmp、En_ctr分别对输出编码存储模块、输出编码减法模块、差值比较模块、反馈电容控制模块进行控制。As shown in Figure 3, the input voltage selection module has eight main input ports, one of which is the calibration method enable signal En_cal. When En_cal is not enabled, the calibration method does not work. When En_cal is enabled, the calibration process starts. ; Two of them are system clock CLK, and the other three receive three input signals of D_small, D_equ and D_big; the last three receive three input signals V in , V in1 and V in2 . V in is the input signal that should be connected to the pipeline ADC when it is working normally, V in1 is the DC differential mode input voltage required in
图4(a)为理想情况下,乘法数模转换器MDAC传输曲线,其中-(3Vref)/4,-(Vref)/4,(Vref)/4,(3Vref)/4,为Sub ADC比较器的判别点,在两个比较器判别点之间是一段折叠曲线,对应Sub ADC的一个输出编码Di。本发明所述Vin1和Vin2应处于Sub ADC的同一个输出编码区段内且Vin1大于Vin2。Figure 4(a) is the ideal case, the MDAC transfer curve of the multiplying digital-to-analog converter, where -(3V ref )/4, -(V ref )/4, (V ref )/4, (3V ref )/4, is the discrimination point of the Sub ADC comparator, and between the two comparator discrimination points is a folded curve corresponding to an output code Di of the Sub ADC . According to the present invention, V in1 and V in2 should be in the same output coding section of the Sub ADC and V in1 is greater than V in2 .
图4(b)为理想情况下,乘法数模转换器MDAC传输曲线拟合成一条直线的传输曲线,图4(c)为存在电容失配的情况下,乘法数模转换器MDAC传输曲线拟合成一条直线的传输曲线。若取Vin1和Vin3,从图4(b)中可以看出,实际上Vin1和Vin3对应的总数字输出编码做差再除以Vin1和Vin3之差,同样可以求出传输曲线斜率,也就是级间增益。但带来的问题如图4(c)所示,在存在电容失配的情况下,拟合成直线的传输曲线,每个比较器判别区段之间存在误差Error_cap,这会使得求得的总数字输出编码差值内包含一个误差台阶Error_cap,使得斜率计算出错,故本发明的两个直流共模输入电压需要取在Sub ADC的同一个输出编码区段内,避免其他误差对结果的影响。同时,Vin1要大于Vin2,这是为了防止结果出现负数,方便计算,而且Vin1与Vin2差值不宜过小,差值过小容易带来量化误差。Figure 4(b) is the ideal case where the MDAC transfer curve of the multiplying digital-to-analog converter is fitted to a straight line. Synthesize a straight transmission curve. If V in1 and V in3 are taken, it can be seen from Figure 4(b) that in fact, the difference between the total digital output codes corresponding to V in1 and V in3 is divided by the difference between V in1 and V in3 , and the transmission can also be calculated. The slope of the curve, which is the interstage gain. However, the problem is shown in Figure 4(c). In the case of capacitance mismatch, the transmission curve is fitted to a straight line, and there is an error Error_cap between each comparator discriminating sections, which will make the obtained The total digital output code difference contains an error step Error_cap, which makes the slope calculation error. Therefore, the two DC common-mode input voltages of the present invention need to be taken in the same output code section of the Sub ADC to avoid the influence of other errors on the results. . At the same time, V in1 should be larger than V in2 , this is to prevent negative numbers in the result and facilitate calculation, and the difference between V in1 and V in2 should not be too small, which may easily bring about quantization errors.
下面结合图5详细叙述所述一种高精度的流水线ADC前端校准方法的工作流程:The following describes the workflow of the high-precision pipeline ADC front-end calibration method in detail with reference to FIG. 5 :
将所述流水线ADC接入测试环境,令En_cal使能,校准流程开始进行。Connect the pipeline ADC to the test environment, enable En_cal, and the calibration process starts.
第一步,输入电压选择模块选择将Vin1输入流水线ADC主体电路,此时输出编码存储模块、输出编码减法模块、差值比较模块、反馈电容控制模块均不使能。In the first step, the input voltage selection module chooses to input V in1 into the main circuit of the pipeline ADC. At this time, the output coding storage module, the output coding subtraction module, the difference comparison module, and the feedback capacitor control module are all disabled.
第二步,经若干个周期,流水线ADC完成量化,输出总数字输出编码Dout1至输出编码存储模块,此时输入电压选择模块令En_r1使能,输出编码存储模块中的输出编码存储阵列1对所述流水线ADC的总数字输出编码Dout1进行存储,此时其他信号En_r2、En_su、En_cmp、En_ctr均不使能。In the second step, after several cycles, the pipeline ADC completes the quantization, and outputs the total digital output code D out1 to the output code storage module. At this time, the input voltage selection module enables En_r1, and the output code storage array in the output code storage module is 1 pair. The total digital output code D out1 of the pipeline ADC is stored, and other signals En_r2, En_su, En_cmp, and En_ctr are not enabled at this time.
第三步,输入电压选择模块选择将Vin2输入流水线ADC主体电路,此时输出编码存储模块、输出编码减法模块、差值比较模块、反馈电容控制模块均不使能。In the third step, the input voltage selection module chooses to input V in2 into the main circuit of the pipeline ADC. At this time, the output coding storage module, the output coding subtraction module, the difference comparison module and the feedback capacitor control module are all disabled.
第四步,经若干个周期,流水线ADC完成量化,输出总数字输出编码Dout2至输出编码存储模块,此时输入电压选择模块令En_r2使能,输出编码存储模块中的输出编码存储阵列2对所述流水线ADC的总数字输出编码Dout2进行存储,此时其他信号En_r1、En_su、En_cmp、En_ctr均不使能。In the fourth step, after several cycles, the pipeline ADC completes quantization, and outputs the total digital output code D out2 to the output code storage module. At this time, the input voltage selection module enables En_r2, and the output code storage array in the output
第五步,输入电压选择模块选择令En_su使能,输出编码减法模块工作,对输出编码存储模块锁存住的两个总数字输出编码Dout1和Dout2进行减法操作,并将做差结果ΔDout锁存住,此时其他信号En_r1、En_r2、En_cmp、En_ctr均不使能。The fifth step, the input voltage selection module selects En_su to enable, the output code subtraction module works, and performs subtraction operation on the two total digital output codes D out1 and D out2 latched by the output code storage module, and the difference result ΔD out is latched, and other signals En_r1, En_r2, En_cmp, and En_ctr are disabled at this time.
第六步,输入电压选择模块选择令En_cmp使能,差值比较模块工作,将输出编码减法模块锁存住并输入进来的做差结果ΔDout与理想情况下的做差结果ΔDout_id进行比较,若ΔDout等于ΔDout_id,即不存在增益误差,则D_equ为高电平,D_big、D_small为低电平;若ΔDout大于ΔDout_id,即级间增益偏大,则D_big为高电平,D_equ、D_small为低电平;若ΔDout小于ΔDout_id,即级间增益偏小,则D_small为高电平,D_equ、D_big为低电平。此时其他信号En_r1、En_r2、En_su、En_ctr均不使能。The sixth step, the input voltage selection module selects En_cmp to enable, the difference comparison module works, latches the output code subtraction module and inputs the incoming difference result ΔD out and the ideal difference result ΔD out_id to compare, If ΔD out is equal to ΔD out_id , that is, there is no gain error, then D_equ is high, D_big and D_small are low; if ΔD out is greater than ΔD out_id , that is, the inter-stage gain is too large, then D_big is high and D_equ , D_small is low level; if ΔD out is less than ΔD out_id , that is, the inter-stage gain is small, then D_small is high level, and D_equ and D_big are low level. At this time, other signals En_r1, En_r2, En_su and En_ctr are disabled.
第七步,输入电压选择模块选择令En_ctr使能,反馈电容控制模块工作,以k=3为例说明工作过程。若k=3,则反馈电容控制模块输出三位编码Dctr_2、Dctr_1、Dctr_0,即Dctr。初始状态下,Dctr=100,则输出信号为Dctr_2=1,Dctr_1=0,Dctr_0=0,反馈电容开关高电平导通,则此时接入电路中的有效有效反馈电容Cf_eq=Cf_3+Cf_2=[(N-1)/N]*Cf+Cf/(N*20)=Cf,与传统流水线ADC应接入电路的反馈电容相同,此时其他信号En_r1、En_r2、En_cmp、En_su不使能。In the seventh step, the input voltage selection module selects En_ctr to enable, and the feedback capacitor control module works, and the working process is described by taking k=3 as an example. If k=3, the feedback capacitance control module outputs three-bit codes Dctr_2, Dctr_1, Dctr_0, namely Dctr. In the initial state, Dctr=100, the output signal is Dctr_2=1, Dctr_1=0, Dctr_0=0, the feedback capacitor switch is turned on at high level, then the effective feedback capacitor C f_eq =C f_3 +C f_2 =[(N-1)/N]*C f +C f /(N*2 0 )=C f , which is the same as the feedback capacitor that should be connected to the circuit for the traditional pipeline ADC. At this time, other signals En_r1 and En_r2 , En_cmp, and En_su are disabled.
根据式(4)可知,若不存在增益误差,则级间增益近似等于常数即Cs/Cf,但由于随机误差和系统误差的不确定性,所以实际的级间增益可能大于常数Cs/Cf,也可能小于常数Cs/Cf,本发明通过比较ΔDout的ΔDout_id大小关系确定级间增益的大小关系,前文已作说明,此处不再赘述。According to equation (4), if there is no gain error, the inter-stage gain is approximately equal to the constant C s /C f , but due to the uncertainty of random errors and systematic errors, the actual inter-stage gain may be greater than the constant C s /C f , which may also be smaller than the constant C s /C f . The present invention determines the magnitude relationship of the inter-stage gain by comparing the magnitude relationship of ΔD out_id of ΔD out , which has been described above and will not be repeated here.
故若此时差值比较模块输入过来的信号为D_equ为高电平,D_big、D_small为低电平,则说明实际级间增益与理想级间增益相等,校准结束;若D_big为高电平,D_equ、D_small为低电平,则级间增益偏大,反馈电容控制模块对Dctr进行减1操作,最终输出编码Dctr=011,即Dctr_2=0,Dctr_1=1,Dctr_0=1,此时接入电路中的有效有效反馈电容Cf_eq=Cf_3+Cf_1+Cf_0=[(N-1)/N]*Cf+Cf/(N*21)+Cf/(N*22)=[(4N-1]/4N]Cf,略小于Cf,将Cf_eq调小;若D_small为高电平,D_equ、D_big为低电平,则级间增益偏小,反馈电容控制模块对Dctr进行加1操作,最终输出编码Dctr=101,即Dctr_2=1,Dctr_1=0,Dctr_0=1,此时接入电路中的有效有效反馈电容Cf_eq=Cf_3+Cf_2+Cf_0=[(N-1)/N]*Cf+Cf/(N*20)+Cf/(N*22)=[(4N+1]/4N]Cf,略大于Cf,将Cf_eq调大。Therefore, if the signal input from the difference comparison module at this time is that D_equ is high level, and D_big and D_small are low level, it means that the actual inter-stage gain is equal to the ideal inter-stage gain, and the calibration is over; if D_big is high level, When D_equ and D_small are low level, the inter-stage gain is too large, the feedback capacitor control module decrements Dctr by 1, and the final output code Dctr=011, that is, Dctr_2=0, Dctr_1=1, Dctr_0=1, at this time access Effective feedback capacitance in the circuit C f_eq =C f_3 +C f_1 +C f_0 =[(N-1)/N]*C f +C f /(N*2 1 )+C f /(N*2 2 )=[(4N-1]/4N]C f , slightly smaller than C f , adjust C f_eq smaller; if D_small is high level, D_equ and D_big are low level, then the gain between stages is small, and the feedback capacitor controls The module adds 1 to Dctr, and the final output code Dctr=101, that is, Dctr_2=1, Dctr_1=0, Dctr_0=1, at this time, the effective feedback capacitance C f_eq =C f_3 +C f_2 +C f_0 =[(N-1)/N]*C f +C f /(N*2 0 )+C f /(N*2 2 )=[(4N+1]/4N]C f , slightly larger than C f , increase C f_eq .
第八步,输入电压选择模块选择令En_ctr不使能,使反馈电容控制模块的输出编码锁存住,在回到第一步,重新进行检测,直到D_equ为高电平,D_big、D_small为低电平,校准结束,输入电压选择模块使En_r1、En_r2、En_cmp、En_su、En_ctr都不使能,将所有信号锁存住,此时Cf_eq的大小也就不再发生变化,表示校准完成。The eighth step, the input voltage selection module selects En_ctr to be disabled, so that the output code of the feedback capacitor control module is latched. After returning to the first step, re-detection is performed until D_equ is high, and D_big and D_small are low. level, the calibration is over, the input voltage selection module disables En_r1, En_r2, En_cmp, En_su, and En_ctr, and latches all signals. At this time, the size of C f_eq will no longer change, indicating that the calibration is complete.
综上所述,本发明可应用于流水线ADC各个流水线子级,对流水线ADC各个子级都进行增益校准,改善了高速高精度流水线ADC中传统算法复杂且精度较低的缺点,只需要存储,减法加比较即可实现算法逻辑,且通过同区段取值做差的方式得到级间增益,可以很大程度上避免其他误差的影响,本发明还可以在片外实现,节约芯片面积,并可以自动开始和自动停止,具有高效快速灵活且精确的特点,比较适用于高速高精度流水线ADC校准。To sum up, the present invention can be applied to each pipeline sub-stage of the pipeline ADC, and the gain calibration is performed on each sub-stage of the pipeline ADC, which improves the traditional algorithm of high-speed and high-precision pipeline ADC. The algorithm logic can be realized by subtraction and comparison, and the inter-stage gain can be obtained by taking the difference of the value of the same section, which can largely avoid the influence of other errors. It can automatically start and stop automatically. It is efficient, fast, flexible and accurate. It is more suitable for high-speed and high-precision pipeline ADC calibration.
以上所述仅为本发明的优选方案,并非作为对本发明的进一步限定,凡是利用本发明说明书及附图内容所作的各种等效变化均在本发明的保护范围之内。The above descriptions are only the preferred solutions of the present invention, and are not intended to further limit the present invention, and all equivalent changes made by using the contents of the description and drawings of the present invention are within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011581048.8A CN112737583B (en) | 2020-12-28 | 2020-12-28 | A high-precision pipeline ADC and front-end calibration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011581048.8A CN112737583B (en) | 2020-12-28 | 2020-12-28 | A high-precision pipeline ADC and front-end calibration method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112737583A CN112737583A (en) | 2021-04-30 |
CN112737583B true CN112737583B (en) | 2022-10-25 |
Family
ID=75606606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011581048.8A Active CN112737583B (en) | 2020-12-28 | 2020-12-28 | A high-precision pipeline ADC and front-end calibration method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112737583B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113114248A (en) * | 2021-05-11 | 2021-07-13 | 成都信息工程大学 | Self-calibration pipeline ADC |
CN115987281A (en) * | 2022-12-31 | 2023-04-18 | 重庆吉芯科技有限公司 | High-speed high-precision analog-to-digital converter and performance improvement method thereof |
CN117310439B (en) * | 2023-08-31 | 2024-11-15 | 湖南毂梁微电子有限公司 | ADC chip contact resistance test method, gain error calibration method and calibration circuit |
CN117612594B (en) * | 2024-01-19 | 2024-04-09 | 悦芯科技股份有限公司 | Calibration data storage and calling method for improving precision |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104410417A (en) * | 2014-11-03 | 2015-03-11 | 合肥工业大学 | Rapid digital calibration algorithm for dual-sampling pseudo split structure |
CN107359878A (en) * | 2017-08-17 | 2017-11-17 | 电子科技大学 | A kind of front-end calibration method of the pipeline ADC based on minimum quantization error |
CN110504967A (en) * | 2019-08-30 | 2019-11-26 | 电子科技大学 | A Method for Correcting Gain Mismatch Between Stages of Pipeline ADC |
-
2020
- 2020-12-28 CN CN202011581048.8A patent/CN112737583B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104410417A (en) * | 2014-11-03 | 2015-03-11 | 合肥工业大学 | Rapid digital calibration algorithm for dual-sampling pseudo split structure |
CN107359878A (en) * | 2017-08-17 | 2017-11-17 | 电子科技大学 | A kind of front-end calibration method of the pipeline ADC based on minimum quantization error |
CN110504967A (en) * | 2019-08-30 | 2019-11-26 | 电子科技大学 | A Method for Correcting Gain Mismatch Between Stages of Pipeline ADC |
Also Published As
Publication number | Publication date |
---|---|
CN112737583A (en) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112737583B (en) | A high-precision pipeline ADC and front-end calibration method | |
US7612703B2 (en) | Pipelined analog-to-digital converter with calibration of capacitor mismatch and finite gain error | |
US6628216B2 (en) | Calibration of resistor ladder using difference measurement and parallel resistive correction | |
CN101854174B (en) | Streamline analog-digital converter and sub conversion stage circuit thereof | |
CN104283558B (en) | High-speed comparator DC maladjustment digital assistant self-calibration system and control method | |
CN113794475B (en) | Calibration method of capacitor array type successive approximation analog-digital converter | |
CN112803946B (en) | Capacitor mismatch and offset voltage correction method applied to high-precision successive approximation ADC (analog to digital converter) | |
CN110504967B (en) | Interstage gain mismatch correction method of pipeline ADC (analog to digital converter) | |
CN104426549B (en) | Multi-step ADC with sub-ADC calibration | |
RU2341017C2 (en) | Fast-acting analog-digital converter and method of its calibration | |
CN110504966B (en) | Calibration system and method of analog-to-digital converter | |
CN111669178B (en) | A High Precision Successive Approximation Analog-to-Digital Converter and Its Linearity Calibration Method | |
CN111740741B (en) | Pipelined ADC capacitance mismatch calibration circuit and method | |
CN108880543A (en) | Production line analog-digital converter and its amplifier adaptive configuration circuit and method | |
CN110620582A (en) | Capacitance mismatch calibration method for pipeline analog-to-digital converter | |
CN113098511B (en) | Front-end self-calibration method of pipeline successive approximation type analog-to-digital converter | |
CN112600557B (en) | A pipelined ADC digital domain gain calibration method | |
TWI777464B (en) | Signal converting apparatus and signal converting method | |
JP2705585B2 (en) | Series-parallel analog / digital converter | |
CN106506005A (en) | Background Calibration Circuit and Method for Eliminating Breakpoints in Transmission Curve of Pipeline Analog-to-Digital Converter | |
CN112737584B (en) | On-chip full-integrated capacitance mismatch calibration circuit | |
CN106849949B (en) | Foreground calibration circuit and calibration method applied to pipelined analog-to-digital converter | |
CN114050826B (en) | Analog-to-digital converter gain calibration method, circuit and equipment | |
CN114070311B (en) | Analog-to-digital conversion circuit and pipeline analog-to-digital converter | |
CN117650788A (en) | Successive approximation cyclic ADC (analog-to-digital converter) and signal conversion method and system thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230421 Address after: Room B16, Floor 1, Building D1, No. 88, Dongchang Road, Suzhou Industrial Park, Suzhou City, Jiangsu Province, 211899 Patentee after: Suzhou Zhijuxinlian Microelectronics Co.,Ltd. Address before: No.66 Xinfan Road, Gulou District, Nanjing City, Jiangsu Province Patentee before: NANJING University OF POSTS AND TELECOMMUNICATIONS |