CN112724966B - 氮掺杂碳量子点及其制备方法 - Google Patents
氮掺杂碳量子点及其制备方法 Download PDFInfo
- Publication number
- CN112724966B CN112724966B CN202011627401.1A CN202011627401A CN112724966B CN 112724966 B CN112724966 B CN 112724966B CN 202011627401 A CN202011627401 A CN 202011627401A CN 112724966 B CN112724966 B CN 112724966B
- Authority
- CN
- China
- Prior art keywords
- cqds
- nitrogen
- carbon quantum
- doped carbon
- bisphenol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/65—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Optics & Photonics (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明提供了一种氮掺杂碳量子点的制备方法,以双酚A作为碳源,以尿素作为氮源,采用水热法合成氮掺杂碳量子点。该方法简单易操作,成本低。
Description
技术领域
本发明涉及一种氮掺杂碳量子点及其制备方法,属于碳量子点的制备技术领域。
背景技术
碳量子点(Carbon quantum dots,CQDs)是一种以碳为骨架,类似球形的纳米材料。CQDs具有优良的荧光特性、紫外吸收以及光致发光等光学性能,优异的生物相容性和低毒性,且尺寸较小,常常作为荧光探针用于细胞、活体成像和示踪等方面的研究。
由于CQDs的表面缺陷,有利于表面进行修饰处理。大量实验证明,通过对CQDs表面进行修饰可以大大的提高CQDs的性能。CQDs的表面修饰主要有两种方法:其一是通过酸处理在CQDs的表面引入羟基、羧基和氨基等基团。其二是可以通过一些钝化剂或元素掺杂等途径对CQDs进行表面修饰。最常见的掺杂有氮掺杂。但是。目前,氮掺杂碳量子点的制备方法的工艺较复杂,成本高,难以大规模的推广应用。
发明内容
本发明提供了一种氮掺杂碳量子点的制备方法及应用,可以有效解决上述问题。
本发明是这样实现的:
一种氮掺杂碳量子点的制备方法,以双酚A作为碳源,以尿素作为氮源,采用水热法合成氮掺杂碳量子点。
作为进一步改进的,所述双酚A和尿素的质量比为2.0~3.0:1。
作为进一步改进的,所述水热法的反应温度为200~240℃。
作为进一步改进的,所述水热法的反应时间为1~3h。
作为进一步改进的,所述水热反应的体系中还加入乙醇。
作为进一步改进的,加入的氢氧化钠与双酚A的质量比1:1.0~1.2。
作为进一步改进的,加入的乙醇的量与双酚A的量的比为2~2.5g:10mL。
一种上述的方法制备的氮掺杂碳量子点。
本发明的有益效果是:
本发明制备的氮掺杂碳量子点尺寸均一,分散性良好,具有良好的生物相容性。
本发明的氮掺杂碳量子点的制备方法简单易操作,双酚A和尿素价格便宜,成本低,可以大规模推广应用。
本发明制备的氮掺杂碳量子点可以用于检测水中次氯酸盐,检测的线性范围为3×10-6~9×10-6mol·L-1,抗干扰能力强,灵敏度高。
附图说明
为了更清楚地说明本发明实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本发明实施例1提供的不同合成温度的N-CQDs荧光谱图。
图2是本发明实施例1提供的不同合成时间的N-CQDs荧光谱图。
图3是本发明实施例1提供的不同尿素用量的N-CQDs荧光谱图。
图4是本发明实施例1提供的不同温度下N-CQDs的PLQY变化图。
图5是本发明实施例1提供的不同时间下的N-CQDs的PLQY变化图。
图6是本发明实施例2提供的N-CQDs的荧光光谱图和紫外吸收光谱图。
图7是本发明实施例2提供的不同溶剂对N-CQDs荧光的影响图。
图8是本发明实施例2提供的不同pH对N-CQDs荧光强度的影响图。
图9是本发明实施例3提供的N-CQDs的荧光强度随pH的变化曲线图。
图10是本发明实施例3提供的N-CQDs的荧光强度随反应时间的变化曲线图。
图11是本发明实施例3提供的N-CQDs在不同浓度ClO-中的荧光光谱图。
图12是本发明实施例3提供的ClO-浓度与N-CQDs荧光猝灭率的线性关系图。
图13是本发明实施例3提供的干扰离子对检测ClO-的影响图。
图14是本发明实施例1-3所制备的N-CQDs的电镜图。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
一种氮掺杂碳量子点的制备方法,以双酚A作为碳源,以尿素作为氮源,采用水热法合成氮掺杂碳量子点。其中双酚A首先发生聚合反应,形成碳点,其表面的酚羟基与尿素中的胺通过H键作用而掺杂在碳点表面,形成了发蓝色荧光的碳量子点。
作为进一步改进的,所述双酚A和尿素的质量比为2.0~3.0:1。
作为进一步改进的,所述水热法的反应温度为200~240℃。
作为进一步改进的,所述水热法的反应时间为1~3h。
作为进一步改进的,所述水热反应的体系中还加入乙醇。
作为进一步改进的,加入的氢氧化钠与双酚A的质量比1:1.0~1.2。
作为进一步改进的,加入的乙醇的量与双酚A的量的比为2~2.5g:10mL。
一种上述的方法制备的氮掺杂碳量子点。
实施例1
用万分之一电子天平称取2.2829g双酚A,一定质量的尿素,2.0g的氢氧化钠和10mL的乙醇置于反应釜的内衬中,搅拌均匀后,把内衬放入反应釜中,旋紧盖子后放在烘箱内,加热一段时间后,将反应釜冷却到室温,得到氮掺杂碳量子点(N-CQDs)。
为了优化合成温度,取尿素1.0g,取三份合成原料置于反应釜的内衬中,搅拌均匀后,把内衬放入反应釜中,旋紧盖子后放在烘箱内,分别加热到200、220和240℃,反应2h后,测其荧光强度和光致发光量子产率(PLQY)。实验结果如图1和图4所示。由图1可知,合成N-CQDs的温度不同,其荧光强度也不同,当合成温度为200℃时的荧光强度达到最大。由图4可知,在合成温度不同的条件下,N-CQDs的PLQY也不同,随着合成温度从200℃升到240℃,其合成的N-CQDs的PLQY逐渐下降,由此可知,在200℃的条件下合成N-CQDs发光性能最好。因此,N-CQDs合成的最佳温度为200℃。
为了优化合成时间,取尿素1.0g,分别取三份合成原料,搅拌均匀后,置于反应釜中,旋紧盖子后放在烘箱内,加热到200℃,分别反应1、2和3h后,冷却至室温,分别测其荧光强度和光致发光量子产率(PLQY)。实验结果如图2和图5所示。由图2可知,N-CQDs在不同合成时间条件下反应,得到的N-CQDs的荧光强度不同,反应2h条件下荧光强度最强。由图5可知,在合成时间不同的条件下,N-CQDs的PLQY也不同,随着加热时间的逐渐变长,PLQY先增加后减小。N-CQDs的PLQY的最佳反应时间为2h。因此,N-CQDs的最佳反应时间为2h。
为了优化尿素的用量,固定双酚A的质量为2.2829g,改变含氮量,即分别加入不同量的尿素0g,0.6g,1.0g,在200℃条件下反应2h,待反应完后分别测其荧光强度。实验结果如图3所示。由图3可知,加入尿素的含量不同,对应的荧光强度也不同。未掺杂氮的CQDs荧光强度最低,N-CQDs荧光强度较好。在加入1.0g尿素条件下,合成的N-CQDs荧光强度最高。
此实施例中N-CQDs光致发光量子产率的测定方法如下:
采用参比法测定N-CQDs的PLQY。以罗丹明B(Rhodamine B,RhB)作为标准物,分别测定在一定激发波长下RhB的吸光度和荧光强度,以及待测N-CQDs在一定激发波长下的紫外吸收和荧光强度。根据文献可知其PLQY的计算公式如下:
上式子中,PLQYN-CQDs表示待测N-CQDs荧光量子产率;PLQYRhB表示RhB的荧光量子产率。IN-CQDs、IRhB分别表示N-CQDs和RhB的荧光强度,AN-CQDs、ARhB分别表示N-CQDs和RhB的吸光度值(条件保证吸光度值在0.01~0.1之间),nN-CQDs、nRhB分别表示N-CQDs和RhB的折射率。所有N-CQDs的PLQY都在最佳激发波长为334nm条件下测定。
实施例2
用万分之一电子天平称取2.2829g双酚A,1.0g尿素,2.0g的氢氧化钠和10mL的乙醇置于反应釜的内衬中,搅拌均匀后,把内衬放入反应釜中,旋紧盖子后放在烘箱内,200℃加热2h后,将反应釜冷却到室温,得到氮掺杂碳量子点(N-CQDs)。
用UV-3100型号的紫外-可见分光光度计测N-CQDs的紫外吸收,起始波长是800.0nm,终止波长是200.0nm。用Cary Eclipse型的荧光分光光度计来观察N-CQDs的荧光强度。氙灯作为激发光源,狭缝比为5:5nm。图6显示的是N-CQDs的荧光光谱图和紫外吸收光谱图。
由图6可知,从荧光光谱图可以看到,N-CQDs的最大激发波长为334nm,最大发射波长为418nm。从紫外吸收光谱图观察到N-CQDs在波长为278nm处有很强的吸收。
为了探究溶剂对N-CQDs荧光强度是否存在影响,量取一定量的N-CQDs储备液,分别置于3根比色管中,用水、乙醇、丙酮这三种溶剂各自定容至5mL,待溶液充分混合均匀,检测N-CQDs的荧光强度。其结果如图7所示。由图7可知,碳点在不同溶剂(无水乙醇、水、丙酮)中的荧光强度不一样。N-CQDs在无水乙醇溶剂中的荧光强度最高,而在丙酮溶剂中的荧光强度最低,在水溶液中的荧光强度次之,这说明合成的N-CQDs受溶剂的影响。
为了研究不同pH对N-CQDs荧光强度的影响,量取一定量的N-CQDs储备液,置于各个比色管中,用不同pH的缓冲液做溶剂,定容至5mL,其它条件保持一致,然后,用荧光分光光度计测N-CQDs的荧光强度。其结果如图8所示,由图8可知,不同pH条件下对N-CQDs荧光强度影响较小。
实施例3
用万分之一电子天平称取2.2829g双酚A,1.0g尿素,2.0g的氢氧化钠和10mL的乙醇置于反应釜的内衬中,搅拌均匀后,把内衬放入反应釜中,旋紧盖子后放在烘箱内,200℃加热2h后,将反应釜冷却到室温,得到氮掺杂碳量子点(N-CQDs)。
量取一定量的N-CQDs储备液于10mL的比色管中,加入一定量次氯酸根,用PBS缓冲溶液控制一定的pH,用蒸馏水定容至5mL,待溶液充分混合均匀,检测N-CQDs荧光强度的变化。
为了探究不同pH对检测次氯酸根离子体系的影响,量取一定量的N-CQDs储备液于10mL的比色管中,固定次氯酸根浓度,分别加入2mL不同pH的PBS缓冲溶液,用蒸馏水定容至5mL,待溶液充分混合均匀,检测N-CQDs荧光强度的变化。其结果如图9所示。由图9可知,碳量子点与次氯酸根作用,pH<7.4时,体系随pH的增大,其荧光猝灭率逐渐增大,pH>7.4时,体系随pH的增大,其荧光猝灭率逐渐减小。当pH=7.4时荧光猝灭率达到最大。
为了探究N-CQDs与次氯酸根离子反应所需的时间,量取一定量的N-CQDs储备液于10mL的比色管中,固定次氯酸根浓度和PH,测定不同反应时间下的荧光强度。其结果如图10所示。由图10可知,当反应从5min到35min时,体系的荧光猝灭率逐渐增强,当反应时间达到35min时,体系荧光强度趋于平缓,说明体系的反应已经基本稳定。为此,检测的最佳时间是35min。
为了探究N-CQDs对次氯酸根离子的检测范围,不同在10mL的比色管中分别加入适量的N-CQDs储备液,再加入不同量的次氯酸根离子溶液,使体系中的次氯酸根离子浓度分别为0、3×10-6、4×10-6、5×10-6、6×10-6、7×10-6、8×10-6和9×10-6mol·L-1,然后用一定pH的PBS缓冲溶液定容至5mL,室温反应一定时间后,测定荧光强度。其结果如图11和图12所示。
由图11可知,随着次氯酸根离子浓度的增加,N-CQDs的荧光强度逐渐下降,由此表明,次氯酸根离子在一定溶度范围对N-CQDs有一定的猝灭作用。
图12是N-CQDs的猝灭率(F0-F)/F0与次氯酸根离子浓度的线性拟合图,在3×10- 6mol·L-1~9×10-6mol·L-1线性范围内,通过拟合发现猝灭率(F0-F)/F0与次氯酸根离子浓度呈良好的线性关系。通过进一步的计算得出N-CQDs的荧光强度与次氯酸根离子浓度的线性回归方程为:(F0-F)/F0=0.06312C-0.08352,R2=0.99652,其中,C为次氯酸根离子的浓度。
为了探究在最优条件下其他阴离子对测定次氯酸根离子的干扰作用,往比色管中分别加入一定体积pH为7.4的0.2mol·L-1的PBS缓冲液、一定量的N-CQDs储备液、加入一定体积的离子溶液(I-、SO3 2-、S2-、IO3-、NO2-、ClO-),使得试管中的离子浓度均为5×10-6mol·L-1,室温反应一定时间后,固定激发波长为334nm,狭缝比为5:5nm,测其荧光光谱。其结果如图13所示。从图13可以得出碳点对S2-、IO3-、NO2-、SO3 2-的猝灭率很小,表明在检测水中次氯酸根离子时,S2-、IO3-、NO2-、SO3 2-对测定干扰较小。而I-干扰会稍微偏大一些,但不会很大。
以上所述仅为本发明的优选实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (1)
1.一种氮掺杂碳量子点的制备方法,其特征在于,以双酚A作为碳源,以尿素作为氮源,以乙醇为溶剂,采用溶剂热法合成氮掺杂碳量子点;所述溶剂热反应的体系中还加入氢氧化钠;所述双酚A和尿素的质量比为2.0~3.0:1;所述溶剂热法的反应温度为200~240℃;所述氮掺杂碳量子点的尺寸为1.28~2.3nm;所述溶剂热法的反应时间为1~3h;加入的氢氧化钠与双酚A的质量比1:1.0~1.2;加入的双酚A的量与乙醇的量的比为2~2.5g:10mL。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011627401.1A CN112724966B (zh) | 2020-12-30 | 2020-12-30 | 氮掺杂碳量子点及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011627401.1A CN112724966B (zh) | 2020-12-30 | 2020-12-30 | 氮掺杂碳量子点及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112724966A CN112724966A (zh) | 2021-04-30 |
CN112724966B true CN112724966B (zh) | 2021-08-24 |
Family
ID=75608049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011627401.1A Active CN112724966B (zh) | 2020-12-30 | 2020-12-30 | 氮掺杂碳量子点及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112724966B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112795379B (zh) * | 2021-01-07 | 2022-11-18 | 宁德师范学院 | 表面修饰氮掺杂碳量子点的制备方法及其应用 |
CN114479848B (zh) * | 2022-02-24 | 2023-09-15 | 苏州深得源健康科技有限公司 | 一种以迷迭香酸为碳源的碳点及其制备方法和应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109294569B (zh) * | 2018-10-17 | 2021-11-16 | 河南大学 | 一种荧光颜色可调碳点的制备方法 |
-
2020
- 2020-12-30 CN CN202011627401.1A patent/CN112724966B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112724966A (zh) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112724966B (zh) | 氮掺杂碳量子点及其制备方法 | |
Lei et al. | Mesostructured silica chemically doped with RuII as a superior optical oxygen sensor | |
CN108384539B (zh) | 一种绿色荧光碳量子点、制备方法及其应用 | |
CN111687408B (zh) | 一种荧光铜纳米团簇、制备方法及其应用 | |
CN111141711B (zh) | 一种基于氮化碳量子点的亚硝酸盐检测方法 | |
CN103666456B (zh) | 一类氟化硼络合二吡咯甲川荧光探针,其制备方法及应用 | |
CN110562954B (zh) | 一种荧光碳点探针的制备方法及在检测Fe2+的应用 | |
Ali et al. | Turn-on pH nano-fluorosensor based on imidazolium salicylaldehyde ionic liquid-labeled silica nanoparticles | |
CN109307665B (zh) | 一种利用荧光碳量子点检测Fe3+的方法 | |
Li et al. | Insight into excitation-related luminescence properties of carbon dots: synergistic effect from photoluminescence centers in the carbon core and on the surface | |
CN113340860A (zh) | 用于检测Fe3+的锰掺杂碳点、Mn-CDs溶液、试纸及其制备方法、检测方法 | |
Tian et al. | Synthesis of fluorescent nitrogen-doped carbon quantum dots for selective detection of picric acid in water samples | |
CN110157421A (zh) | 一种金纳米簇/碳点复合荧光纳米粒子及其制备方法和在四环素检测中的应用 | |
CN111793494B (zh) | 一种水溶性高的荧光碳点及其制备方法和应用 | |
CN112708418B (zh) | 一种利用氮掺杂碳量子点荧光探针检测次氯酸盐的方法 | |
Zhong et al. | One-step synthesis of nitrogen and chlorine co-doped carbon quantum dots for detection of Fe 3+ | |
Li et al. | Synthesis of Mn-doped CdTe quantum dots and their application as a fluorescence probe for ascorbic acid determination | |
CN113563880A (zh) | 一种碳点及其制备方法和在检测次氯酸根中的应用 | |
CN109097026B (zh) | 一种纳米花状Al-MOF荧光探针材料及其制备方法与应用 | |
Li et al. | Facile aqueous synthesis of functionalized CdTe nanoparticles and their application as fluorescence probes for determination of adenine and guanine | |
Wen et al. | Fluorescence Determination of Ni 2+ Ions Based on a Novel Nano-Platform Derived from Silicon Quantum Dots | |
CN107011891B (zh) | 一种Cu+荧光探针及其制备方法和应用 | |
CN113429960A (zh) | 一种可用于痕量Cu2+离子检测的碳量子点复合的UiO-66衍生物 | |
CN112795379B (zh) | 表面修饰氮掺杂碳量子点的制备方法及其应用 | |
CN111715891A (zh) | 一种铜纳米颗粒溶液及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |