CN112721914A - 带有监督机制的智能电动汽车漂移入库分段式控制方法 - Google Patents

带有监督机制的智能电动汽车漂移入库分段式控制方法 Download PDF

Info

Publication number
CN112721914A
CN112721914A CN202011537417.3A CN202011537417A CN112721914A CN 112721914 A CN112721914 A CN 112721914A CN 202011537417 A CN202011537417 A CN 202011537417A CN 112721914 A CN112721914 A CN 112721914A
Authority
CN
China
Prior art keywords
drifting
vehicle
path
drift
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011537417.3A
Other languages
English (en)
Other versions
CN112721914B (zh
Inventor
刘铭
冷搏
余卓平
熊璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN202011537417.3A priority Critical patent/CN112721914B/zh
Publication of CN112721914A publication Critical patent/CN112721914A/zh
Application granted granted Critical
Publication of CN112721914B publication Critical patent/CN112721914B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • B60W2710/207Steering angle of wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Regulating Braking Force (AREA)

Abstract

本发明涉及一种带有监督机制的智能电动汽车漂移入库分段式控制方法,包括以下步骤:1)采用路径规划器规划漂移触发点接近路径,并对规划的路径进行监督监测,完成车辆向漂移触发点的接近,达到漂移触发状态;2)当车辆达到漂移触发状态时即触发漂移动作,在通过甩尾试验得到的漂移开环控制器的控制下完成漂移过程,最终停入期望库位,实现车辆期望状态和位置的准确跟踪。与现有技术相比,本发明具有提高控制精度、实现无人驾驶漂移入库、失效监测策略完善等优点。

Description

带有监督机制的智能电动汽车漂移入库分段式控制方法
技术领域
本发明涉及智能电动汽车控制领域,尤其是涉及一种带有监督机制的智能电动汽车漂移入库分段式控制方法。
背景技术
车辆持续保持在后轮轮胎力饱和、后轴侧滑的状态下行驶,称为漂移。而车辆漂移存在两种不同的漂移状态:
(1)后轴驱动、后轮滑转,此时可以通过控制后轴驱动力与前轮转向角时车辆质心侧偏角和车速保持在一恒定值,使车辆处于稳定状态,由于市面上绝大多数汽车为前轴驱动,故该状态下的漂移动作研究价值相对较小。
(2)后轴抱死制动、后轮滑移,此时车辆航向角、质心侧偏角、车速急剧变化,车辆处于不稳定状态。
在该种漂移过程中的车辆状态与紧急制动过程中发生后轴侧滑甩尾失控所导致的车辆失稳状态十分接近,可将该漂移工况作为研究无人驾驶汽车失稳状态下运动跟踪控制的典型工况,而目前还没有关于此种工况的精确控制方法。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种带有监督机制的智能电动汽车漂移入库分段式控制方法。
本发明的目的可以通过以下技术方案来实现:
一种带有监督机制的智能电动汽车漂移入库分段式控制方法,包括以下步骤:
1)采用路径规划器规划漂移触发点接近路径,并对规划的路径进行监督监测,完成车辆向漂移触发点的接近,达到漂移触发状态;
2)当车辆达到漂移触发状态时即触发漂移动作,在通过甩尾试验得到的漂移开环控制器的控制下完成漂移过程,最终停入期望库位,实现车辆期望状态和位置的准确跟踪。
所述的步骤1)具体包括以下步骤:
11)路径规划器根据路径规划原理,在车辆起步点与漂移触发点之间生成一条路径,即漂移触发点接近路径,使得该路径的曲率变化最小,并对该路径进行监督监测;
12)采用路径跟踪算法和终点期望车速跟踪算法实现漂移触发点的接近,使车辆达到漂移触发状态。
所述的步骤11)中,对该路径进行监督监测具体为:
通过监测是否满足约束条件从而判断漂移触发点接近路径的可行性,若不满足,则说明路径规划失败,则通过调整车辆初始位置和初始航向角对漂移触发点接近路径进行重新规划。
漂移触发点接近路径在满足几何约束外,还满足以下约束条件:
(1)最大曲率约束:路径中最小曲率半径大于满足路径跟踪控制器转角约束下车辆最小转向半径;
(2)最大曲率变化率约束:路径中曲率变化率对应方向盘转角变化速率小于控制器所设定的方向盘转角变化速率约束;
(3)最大附着约束:约束路径中最大曲率处及以最高车速运行时的较大曲率处,轮胎力小于路面能够提供的最大轮胎力,避免车轮打滑;
(4)纵向速度约束:规划出的路径的长度使车辆以最大加速度加速,使得在漂移触发点达到期望漂移纵向车速。
所述的步骤2)具体包括以下步骤:
21)以相同的车辆条件在相同的试验场地上进行一次后轮制动抱死的甩尾试验,获取漂移初始时刻至车辆完全停稳全过程的车辆状态序列S(k)=s1,s2,…sk与动作序列A(k)=a1,a2,…ak,其中,sk为第k个的车辆状态,包括车辆的X和Y方向坐标以及航向角,ak为第k个的车辆动作,包括车辆方向盘转角和制动液压力;
22)设计漂移入库算法失效监测策略,在漂移过程中,当监测到车辆运动状态无法成功漂移入库时,则通过采取措施使车辆终止漂移入库动作。
所述的步骤21)中,根据车辆状态序列S(k)获取漂移触发点的绝对坐标(XP,YP)与航向角ψP,则有:
XP=XF+(ΔX cosψF-ΔY sinψF)
YP=YF+(ΔX sinψF+ΔY cosψF)
ψP=ψF-Δψ
其中,(ΔX,ΔY)为甩尾试验过程中起始点与终止点的位置变化量,Δψ为甩尾试验过程沿终止点处的航向角变化量,(XF,YF)为漂移入库试验时目标库位的位置坐标,ψF为漂移入库试验时目标库位的航向角。
所述的步骤21)中,将后轮制动抱死的甩尾试验获得的车辆状态序列S(k)和动作序列A(k)作为漂移过程中漂移开环控制器的开环控制参考序列。
所述的步骤22)中,漂移入库算法失效监测策略具体包括漂移触发条件监测和漂移过程开环控制失效监测。
漂移触发条件监测具体为:
在漂移触发点接近行驶时,对车辆状态进行实时监测,判断其是否与期望漂移触发状态一致,判断条件包括:
(1)计算车辆当前位置坐标(XC,YC)与漂移触发点(XP,YP)的直线距离的平方值
Figure BDA0002853521100000031
并与上一时刻计算得到的dCP(k-1)相比,若dCP(k)-dCP(k-1)≤0,且dCP(k)小于限值dthres,则满足漂移触发位置条件;
(2)计算实际车速与期望车速的差值Δv是否小于限值Δvthres,若Δv<Δvthres,则满足漂移触发的车速条件;
(3)计算实际航向角与期望航向角的差值Δψ是否小于限值Δψthres,若Δψ<Δψthres,则满足漂移触发的航向角条件;
(4)判断当前方向盘转角δ绝对值是否小于限值δthres,若是,则满足漂移触发初始横摆运动状态条件;
当车辆同时满足以上四个条件时,则触发漂移动作,按照开环控制参考序列进行车辆控制,当监测到dCP(k)-dCP(k-1)>0时,说明此时车辆正在远离漂移触发点,已经错过最佳漂移触发时机,则立即中止漂移入库动作,中止措施为四轮均匀制动,使车辆平稳停下。
漂移过程开环控制失效监测具体为:
在车辆漂移过程中,当车-路系统发生改变,使相同的控制输入下车辆系统产生不同响应时,漂移过程中当前时刻t的实际车辆状态为(Xt,Ytt),计算开环控制参考序列中与当前车辆状态最接近的期望状态(Xref(k),Yref(k)tref(k)),则有:
Figure BDA0002853521100000041
计算当前时刻的实际车辆状态与期望状态之间的加权误差向量et,当加权误差向量et中的任一分量大于误差阈值向量
Figure BDA0002853521100000042
时,则认为开环控制失效,无法使车辆准确停入库位,所述的加权误差向量et的表达式为:
Figure BDA0002853521100000043
其中,ωX、ωY、ωψ均为权重系数,且其值为正。
与现有技术相比,本发明具有以下优点:
一、提高控制精度:本发明设计了漂移分段控制方法,其中包含了漂移触发点接近段和漂移控制段,采用分段控制能够准确的将无人驾驶车辆漂移停入预定库位,并且易于控制。
二、实现无人驾驶漂移入库:本发明设计无人驾驶车辆的漂移入库动作,操作相比于有人驾驶更为简单,漂移入库的整个过程无需专业的漂移入库驾驶员。
三、更完善的失效监测策略:本发明在漂移触发点接近段和漂移控制段两个阶段,均设置了失效监测策略,包括漂移触发点接近路径规划失效监测、漂移触发条件失效监测和漂移过程开环控制失效监测,有效的保证漂移入库的完成度和安全性。
附图说明
图1为本发明的方法流程图。
图2为漂移入库分段实现全过程流程图。
图3为漂移全过程车辆轨迹图。
图4为漂移过程分段示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
如图1所示,本发明着眼于无人驾驶汽车漂移入库动作的研究与实现,通过漂移触发点接近运动和漂移运动,使车辆漂移停入库位,提供了一种带有监督机制的智能电动汽车漂移入库分段式控制方法,包括以下步骤:
1)根据路径规划器规划的漂移触发点接近路径,利用路径跟踪算法和终点期望车速跟踪算法实现漂移触发点的接近,达到漂移触发状态,并且对规划的路径实行监督监测,具体包括以下步骤:
11)根据路径规划原理,在车辆起步点与漂移触发点之间做一条行进路径,并对规划的路径实行监督监测,具体为:
在车辆起步点与漂移触发点之间做一条行进路径,即漂移触发点接近路径,在生成路径的过程中保证该路径的曲率变化最小,在规划出漂移触发点接近路径之后,对该路径进行监督监测,检验其是否满足约束条件从而判断路径的可行性,若不满足则说明路径规划失败,需调整车辆初始位置和初始航向角对漂移触发点接近路径进行重新规划。
除在规划阶段所遵循的几何约束外,该漂移触发点接近路径还应同时满足以下约束条件:
(1)最大曲率约束:路径中最小曲率半径应大于满足路径跟踪控制器转角约束下车辆最小转向半径;
(2)最大曲率变化率约束:路径中曲率变化率对应方向盘转角变化速率应小于控制器所设定的方向盘转角变化速率约束;
(3)最大附着约束:约束路径中最大曲率处及以最高车速运行时的较大曲率处,轮胎力应小于路面能够提供的最大轮胎力,避免车轮打滑;
(4)纵向速度约束:规划出的路径应足够长,使车辆以最大加速度加速,在漂移触发点能够达到期望漂移纵向车速。
12)利用路径跟踪算法和终点期望车速跟踪算法实现漂移触发点的接近。
2)当车辆达到漂移触发状态时即触发漂移动作,在根据甩尾试验所设计的漂移开环控制器的控制下完成漂移过程,最终停入期望库位,实现车辆期望状态和位置的准确跟踪,具体包括以下步骤:
21)以相同的车辆条件在相同的试验场地上进行一次后轮制动抱死的甩尾试验,记录漂移初始时刻至车辆完全停稳全过程的车辆状态序列S(k)与动作序列A(k),即:
S(k)=s1,s2,…sk
A(k)=a1,a2,…ak
记录的车辆状态S包括X、Y方向坐标和航向角,记录的动作a包括车辆期望方向盘的转角和期望制动液压力。
获取的车辆状态序列S(k)的作用为:
1、利用甩尾试验过程沿终止点处的位置变化ΔX、ΔY和航向角变化Δψ,即可根据漂移入库试验时目标库位的坐标(XF,YF)和航向角ψF利用下式计算得到漂移触发点的绝对坐标(XP,YP)与航向角ψP,则有:
XP=XF+(ΔXcosψF-ΔYsinψF)
YP=YF+(ΔXsinψF+ΔYcosψF)
ψP=ψF-Δψ
得到的漂移触发点的坐标及航向角作为漂移触发点接近路径规划的目标点。
2、车辆轨迹和航向角序列Xref(k)、Yref(k)、ψref(k)作为漂移过程中监测车辆漂移是否按预期轨迹行进的参考序列,依此设计漂移入库算法失效监测策略,所记录的动作a包括车辆期望方向盘转角和期望制动液压力,考虑到实车环境下执行器存在响应延迟,故所记录的动作序列应为期望值而非实际值,并假设车辆执行器动态响应在实车环境下保持不变。
22)设计漂移入库算法失效监测策略,监测到车辆运动状态满足特定条件无法成功漂移入库时,通过采取一定措施使车辆终止漂移入库动作,漂移入库算法失效监测策略包括漂移触发条件监测策略和漂移过程开环控制失效监测策略。
1、漂移触发条件监测策略
在漂移触发点接近行驶时,对车辆状态进行实时监测,判断其是否与期望漂移触发状态一致,漂移触发条件判断条件为:
(1)计算车辆当前位置坐标(XC,YC)与漂移触发点(XP,YP)的直线距离的平方
Figure BDA0002853521100000061
并与上一时刻计算得到的距离dCP(k-1)作比较,如果dCP(k)-dCP(k-1)≤0,且dCP(k)<dthres,说明满足漂移触发位置条件;
(2)计算实际车速与期望车速差值Δv是否小于限值Δvthres,如果Δv<Δvthres,说明满足漂移触发的车速条件;
(3)计算实际车速与期望航向角差值Δψ是否小于限值Δψthres,如果Δψ<Δψthres,说明满足漂移触发的航向角条件;
(4)判断当前方向盘转角绝对值是否小于限制,若|δ|<δthres,说明满足漂移触发初始横摆运动状态条件。
当车辆状态参数同时满足以上四个条件,则触发漂移动作,按照漂移开环控制序列进行车辆控制。当监测到dCP(k)-dCP(k-1)>0时,说明此时车辆正在远离漂移触发点,已经错过最佳漂移触发时机,应立即中止漂移入库动作。中止措施为四轮均匀制动,使车辆平稳停下。
2、漂移过程开环控制失效监测策略
漂移入库开环控制过程中车辆漂移过程可能由于车—路系统发生改变,使相同的控制输入下车辆系统产生不同响应。通过甩尾试验对车辆状态的采样,已获知车辆漂移过程的期望轨迹和期望航向角序列。漂移过程中某时刻车辆状态为(Xt,Ytt),利用式计算期望序列中与当前状态最为接近的期望状态:
Figure BDA0002853521100000071
式中,ωX、ωY、ωψ为权重系数,均为正,用于平衡距离和角度量纲不同的影响。获得当前时刻期望状态后,计算当前时刻实际车辆状态与期望状态的加权误差向量:
Figure BDA0002853521100000072
将误差向量et与误差阈值向量
Figure BDA0002853521100000073
相比较。当et的其中任一分量大于ethres时,认为开环控制失效,无法使车辆准确停入库位。
实施例
本实施例中,根据上述方法实现的漂移入库的流程如图2所示,具体为:
步骤一、基于三次贝塞尔曲线路径规划算法、比例—积分控制的车速跟踪算法、线性时变的模型预测控制的路径跟踪算法和抗饱和积分控制的转角跟踪算法实现漂移触发点接近。
在车辆当前位置与漂移触发点之间做一条三次贝塞尔曲线,作为行进路径,平面中四个控制点A,B,C,D可以唯一确定一条三次贝塞尔曲线,曲线参数化方程为:
P(t)=A*(1-t)3+3B*(1-t)2*t+3C*(1-t)*t2+D*t3,t∈[0,1]
步骤二、当车辆达到漂移触发状态时即触发漂移动作,在根据甩尾试验所设计的漂移开环控制器的控制下完成漂移过程,最终停入期望库位,即实现车辆期望状态和位置的准确跟踪。在漂移整个过程中,进行漂移入库算法失效监测策略。漂移入库算法失效监测策略设计包括以下步骤:
1)漂移触发点接近路径规划算法失效监测策略。
2)漂移触发条件失效监测策略。
3)漂移过程开环控制失效监测策略。
当监测到开环控制失效时,是否应立即终止漂移入库动作需考虑具体车辆状态。车辆直线行驶时,起始横摆角速度接近0,进入漂移状态后横摆角速度急剧增加,随着车辆动能逐渐减小,横摆角速度再次减小最终随着车身静止降为0。所以,车辆横摆角速度有先增大后减小的变化趋势。
在横摆角速度上升阶段,前轮侧向力使车身加剧横摆,如使前轮转角降为0,可使前轮侧向力减小至接近于0,避免车辆横摆运动进一步增大;减小后轴制动力,使后轴解除抱死状态,令其恢复纵向滚动从而提高后轮侧向力极限,限制后轴侧滑和车辆横摆;为前轴施加小制动力矩,进一步降低车身横摆趋势。综上,漂移入库动作的终止策略为:
(1)方向盘回正至0度;
(2)后轴降低制动力矩;
(3)前轮施加小制动力矩。
在横摆角速度下降阶段,后轮侧向力已大于前轮侧向力,产生负横摆力矩使车身横摆运动减弱,继续采用减小前轮转角、降低前轮侧向力的措施已无效果,同时此时车速已较低,后续车辆位移距离较短,因此不采取任何漂移中止动作,待车自行停稳,车辆漂移全过程轨迹图如图3所示。

Claims (10)

1.一种带有监督机制的智能电动汽车漂移入库分段式控制方法,其特征在于,包括以下步骤:
1)采用路径规划器规划漂移触发点接近路径,并对规划的路径进行监督监测,完成车辆向漂移触发点的接近,达到漂移触发状态;
2)当车辆达到漂移触发状态时即触发漂移动作,在通过甩尾试验得到的漂移开环控制器的控制下完成漂移过程,最终停入期望库位,实现车辆期望状态和位置的准确跟踪。
2.根据权利要求1所述的一种带有监督机制的智能电动汽车漂移入库分段式控制方法,其特征在于,所述的步骤1)具体包括以下步骤:
11)路径规划器根据路径规划原理,在车辆起步点与漂移触发点之间生成一条路径,即漂移触发点接近路径,使得该路径的曲率变化最小,并对该路径进行监督监测;
12)采用路径跟踪算法和终点期望车速跟踪算法实现漂移触发点的接近,使车辆达到漂移触发状态。
3.根据权利要求2所述的一种带有监督机制的智能电动汽车漂移入库分段式控制方法,其特征在于,所述的步骤11)中,对该路径进行监督监测具体为:
通过监测是否满足约束条件从而判断漂移触发点接近路径的可行性,若不满足,则说明路径规划失败,则通过调整车辆初始位置和初始航向角对漂移触发点接近路径进行重新规划。
4.根据权利要求3所述的一种带有监督机制的智能电动汽车漂移入库分段式控制方法,其特征在于,漂移触发点接近路径在满足几何约束外,还满足以下约束条件:
(1)最大曲率约束:路径中最小曲率半径大于满足路径跟踪控制器转角约束下车辆最小转向半径;
(2)最大曲率变化率约束:路径中曲率变化率对应方向盘转角变化速率小于控制器所设定的方向盘转角变化速率约束;
(3)最大附着约束:约束路径中最大曲率处及以最高车速运行时的较大曲率处,轮胎力小于路面能够提供的最大轮胎力,避免车轮打滑;
(4)纵向速度约束:规划出的路径的长度使车辆以最大加速度加速,使得在漂移触发点达到期望漂移纵向车速。
5.根据权利要求1所述的一种带有监督机制的智能电动汽车漂移入库分段式控制方法,其特征在于,所述的步骤2)具体包括以下步骤:
21)以相同的车辆条件在相同的试验场地上进行一次后轮制动抱死的甩尾试验,获取漂移初始时刻至车辆完全停稳全过程的车辆状态序列S(k)=s1,s2,...sk与动作序列A(k)=a1,a2,...ak,其中,sk为第k个的车辆状态,包括车辆的X和Y方向坐标以及航向角,ak为第k个的车辆动作,包括车辆方向盘转角和制动液压力;
22)设计漂移入库算法失效监测策略,在漂移过程中,当监测到车辆运动状态无法成功漂移入库时,则通过采取措施使车辆终止漂移入库动作。
6.根据权利要求5所述的一种带有监督机制的智能电动汽车漂移入库分段式控制方法,其特征在于,所述的步骤21)中,根据车辆状态序列S(k)获取漂移触发点的绝对坐标(XP,YP)与航向角ψP,则有:
Xp=XF+(ΔX cosψF-ΔY sinψF)
YP=YF+(ΔX sinψF+ΔY cosψF)
ψP=ψF-Δψ
其中,(ΔX,ΔY)为甩尾试验过程中起始点与终止点的位置变化量,Δψ为甩尾试验过程沿终止点处的航向角变化量,(XF,YF)为漂移入库试验时目标库位的位置坐标,ψF为漂移入库试验时目标库位的航向角。
7.根据权利要求6所述的一种带有监督机制的智能电动汽车漂移入库分段式控制方法,其特征在于,所述的步骤21)中,将后轮制动抱死的甩尾试验获得的车辆状态序列S(k)和动作序列A(k)作为漂移过程中漂移开环控制器的开环控制参考序列。
8.根据权利要求6所述的一种带有监督机制的智能电动汽车漂移入库分段式控制方法,其特征在于,所述的步骤22)中,漂移入库算法失效监测策略具体包括漂移触发条件监测和漂移过程开环控制失效监测。
9.根据权利要求8所述的一种带有监督机制的智能电动汽车漂移入库分段式控制方法,其特征在于,漂移触发条件监测具体为:
在漂移触发点接近行驶时,对车辆状态进行实时监测,判断其是否与期望漂移触发状态一致,判断条件包括:
(1)计算车辆当前位置坐标(XC,YC)与漂移触发点(XP,YP)的直线距离的平方值
Figure FDA0002853521090000031
并与上一时刻计算得到的dCP(k-1)相比,若dCP(k)-dCP(k-1)≤0,且dCP(k)小于限值dthres,则满足漂移触发位置条件;
(2)计算实际车速与期望车速的差值Δv是否小于限值Δvthres,若Δv<Δvthres,则满足漂移触发的车速条件;
(3)计算实际航向角与期望航向角的差值Δψ是否小于限值Δψthres,若Δψ<Δψthres,则满足漂移触发的航向角条件;
(4)判断当前方向盘转角δ绝对值是否小于限值δthres,若是,则满足漂移触发初始横摆运动状态条件;
当车辆同时满足以上四个条件时,则触发漂移动作,按照开环控制参考序列进行车辆控制,当监测到dCP(k)-dCP(k-1)>0时,说明此时车辆正在远离漂移触发点,已经错过最佳漂移触发时机,则立即中止漂移入库动作,中止措施为四轮均匀制动,使车辆平稳停下。
10.根据权利要求8所述的一种带有监督机制的智能电动汽车漂移入库分段式控制方法,其特征在于,漂移过程开环控制失效监测具体为:
在车辆漂移过程中,当车-路系统发生改变,使相同的控制输入下车辆系统产生不同响应时,漂移过程中当前时刻t的实际车辆状态为(Xt,Yt,ψt),计算开环控制参考序列中与当前车辆状态最接近的期望状态(Xref(k),Yref(k)t,ψref(k)),则有:
Figure FDA0002853521090000032
计算当前时刻的实际车辆状态与期望状态之间的加权误差向量et,当加权误差向量et中的任一分量大于误差阈值向量
Figure FDA0002853521090000033
时,则认为开环控制失效,无法使车辆准确停入库位,所述的加权误差向量et的表达式为:
Figure FDA0002853521090000034
其中,ωX、ωY、ωψ均为权重系数,且其值为正。
CN202011537417.3A 2020-12-23 2020-12-23 带有监督机制的智能电动汽车漂移入库分段式控制方法 Active CN112721914B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011537417.3A CN112721914B (zh) 2020-12-23 2020-12-23 带有监督机制的智能电动汽车漂移入库分段式控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011537417.3A CN112721914B (zh) 2020-12-23 2020-12-23 带有监督机制的智能电动汽车漂移入库分段式控制方法

Publications (2)

Publication Number Publication Date
CN112721914A true CN112721914A (zh) 2021-04-30
CN112721914B CN112721914B (zh) 2022-04-05

Family

ID=75604437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011537417.3A Active CN112721914B (zh) 2020-12-23 2020-12-23 带有监督机制的智能电动汽车漂移入库分段式控制方法

Country Status (1)

Country Link
CN (1) CN112721914B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113335270A (zh) * 2021-07-01 2021-09-03 湖南大学 一种泊车路径规划方法和装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201872842U (zh) * 2010-11-29 2011-06-22 王洪祥 能倒车的电动漂移车
CN104192066A (zh) * 2014-09-19 2014-12-10 张安兵 极限泊车防擦装置
CN109131317A (zh) * 2018-07-23 2019-01-04 同济大学 基于多段式规划与机器学习的自动垂直泊车系统及方法
CN109398349A (zh) * 2018-09-11 2019-03-01 同济大学 一种基于几何规划及强化学习的自动泊车方法及系统
CN109492763A (zh) * 2018-09-17 2019-03-19 同济大学 一种基于强化学习网络训练的自动泊车方法
CN109557912A (zh) * 2018-10-11 2019-04-02 同济大学 一种自动驾驶特种作业车辆的决策规划方法
WO2019145152A1 (de) * 2018-01-23 2019-08-01 Valeo Schalter Und Sensoren Gmbh Korrigieren einer position eines fahrzeugs mit slam
JP2019139331A (ja) * 2018-02-06 2019-08-22 パナソニックIpマネジメント株式会社 車両管理システム及び車両管理システムの制御方法
CN110389580A (zh) * 2018-04-18 2019-10-29 百度(美国)有限责任公司 用于规划自动驾驶车辆的路径的漂移校正的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201872842U (zh) * 2010-11-29 2011-06-22 王洪祥 能倒车的电动漂移车
CN104192066A (zh) * 2014-09-19 2014-12-10 张安兵 极限泊车防擦装置
WO2019145152A1 (de) * 2018-01-23 2019-08-01 Valeo Schalter Und Sensoren Gmbh Korrigieren einer position eines fahrzeugs mit slam
JP2019139331A (ja) * 2018-02-06 2019-08-22 パナソニックIpマネジメント株式会社 車両管理システム及び車両管理システムの制御方法
CN110389580A (zh) * 2018-04-18 2019-10-29 百度(美国)有限责任公司 用于规划自动驾驶车辆的路径的漂移校正的方法
CN109131317A (zh) * 2018-07-23 2019-01-04 同济大学 基于多段式规划与机器学习的自动垂直泊车系统及方法
CN109398349A (zh) * 2018-09-11 2019-03-01 同济大学 一种基于几何规划及强化学习的自动泊车方法及系统
CN109492763A (zh) * 2018-09-17 2019-03-19 同济大学 一种基于强化学习网络训练的自动泊车方法
CN109557912A (zh) * 2018-10-11 2019-04-02 同济大学 一种自动驾驶特种作业车辆的决策规划方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113335270A (zh) * 2021-07-01 2021-09-03 湖南大学 一种泊车路径规划方法和装置
CN113335270B (zh) * 2021-07-01 2022-05-03 湖南大学 一种泊车路径规划方法和装置

Also Published As

Publication number Publication date
CN112721914B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
Li et al. Comprehensive tire–road friction coefficient estimation based on signal fusion method under complex maneuvering operations
US7016783B2 (en) Collision avoidance with active steering and braking
US8271175B2 (en) Vehicle control device
US7649331B2 (en) Mobile robot
JP5119433B2 (ja) 車両運動制御装置およびこれを搭載した自動車
CN113396094A (zh) 用于生成用于组合控制机动车辆的车轮转向系统和差动制动系统的设定点的方法
CN106218616B (zh) 一种无压力传感器的esc系统及其控制方法
CN109292018B (zh) 基于同轴式轮腿结构的四轮转向轨迹跟踪控制方法
Goh et al. A controller for automated drifting along complex trajectories
CN112721914B (zh) 带有监督机制的智能电动汽车漂移入库分段式控制方法
CN116552550A (zh) 基于参数不确定性和横摆稳定性的车辆轨迹跟踪控制系统
CN110109363B (zh) 一种轮式移动机器人编队的神经网络自适应控制方法
CN113401112B (zh) 一种失控车辆再稳定的控制方法
JP2003231429A (ja) 車両の中心対称面の両側での荷重移動を考慮した横方向力の測定値による車両の軌道へのアクション
CN113183953A (zh) 基于分布式驱动底盘的车辆碰后主动安全控制方法及系统
CN111231975A (zh) 车轮抓地力裕度估测方法
Garcia et al. Design and simulation for path tracking control of a commercial vehicle using MPC
CN113895437B (zh) 一种基于lqr最优控制的车辆自主漂移控制方法
CN114148411B (zh) 一种轮式无人平台的漂移控制方法
CN115933662A (zh) 一种基于自适应模型预测控制的智能汽车轨迹跟踪和稳定性控制系统及方法
KR20220068264A (ko) 자율주행 자동차를 위한 제어 장치
Stolte et al. Investigating Functional Redundancies in the Context of Vehicle Automation–A Trajectory Tracking Perspective
Kong et al. Yaw Stability Control of Distributed Drive Electric Vehicle Based on Torque Optimal Distribution in Ice and Snow Environment
CN112590774B (zh) 一种基于深度强化学习的智能电动汽车漂移入库控制方法
Wang et al. Research on accurate adjustment of braking force and vehicle yaw stability control strategy based on new electro-hydraulic brake system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant