CN112730944B - 一种基于罗氏线圈的电流测量方法及装置 - Google Patents

一种基于罗氏线圈的电流测量方法及装置 Download PDF

Info

Publication number
CN112730944B
CN112730944B CN202011509811.6A CN202011509811A CN112730944B CN 112730944 B CN112730944 B CN 112730944B CN 202011509811 A CN202011509811 A CN 202011509811A CN 112730944 B CN112730944 B CN 112730944B
Authority
CN
China
Prior art keywords
operational amplifier
rogowski coil
winding
windings
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011509811.6A
Other languages
English (en)
Other versions
CN112730944A (zh
Inventor
刘毅
潘曦宇
周婧
林福昌
丁黎
龙兆芝
李文婷
谢施君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Metering Center of State Grid Hubei Electric Power Co Ltd
Original Assignee
Huazhong University of Science and Technology
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Metering Center of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, China Electric Power Research Institute Co Ltd CEPRI, Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd, Metering Center of State Grid Hubei Electric Power Co Ltd filed Critical Huazhong University of Science and Technology
Priority to CN202011509811.6A priority Critical patent/CN112730944B/zh
Publication of CN112730944A publication Critical patent/CN112730944A/zh
Application granted granted Critical
Publication of CN112730944B publication Critical patent/CN112730944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

本发明提供了一种基于罗氏线圈的电流测量方法及装置,属于电流测量领域,电流测量方法包括:将罗氏线圈的其中一条绕线作为主绕线,剩余绕线作为副绕线;罗氏线圈是同向绕制绕线而成,其绕线数量使罗氏线圈满足外积分电路的条件;将主绕线的输出端与第一运算放大器相连;且将副绕线之间进行加法运算后,与第二运算放大器相连,获取第二运算放大器的输出电压;将第一运算放大器的输出电压与第二运算放大器的输出电压进行差分处理后,计算输出电流;其中,主绕线输出电压与副绕线加法运算后的输出电压以异相的形式分别输入至第一运算放大器和第二运算放大器。本发明强化罗氏线圈稳定性的同时降低了运算放大器失调电压的影响,实现了电流的准确测量。

Description

一种基于罗氏线圈的电流测量方法及装置
技术领域
本发明属于电流测量领域,更具体地,涉及一种基于罗氏线圈的电流测量方法及装置。
背景技术
由于脉冲电流存在波形陡度大且持续时间短的特征,对测量精度要求较高,同时脉冲电流发生器越来越小型化发展,使得罗氏线圈广泛应用于脉冲电流测量领域。
对于传统自积分式罗氏线圈,由于需要罗氏线圈的自感值远大于采样电阻值和线圈电阻值之和,因此往往采用含有铁芯的罗氏线圈满足自积分的积分条件,而铁芯自身的饱和特性以及手工绕制线圈带来的稳定性问题,使得人们开始关注外积分式罗氏线圈。
相应地,外积分式罗氏线圈需要满足外积分的积分条件,其中外积分条件受骨架内外径、线径等约束,而对于特定线缆的电流测量往往对骨架的外径有所限制,而只能通过改变线圈的匝数以调整罗氏线圈电感值,这种调整方式通常存在线圈不一定处于密绕状态,导致罗氏线圈测量电流的效果不稳定。
同时外积分意味着需要先对罗氏线圈输出电压进行重采样,并经外部运算放大器进行积分运算,而运算放大器存在输入失调电压,传统有源积分回路中将存在失调电压引起的信号偏移,无法准确反映被测电流真实波形。
发明内容
针对现有技术的缺陷,本发明的目的在于提供一种基于罗氏线圈的电流测量方法及装置,旨在解决现有的通过罗氏线圈测量电流时,由于骨架不可调和运算放大器失调的原因,导致罗氏线圈测量电流的准确度不高的问题。
为实现上述目的,本发明提供了一种基于罗氏线圈的电流测量方法,包括以下步骤:
将罗氏线圈的其中一条绕线作为主绕线,剩余绕线作为副绕线;所述罗氏线圈是同向绕制绕线而成,其绕线数量使罗氏线圈满足外积分电路的条件;
将主绕线的输出端与第一运算放大器相连,获取第一运算放大器的输出电压;
且将副绕线之间进行加法运算后,与第二运算放大器相连,获取第二运算放大器的输出电压;
将第一运算放大器的输出电压与第二运算放大器的输出电压进行差分处理后,计算输出电流;
其中,主绕线输出电压与副绕线加法运算后的输出电压以异相的形式分别输入至第一运算放大器和第二运算放大器。
优选地,罗氏线圈的绕线数量的获取方法为:
基于被测信号频率以及外接采样电阻,在满足罗氏线圈为外积分电路的条件下,获取每条绕线匝数;
利用绕线匝数以及骨架直径,获取绕线数量。
优选地,罗氏线圈为外积分电路的条件为:ωL<<R0;其中,ω=2*π*f,f为被测信号;L为罗氏线圈上单绕线电感;R0为外接采样电阻。
优选地,绕线数量为2*π*d/Ns向下取整的最大值;d为被测导线与罗氏线圈中心间的距离(骨架直径);s为单绕线直径;N为每条绕线匝数。
基于上述提供的罗氏线圈的电流测量方法,本发明提供了相应的电流测量装置,包括:第一运算放大器、第二运算放大器、罗氏线圈构建单元、差分电路和计算单元;
差分电路的输入端与第一运算放大器的输出端和第二运算放大器的输出端相连;
使用时第一运算放大器与罗氏线圈主绕线的输出端相连,获取第一运算放大器的输出电压;
使用时罗氏线圈的副绕线之间进行加法运算后,与第二运算放大器相连,获取第二运算放大器的输出电压;
差分电路用于将第一运算放大器的输出电压与第二运算放大器的输出电压进行差分处理;
计算单元用于在满足罗氏线圈为外积分电路的条件下,计算罗氏线圈的绕线数量;并根据差分结果,计算输出电流;
罗氏线圈构建单元用于基于获取的绕线数量,同向绕制绕线获取罗氏线圈,并选取其中一条绕线作为主绕线,剩余绕线作为副绕线;
其中,主绕线输出电压与副绕线加法运算后的输出电压以异相的形式分别输入至第一运算放大器和第二运算放大器。
优选地,罗氏线圈的绕线数量的计算方法为:
基于被测信号频率以及外接采样电阻,在满足罗氏线圈为外积分电路的条件下,获取每条绕线匝数;
利用绕线匝数以及骨架直径,获取绕线数量。
优选地,罗氏线圈为外积分电路的条件为:ωL<<R0;其中,ω=2*π*f,f为被测信号;L为罗氏线圈上单绕线电感;R0为外接采样电阻。
优选地,绕线数量为2*π*d/Ns向下取整的最大值;其中,d为被测导线与罗氏线圈中心间的距离(骨架直径);s为单绕线直径;N为每条绕线匝数。
本发明公开的基于罗氏线圈的电流测量方法可存储至计算机可读存储介质,其上储存有计算机程序,计算机程序被处理器执行时可执行电流测量方法的步骤。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
本发明在满足罗氏线圈为外积分电路的条件下,获取罗氏线圈的绕线数量,基于绕线数量,同向绕制绕线获取罗氏线圈,解决了传统的骨架不可调的问题,强化了罗氏线圈的稳定性。同时将主绕线的输出端与第一运算放大器相连,且将所述副绕线之间进行加法运算后,与第二运算放大器相连,获取第二运算放大器的输出电压;将第一运算放大器的输出电压与第二运算放大器的输出电压进行差分处理后,计算输出电流;完成了罗氏线圈对应的积分电路,且该积分电路降低了运算放大器失调电压的影响,提高了最终电流测量值的准确性,便于还原一次侧的电流波形。
附图说明
图1是本发明提供的基于罗氏线圈的电流测量方法示意图;
图2是本发明实施例提供的多绕线罗氏线圈示意图;
图3是本发明实施例提供的主绕线对应的积分电路;
图4是本发明实施例提供的副绕线对应的加法电路和积分电路;
图5是本发明实施例提供的主绕线和副绕线经积分电路后输出的差分电路。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明提供了一种基于罗氏线圈的电流测量方法,包括以下步骤:
在罗氏线圈满足外积分电路的条件下,获取罗氏线圈的绕线数量;
基于绕线数量,同向绕制绕线获取罗氏线圈,并将罗氏线圈的其中一条绕线作为主绕线,剩余绕线作为副绕线;
将主绕线的输出端与第一运算放大器相连,获取第一运算放大器的输出电压;
且将副绕线之间进行加法运算后,与第二运算放大器相连,获取第二运算放大器的输出电压;
将第一运算放大器的输出电压与第二运算放大器的输出电压进行差分处理后,计算输出电流;
其中,主绕线输出电压与副绕线加法运算后的输出电压以异相的形式分别输入至第一运算放大器和第二运算放大器;罗氏线圈为基于获取的绕线数量,同向绕制绕线获取的。
本发明中副绕线输出的加法运算所实现的功能为输出与主绕线输出相同的信号;
本发明中第一运算放大器和第二运算放大器为同型号;
主绕线与其他绕线经积分后的差分处理所实现功能为第一运算放大器的输出电压与第二运算放大器的输出电压差值的一半;
优选地,罗氏线圈的绕线数量的获取方法为:
基于被测信号频率以及外接采样电阻,在满足罗氏线圈为外积分电路的条件下,获取每条绕线匝数;
利用绕线匝数以及骨架直径,获取绕线数量。
具体的原理如下:
假设被测导线与线圈中心的距离为d,绕线所绕线圈的半径为r,μ为磁导率;被测电流为I,线圈匝数为N,则:
基于毕奥萨伐尔定律可以计算得到磁感应强度,具体为:
Figure BDA0002846047000000051
假设导线距离线圈较远,则单绕线中的磁通可计算如下:
Figure BDA0002846047000000052
则根据电磁感应定律,单绕线感应电压为:
Figure BDA0002846047000000053
由互感定义可知罗氏线圈单绕线互感值M为
Figure BDA0002846047000000054
由自感定义可知罗氏线圈单绕线自感L为NM:
为使罗氏线圈为外积分电路,需满足ωL<<Ro,其中,Ro为外接采样电阻,ω=2*π*f,f为被测信号;为了能满足上述条件,可以获取每条绕线匝数N;
为使绕线密绕,令绕线数量为n,则n为2*π*d/Ns向下取整的最大值;d为被测导线与罗氏线圈中心间的距离;s为单绕线直径;N为每条绕线匝数,且n条绕线均为同向绕制;
优选地,罗氏线圈为外积分电路的条件为:ωL<<R0;其中,ω=2*π*f,f为被测信号;L为罗氏线圈上单绕线电感;R0为外接采样电阻。
优选地,绕线数量为2*π*d/Ns;d为被测导线与罗氏线圈中心间的距离;s为单绕线直径;N为每条绕线匝数。
基于上述提供的罗氏线圈的电流测量方法,本发明提供了相应的电流测量装置,包括:第一运算放大器、第二运算放大器、罗氏线圈构建单元、差分电路和计算单元;
差分电路的输入端与第一运算放大器的输出端和第二运算放大器的输出端相连;
使用时第一运算放大器与罗氏线圈主绕线的输出端相连,获取第一运算放大器的输出电压;
使用时罗氏线圈的副绕线之间进行加法运算后,与第二运算放大器相连,获取第二运算放大器的输出电压;
差分电路用于将第一运算放大器的输出电压与第二运算放大器的输出电压进行差分处理;
计算单元用于在满足罗氏线圈为外积分电路的条件下,计算罗氏线圈的绕线数量;并根据差分结果,计算输出电流;
罗氏线圈构建单元用于基于获取的绕线数量,同向绕制绕线获取罗氏线圈,并选取其中一条绕线作为主绕线,剩余绕线作为副绕线;
其中,主绕线输出电压与副绕线加法运算后的输出电压以异相的形式分别输入至第一运算放大器和第二运算放大器。
优选地,罗氏线圈的绕线数量的计算方法为:
基于被测信号频率以及外接采样电阻,在满足罗氏线圈为外积分电路的条件下,获取每条绕线匝数;
利用绕线匝数以及骨架直径,获取绕线数量。
优选地,罗氏线圈为外积分电路的条件为:ωL<<R0;其中,ω=2*π*f,f为被测信号;L为罗氏线圈上单绕线电感;R0为外接采样电阻。
优选地,绕线数量为2*π*d/Ns;其中,d为被测导线与罗氏线圈中心间的距离;s为单绕线直径;N为每条绕线匝数。
本发明公开的基于罗氏线圈的电流测量方法可存储至计算机可读存储介质,其上储存有计算机程序,计算机程序被处理器执行时可执行电流测量方法的步骤。
实施例
如图2所示,本实施例中罗氏线圈由3条绕线同向绕制而成,其中图2中的一条为主绕线,另外两条为副绕线;
图3为主绕线对应的积分电路(第一运算放大器),为使积分电路中电阻R1不影响罗氏线圈处于外积分状态,应当让电阻R0远小于R1
考虑运算放大器的失调电压δU,即运算放大器的反相输入端与正向输入端高δU,则主绕线对应积分电路输出电压为
Figure BDA0002846047000000071
其中,U12为主绕线输出电压;C1为主绕线对应积分电路中的电容。
图4是实施例提供的副绕线对应的积分电路(第二运算放大器),根据副绕线对应的加法电路和积分电路,可得到副绕线对应积分电路的输出电压:
Figure BDA0002846047000000072
其中,U2'1'为一条副绕线的输出电压的反相;U2”1”为另一条副绕线的输出电压的反相;其中,U12=U1’2’=U1”2”
图5为主绕线和副绕线经积分处理后输出的差分电路。由图5可知,差分电路的输出电压U3为(U1-U2)/2,即
Figure BDA0002846047000000073
经简化可得
Figure BDA0002846047000000081
可见消除了失调电压的影响,能够准确测量被测电流的波形。
综上所述,本发明在满足罗氏线圈为外积分电路的条件下,获取罗氏线圈的绕线数量,基于绕线数量,同向绕制绕线获取罗氏线圈,解决了传统的骨架不可调的问题,强化了罗氏线圈的稳定性。同时将主绕线的输出端与第一运算放大器相连,且将所述副绕线之间进行加法运算后,与第二运算放大器相连,获取第二运算放大器的输出电压;将第一运算放大器的输出电压与第二运算放大器的输出电压进行差分处理后,计算输出电流;完成了罗氏线圈对应的积分电路,且该积分电路降低了运算放大器失调电压的影响,提高了最终电流测量值的准确性,便于还原一次侧的电流波形。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于罗氏线圈的电流测量方法,其特征在于,包括以下步骤:
将罗氏线圈的其中一条绕线作为主绕线,剩余绕线作为副绕线;所述罗氏线圈是同向绕制绕线而成,其绕线数量使罗氏线圈满足外积分电路的条件;
将所述主绕线的输出端与第一运算放大器相连;且将所述副绕线之间进行加法运算后,与第二运算放大器相连;
将第一运算放大器的输出电压与第二运算放大器的输出电压进行差分处理后,计算输出电流;
其中,主绕线输出电压与副绕线加法运算后的输出电压以异相的形式分别输入至第一运算放大器和第二运算放大器;
所述绕线数量为2*π*d/Ns向下取整的最大值;其中,d为被测导线与罗氏线圈中心间的距离;s为单绕线直径;N为每条绕线匝数。
2.根据权利要求1所述的电流测量方法,其特征在于,罗氏线圈绕线数量的获取方法为:
基于被测信号频率以及外接采样电阻,在满足罗氏线圈为外积分电路的条件下,获取每条绕线匝数;
利用绕线匝数以及骨架直径,获取绕线数量。
3.根据权利要求1或2所述的电流测量方法,其特征在于,所述罗氏线圈外积分电路的条件为:
ωL<<R0
其中,ω=2*π*f,f为被测信号;L为罗氏线圈上单绕线电感;R0为外接采样电阻。
4.一种基于权利要求1所述的电流测量方法的电流测量装置,其特征在于,包括第一运算放大器、第二运算放大器、差分电路、罗氏线圈构建单元和计算单元;
所述差分电路的输入端与所述第一运算放大器的输出端和所述第二运算放大器的输出端相连;
使用时所述第一运算放大器与罗氏线圈主绕线的输出端相连,获取第一运算放大器的输出电压;
使用时罗氏线圈的副绕线之间进行加法运算后,与所述第二运算放大器相连,获取第二运算放大器的输出电压;
所述差分电路用于将第一运算放大器的输出电压与第二运算放大器的输出电压进行差分处理;
所述计算单元用于在满足罗氏线圈为外积分电路的条件下,计算罗氏线圈的绕线数量;并根据差分结果,计算输出电流;
罗氏线圈构建单元用于基于绕线数量,同向绕制绕线获取罗氏线圈,并选取其中一条绕线作为主绕线,剩余绕线作为副绕线;
其中,主绕线输出电压与副绕线加法运算后的输出电压以异相的形式分别输入至第一运算放大器和第二运算放大器;
所述绕线数量为2*π*d/Ns向下取整的最大值;其中,d为被测导线与罗氏线圈中心间的距离;s为单绕线直径;N为每条绕线匝数。
5.根据权利要求4所述的电流测量装置,其特征在于,罗氏线圈的绕线数量的计算方法为:
基于被测信号频率以及外接采样电阻,在满足罗氏线圈为外积分电路的条件下,获取每条绕线匝数;
利用绕线匝数以及骨架直径,获取绕线数量。
6.根据权利要求4或5所述的电流测量装置,其特征在于,所述罗氏线圈外积分电路的条件为:ωL<<R0;其中,ω=2*π*f,f为被测信号;L为罗氏线圈上单绕线电感;R0为外接采样电阻。
7.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至3中任一项所述的方法的步骤。
CN202011509811.6A 2020-12-19 2020-12-19 一种基于罗氏线圈的电流测量方法及装置 Active CN112730944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011509811.6A CN112730944B (zh) 2020-12-19 2020-12-19 一种基于罗氏线圈的电流测量方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011509811.6A CN112730944B (zh) 2020-12-19 2020-12-19 一种基于罗氏线圈的电流测量方法及装置

Publications (2)

Publication Number Publication Date
CN112730944A CN112730944A (zh) 2021-04-30
CN112730944B true CN112730944B (zh) 2022-03-11

Family

ID=75603274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011509811.6A Active CN112730944B (zh) 2020-12-19 2020-12-19 一种基于罗氏线圈的电流测量方法及装置

Country Status (1)

Country Link
CN (1) CN112730944B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220077804A (ko) * 2020-12-02 2022-06-09 현대모비스 주식회사 스위칭전류센싱시의 옵셋보상 장치 및 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436897A (zh) * 2011-09-15 2012-05-02 西安交通大学 一种用于直流系统短路电流检测的柔性罗氏线圈及其设计方法
CN203590195U (zh) * 2013-12-10 2014-05-07 中国石油化工股份有限公司 基于pcb式罗氏线圈电流互感器的改进型模拟积分电路
CN105548644A (zh) * 2015-12-02 2016-05-04 国家电网公司 一种双线并绕的罗氏线圈及信号处理方法
CN109100626A (zh) * 2018-10-29 2018-12-28 国网河北省电力有限公司电力科学研究院 变压器高频局部放电带电检测信号采集装置
CN109884378A (zh) * 2019-03-08 2019-06-14 南京导纳能科技有限公司 一种基于pcb型罗氏线圈的避雷器动作电流测量电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436897A (zh) * 2011-09-15 2012-05-02 西安交通大学 一种用于直流系统短路电流检测的柔性罗氏线圈及其设计方法
CN203590195U (zh) * 2013-12-10 2014-05-07 中国石油化工股份有限公司 基于pcb式罗氏线圈电流互感器的改进型模拟积分电路
CN105548644A (zh) * 2015-12-02 2016-05-04 国家电网公司 一种双线并绕的罗氏线圈及信号处理方法
CN109100626A (zh) * 2018-10-29 2018-12-28 国网河北省电力有限公司电力科学研究院 变压器高频局部放电带电检测信号采集装置
CN109884378A (zh) * 2019-03-08 2019-06-14 南京导纳能科技有限公司 一种基于pcb型罗氏线圈的避雷器动作电流测量电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高频差分绕线PCB罗氏线圈设计;谢潇磊 等;《仪器仪表学报》;20150415;第36卷(第4期);第886-894页 *

Also Published As

Publication number Publication date
CN112730944A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
EP2871485A1 (en) Current detection device
CN107884670B (zh) 一种单相电力变压器的测试方法及其测试系统
CN110988430A (zh) 基于数字二次谐波检波和纹波补偿的磁通门大电流传感器
CN112730944B (zh) 一种基于罗氏线圈的电流测量方法及装置
Lévy et al. Accurate modeling of radiated electromagnetic field by a coil with a toroidal ferromagnetic core
JP2001167927A (ja) 磁場勾配コイルの設計方法及び磁場勾配コイル
CN111460634B (zh) 一种微小微星磁力矩器多目标设计方法
WO2021114813A1 (zh) 一种高频无线充电效率及损耗测试系统及方法
JP2002202328A (ja) 磁界型電流センサ
CN209656769U (zh) 一种电流互感器
CN107424815B (zh) 一种采用减匝补偿的双级电流互感器
CN113884772B (zh) 一种基于比例变压器的大截面电缆导体交流等效电阻测试系统及方法
US11402443B2 (en) Magnetic characteristic measuring apparatus and method
JP2015034758A (ja) 電流センサおよび測定装置
CN114204696A (zh) 一种无线充电系统耦合线圈传输性能优化方法及系统
CN107942124B (zh) 一种直流电流比较测量装置
CN106556733A (zh) 基于旋转对消原理的空芯线圈互感系数误差消除方法及应用
CN106526302A (zh) 一种制作高性能匝均衡空芯线圈的方法
Early et al. Optimum sensitivity of an externally shielded cryogenic current comparator
CN107765057B (zh) 一种双级电流互感器
WO2024139942A2 (zh) 一种差分式零序电流互感器
JP2013250243A (ja) 電流検出器及び電流検出方法
CN107942123B (zh) 一种直流电流测量装置
Zhang et al. Design of open and close magnetic core weak current sensor based on tunneling magnetoresistance
JP2004235595A (ja) Zct

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant