CN112706401B - 弱各向异性连续纤维增强聚合物复合材料及增材制造方法 - Google Patents

弱各向异性连续纤维增强聚合物复合材料及增材制造方法 Download PDF

Info

Publication number
CN112706401B
CN112706401B CN202011418850.5A CN202011418850A CN112706401B CN 112706401 B CN112706401 B CN 112706401B CN 202011418850 A CN202011418850 A CN 202011418850A CN 112706401 B CN112706401 B CN 112706401B
Authority
CN
China
Prior art keywords
continuous fiber
reinforced polymer
continuous
fibers
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011418850.5A
Other languages
English (en)
Other versions
CN112706401A (zh
Inventor
孙靖
张春杰
程灵钰
王旭琴
赵凯
乔汝旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Aerospace Equipments Manufacturer Co Ltd
Original Assignee
Shanghai Aerospace Equipments Manufacturer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Aerospace Equipments Manufacturer Co Ltd filed Critical Shanghai Aerospace Equipments Manufacturer Co Ltd
Priority to CN202011418850.5A priority Critical patent/CN112706401B/zh
Publication of CN112706401A publication Critical patent/CN112706401A/zh
Application granted granted Critical
Publication of CN112706401B publication Critical patent/CN112706401B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/171Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
    • B29C64/182Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects in parallel batches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • B29C64/194Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开了一种弱各向异性连续纤维增强聚合物复合材料及增材制造方法,采用正弦形密排基体铺设与穿插纤维路径优化提升增材制造技术,由此提高制备获得的连续纤维增强聚合物复合材料的强度及削弱复合材料性能的各向异性。本案利用聚合物基体的正弦形依次铺设,连续纤维穿插多道次基体的路径规划方法,获得高强、弱各向异性的一体化连续纤维增强聚合物复合材料复杂结构。本发明一方面解决了增材制造连续纤维增强聚合物复合材料界面连接单一、性能提升受限的问题,另一方面有效减弱了增材制造聚合物复合材料性能的各向异性。

Description

弱各向异性连续纤维增强聚合物复合材料及增材制造方法
技术领域
本发明涉及一种用于连续纤维增强聚合物复合材料增材制造领域的高效制备技术,涉及一种弱各向异性连续纤维增强聚合物复合材料及增材制造方法,特别是涉及一种性能可调控的高强弱各向异性连续纤维增强聚合物复合材料的增材制备方法。
背景技术
由于轻质高强的优异性能,连续纤维增强聚合物复合材料被广泛应用于航空航天以及汽车领域。尤其是近年来,增材制造技术的飞速发展,为纤维增强复合材料的制备提供了更大的潜力。连续纤维,包括碳纤维、玻璃纤维、芳纶纤维等,具有比强度高,耐腐蚀性能好等诸多优势,是理想的增强材料,可大幅提升聚合物基体的综合性能。但是传统的制造方法限制了复合材料性能的进一步提升,无法完全发挥连续纤维的优势。主要存在两个问题,一是增材制造成形连续纤维增强复合材料性能存在明显的各向异性,二是连续纤维与基体结合界面薄弱,极大地削弱复合材料的性能。
增材制造的连续纤维增强聚合物复合材料中,对材料性能影响最大的为结合界面。结合界面属于复合材料中的薄弱环节,包括连续纤维与基体的结合界面及基体与基体的结合界面。由于现有增材制造技术中纤维与基体堆叠方向一致或制发生单点接触,导致在复合界面处产生较多的缺陷或弱连接,极易发生纤维抽出的现象,导致复合材料性能差。在增材制造连续纤维增强聚合物复合材料服役过程中,往往由于纤维与聚合物界面剥离抽出或基体层道间的剥离,导致材料失效。
连续纤维在复合材料内部处于张紧状态时才能发挥增强效果,由于增材制造过程中连续纤维束的铺设方向与基体铺陈方向单一,导致材料性能存在明显的各向异性。在单丝送进设备中,连续纤维束排列方向与基体一致,导致与之垂直方向性能最薄弱,严重降低材料的使用性能;在双丝或多丝送进设备中,实现了工艺多样性,连续纤维与基体的界面配合方式更加多样化,但连续纤维束与聚合物集体多数属于单点接触,材料的性能受到较大的影响。
此外,需要指出的是,现有3D打印制造聚合物及其复合材料均存在严重的性能各项异性的缺点,尤其是熔覆道连接间的结合强度较弱。
发明内容
本发明的目的是针对现有技术中的上述不足,提供一种弱各向异性连续纤维增强聚合物复合材料及增材制造方法。本发明可简单地通过3D打印过程中材料排布方式有效地弱化连续纤维增强复合材料3D打印样件中性能各项异性的问题,其结合3D打印技术,尤其是配合3D打印装置所具有的多头打印功能,实现了基体材料与增强纤维的路径穿插。
尤其是,本案的零件成形过程中材料的准备、参数设定等过程可以与传统3D打印方式类相同,因而,其可以基于现有的3D打印技术和生产系统进行打印。但与现有技术不同的是,本案通过成形路径的划分与打印过程中打印头多头协调配合实现基体与纤维的穿插密排分布,形成多重接触结构,因而,克服了现有技术中各项性能差异差的缺陷,由此减弱3D打印成形零件性能各项异性,最终获得的了弱各向异性连续纤维增强聚合物复合材料。
为了达到上述目的,本发明采用如下技术方案:
第一方面,本发明提出了一种弱各向异性连续纤维增强聚合物的制造方法,所述制造方法采用将:连续纤维通过3D打印穿插分布于基体材料上,其中,基体材料排布呈正弦曲线,以使得连续纤维以非直线的路径穿插分布于正弦形密排基体面上,使连续纤维与基体材料之间形成多重接触,最终获得弱各向异性连续纤维增强聚合物。
优选地,所述制造方法具体包括以下步骤:
步骤S1:建立打印制件三维模型,根据连续纤维增强聚合物复合材料制件的要求,使用计算机辅助软件建立三维模型实体,保存为模型处理软件可识别的文件格式;
步骤S2:确定增材制造过程参数;
步骤S3:数据模型处理,将步骤S1产生的模型处理软件可识别的文件格式导入到增材制造切片分层模型处理软件中,根据步骤S2确定的增材制造参数,规划制造路径;
步骤S4:根据步骤S3所规划的路径配合3D打印设备的多打印头,在基体材料上进行连续纤维的铺设,使连续纤维穿插分布于基体材料上,制备获得最终的弱各向异性连续纤维增强聚合物。
优选地,在所述步骤S2中,所述增材制造过程参数包括:基材加热温度为250℃,纤维头加热温度为250 ℃,打印层厚t为0.2mm,基材填充间距h为0.3mm,纤维填充间距d为0.8mm,打印速度为120mm/min。
优选地,在所述步骤S4中,打印设备的基板预热至80℃。
优选地,在所述步骤S4中,所述连续纤维的铺设方向与X方向平行,连续纤维的行走方向与X方向垂直,所述X方向为基材排布方向。
优选地,在所述步骤S4中,连续纤维采用张紧的方式穿插于基体材料上,而所制备的弱各向异性连续纤维增强聚合物的边缘采用宽幅轮廓填充方式。
第二方面,本发明提出了一种弱各向异性连续纤维增强聚合物,所述弱各向异性连续纤维增强聚合物采用上述的制造方法制备获得。
优选地,所述弱各向异性连续纤维增强聚合物的X方向抗拉强度为235Mpa,Y方向抗拉强度为145Mpa,各项异性强度差为36.96%。
优选地,所述基体材料包括ABS树脂、PLA树脂、PA-聚酰胺、PE-聚乙烯、PEEK-聚醚醚酮、短纤维增强热塑性树脂的一种或多种。
优选地,所述连续纤维材料包括碳纤维、玻璃纤维、耐高温玻璃纤维、芳纶纤维、凯夫拉纤维、陶瓷纤维的一种或多种。
较现有技术本发明的有益效果如下:
(1) 本发明相较于传统增材制造连续纤维增强复合材料技术,基材采用正弦形密排分布方式,可有效增加相邻沉积道间的接触面积,有效提升材料的性能。
(2) 本发明相对于传统的连续纤维增强复合材料增材制造,采用连续纤维穿插分布于正弦形基材上,一束纤维可同时穿插多道沉积基材,可实现连续纤维与基材之间的多点稳定接触,形成良好的结合界面,在充分发挥纤维的增强效应的同时单层沉积面内的各向异性得到改善。结合相邻层间的适当角度旋转,可有效改善整个制件的各项异性。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是本发明所述的实现高强弱各项异性连续纤维增强复合材料的增材制造原理三维示意图;
图2是单层内基材与纤维穿插分布路径规划示意图;
图3进一步放大了图2的路径规划。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例1
图1是本发明所述的实现高强弱各项异性连续纤维增强复合材料的增材制造原理三维示意图。
本实施例的弱各向异性连续纤维增强聚合物复合材料的增材制造方法具体包括以下步骤:
1)建立打印制件三维模型:根据连续纤维增强聚合物复合材料制件的要求,使用计算机辅助软件建立三维模型实体,保存为模型处理软件可识别的文件格式,如stl格式,例如:采用计算机辅助绘图软件creo 2.0绘制100×100×50mm的三维模型,将三维模型导出为stl格式。
2)确定增材制造过程参数:连续纤维增强聚合物复合材料的成形性态主要取决于聚合物基材,选取加热区间高于聚合物基材1,该聚合物基材1小于增强相连续纤维束2(即连续纤维)的熔点。而增强连续纤维束2预先经过浸润处理,包覆与聚合物基材1具有良好浸润性的聚合物相。增材制造过程中聚合物基材1发生熔化,增强相连续纤维束2不发生熔化,增强相连续纤维束2表面包覆的聚合物浸润相发生熔化,最终形成界面的稳固连接,增强相连续纤维束2需在复合材料试件中始终保持张紧状态。并且,根据上述材料体系需求确定增材制造工艺参数。
例如:选取适当材料体系时,选择尼龙PA作为聚合物基材,增强连续纤维束2选择预浸润的连续碳纤维。尼龙基材的熔点为220℃,碳纤维的熔点为3500℃。选择制备温度为250℃,制备过程中聚合物基材1发生完全融化,以熔融态挤出成丝,增强连续纤维束2表面包覆层发生熔化,二者形成良好的界面结合且纤维在基体内部一直处于张紧状态。
3)数据模型处理:将步骤1)产生的三维格式文件导入到增材制造切片分层模型处理软件中,根据步骤2)确定的增材制造参数,t为单层厚度,h为基材沉积间距,d 为纤维铺设间距,A为基体材料排布正弦曲线的振幅,然后规划制造路径,生成正弦形密排分布基材铺设连续纤维穿插路径的复合材料的打印命令文件。单根纤维可穿插多条基体熔覆道,形成多重接触,增强相连续纤维束2(1)同时穿插基材熔覆道1(1)、1(2)、1(3)、1(4)、1(5)、1(6)、1(7)、1(8)。例如:基材加热温度为250℃,纤维头加热温度为250℃,打印层厚t为0.2mm,基材填充间距h为0.3mm,纤维填充间距d为0.8mm,打印速度为120mm/min。
此外,参考图1可以看出,相邻层间旋转一定的角度,试件边缘采用宽幅轮廓填充的方式,轮廓宽度为2A。最终将模型导出为设备可识别的文件格式。
其中,参照图2和图3,填充路径中基材采用正弦形密排分布,连续碳纤维采用张紧的穿插于及基材的分布方式;制件边缘(图2中附图标记3所示意的位置)采用宽幅轮廓填充方式。
而参考图2可以看出,轮廓填充层数为6;相邻层间填充角度发生变化,本实施案例中优选45°递增的方式,参照图1,第n层与第n+1层之间依次旋转45°。最终生成包含参数与路径规划的可被设备可识别的文件格式。
4) 增材制造:对增材制造设备进行调整设置,将步骤3)产生的文件格式导入设备,通过设备多打印头之间的运动配合,最终制备得到弱各向异性的增材制造连续纤维增强聚合物制件。其中,产生的文件格式导入设备,通过设备多打印头之间的运动配合,最终制备得到弱各向异性的增材制造连续纤维增强聚合物制件。
设置设备参数,设备基板预热到80℃,将步骤3)产生的文件导入设备,使纤维铺设方向与X方向平行,最终制备得到高强弱各向异性的连续碳纤维增强尼龙复合材料制件。
在本实施方式中,采用传统材料铺设方法制备的连续纤维增强复合材料X方向抗拉强度为220Mpa,Y方向抗拉强度为103Mpa;通过本发明制备的试样经检测试样X方向抗拉强度为235Mpa,Y方向抗拉强度为145Mpa。各项异性强度差由原来的53.18%降低为36.96%。
本发明中基材采用正弦形密排分布方式,可有效增加相邻沉积道间的接触面积,有效提升材料的性能。采用连续纤维穿插分布于正弦形密排分布基材上,一束纤维可同时穿插多道沉积基材,可实现连续纤维与基材之间的多点稳定接触,形成良好的结合界面,在充分发挥纤维的增强效应的同时单层沉积面内的各向异性得到改善。结合相邻层间的适当角度旋转,可有效改善制件的各项异性。
需要说明的是,本发明的保护范围中现有技术部分并不局限于本申请文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

1.一种弱各向异性连续纤维增强聚合物的制造方法,其特征在于,所述制造方法采用将:连续纤维通过3D打印穿插分布于基体材料上,其中,基体材料排布呈正弦曲线,以使得连续纤维以非直线的路径穿插分布于正弦形密排基体材料面上,使连续纤维与基体材料之间形成多重接触,最终获得弱各向异性连续纤维增强聚合物;
采用连续纤维穿插分布于正弦形基材上,一束纤维同时穿插多道沉积基材,实现连续纤维与基材之间的多点稳定接触。
2.根据权利要求1所述的弱各向异性连续纤维增强聚合物的制造方法,其特征在于,所述制造方法具体包括以下步骤:
步骤S1:建立打印制件三维模型,根据连续纤维增强聚合物复合材料制件的要求,使用计算机辅助软件建立三维模型实体,保存为模型处理软件可识别的文件格式;
步骤S2:确定增材制造过程参数;
步骤S3:数据模型处理,将步骤S1产生的模型处理软件可识别的文件格式导入到增材制造切片分层模型处理软件中,根据步骤S2确定的增材制造参数,规划制造路径;
步骤S4:根据步骤S3所规划的路径配合3D打印设备的多打印头,在基体材料上进行连续纤维的铺设,使连续纤维穿插分布于基体材料上,制备获得最终的弱各向异性连续纤维增强聚合物。
3.根据权利要求2所述的弱各向异性连续纤维增强聚合物的制造方法,其特征在于,在所述步骤S2中,所述增材制造过程参数包括:基材加热温度为250℃,纤维头加热温度为250℃,打印层厚t为0.2mm,基材填充间距h为0.3mm,纤维填充间距d为0.8mm,打印速度为120mm/min。
4.根据权利要求2所述的弱各向异性连续纤维增强聚合物的制造方法,其特征在于,在所述步骤S4中,打印设备的基板预热至80℃。
5.根据权利要求2所述的弱各向异性连续纤维增强聚合物的制造方法,其特征在于,在所述步骤S4中,所述连续纤维的铺设方向与X方向平行,连续纤维的穿插方向与X方向垂直,所述X方向为基材排布方向。
6.根据权利要求2所述的弱各向异性连续纤维增强聚合物的制造方法,其特征在于,在所述步骤S4中,连续纤维采用张紧的方式穿插于基体材料上,而所制备的弱各向异性连续纤维增强聚合物的边缘采用宽幅轮廓填充方式。
7.一种弱各向异性连续纤维增强聚合物,其特征在于,所述弱各向异性连续纤维增强聚合物采用如权利要求1-6中任意一项所述的制造方法制备获得。
8.根据权利要求7所述的弱各向异性连续纤维增强聚合物,其特征在于,所述弱各向异性连续纤维增强聚合物的X方向抗拉强度为235Mpa,Y方向抗拉强度为145Mpa,各项异性强度差为36.96%。
9.根据权利要求7所述的弱各向异性连续纤维增强聚合物,其特征在于,所述基体材料包括ABS树脂、PLA树脂、PA-聚酰胺、PE-聚乙烯、PEEK-聚醚醚酮、短纤维增强热塑性树脂的一种或多种。
10.根据权利要求7所述的弱各向异性连续纤维增强聚合物,其特征在于,所述连续纤维材料包括碳纤维、玻璃纤维、芳纶纤维、凯夫拉纤维、陶瓷纤维的一种或多种。
CN202011418850.5A 2020-12-07 2020-12-07 弱各向异性连续纤维增强聚合物复合材料及增材制造方法 Active CN112706401B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011418850.5A CN112706401B (zh) 2020-12-07 2020-12-07 弱各向异性连续纤维增强聚合物复合材料及增材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011418850.5A CN112706401B (zh) 2020-12-07 2020-12-07 弱各向异性连续纤维增强聚合物复合材料及增材制造方法

Publications (2)

Publication Number Publication Date
CN112706401A CN112706401A (zh) 2021-04-27
CN112706401B true CN112706401B (zh) 2022-06-28

Family

ID=75542622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011418850.5A Active CN112706401B (zh) 2020-12-07 2020-12-07 弱各向异性连续纤维增强聚合物复合材料及增材制造方法

Country Status (1)

Country Link
CN (1) CN112706401B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113320143B (zh) * 2021-06-29 2022-03-29 华中科技大学 聚合物连续纤维复合层的连续3d打印方法及质量评估方法
CN114474712B (zh) * 2022-01-18 2022-10-18 西安交通大学 连续纤维增强复合材料高效高速3d打印头及其使用方法
CN117400609B (zh) * 2023-04-13 2024-05-03 肥城三合工程材料有限公司 纤维增强复合材料及其制备方法和应用
CN116876256B (zh) * 2023-08-01 2024-08-16 深圳市通用氢能科技有限公司 一种具有连续纤维增强结构的碳纸

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198793A (ja) * 1992-12-28 1994-07-19 Sekisui Chem Co Ltd 繊維複合体及びその製造方法
EP1055783A1 (de) * 1999-05-27 2000-11-29 Hans-Ulrich Jüttner Mehrschicht-Wandstruktur
JP3121699U (ja) * 2006-03-03 2006-05-25 修 茂木 防犯ブザー
CN106980737A (zh) * 2017-04-12 2017-07-25 西安交通大学 一种连续纤维增强复合材料轻质结构的制造方法
CN109760336A (zh) * 2018-12-24 2019-05-17 西安交通大学 一种预置纤维棒z向增强连续纤维复合材料增材制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8246882B2 (en) * 2003-05-02 2012-08-21 The Boeing Company Methods and preforms for forming composite members with interlayers formed of nonwoven, continuous materials
US10399322B2 (en) * 2014-06-11 2019-09-03 Applied Nanostructured Solutions, Llc Three-dimensional printing using carbon nanostructures
GB201801652D0 (en) * 2018-02-01 2018-03-21 Qinetiq Ltd Materials
JP7472445B2 (ja) * 2018-09-07 2024-04-23 株式会社リコー 樹脂粉末、及び立体造形物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198793A (ja) * 1992-12-28 1994-07-19 Sekisui Chem Co Ltd 繊維複合体及びその製造方法
EP1055783A1 (de) * 1999-05-27 2000-11-29 Hans-Ulrich Jüttner Mehrschicht-Wandstruktur
JP3121699U (ja) * 2006-03-03 2006-05-25 修 茂木 防犯ブザー
CN106980737A (zh) * 2017-04-12 2017-07-25 西安交通大学 一种连续纤维增强复合材料轻质结构的制造方法
CN109760336A (zh) * 2018-12-24 2019-05-17 西安交通大学 一种预置纤维棒z向增强连续纤维复合材料增材制造方法

Also Published As

Publication number Publication date
CN112706401A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
CN112706401B (zh) 弱各向异性连续纤维增强聚合物复合材料及增材制造方法
AU2018383793B2 (en) Three-dimensional printing and forming method for fiber reinforced resin-based composite material
Pyl et al. Exploration of specimen geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites
CN106521718B (zh) 用于具有增强可模塑性的复合材料中的连续碳纤维的制造方法
Struzziero et al. Consolidation of continuous fibre reinforced composites in additive processes: A review
Vinoth Babu et al. Influence of slicing parameters on surface quality and mechanical properties of 3D-printed CF/PLA composites fabricated by FDM technique
CN105437562A (zh) 压印图案到复合材料层压件上
Richter et al. FDM printing of 3D forms with embedded fibrous materials
EP3401072B1 (en) Method for manufacturing fiber-reinforced resin molding
CN105073364A (zh) 层叠基材及其制造方法
Zhuo et al. Continuous fibre composite 3D printing with pultruded carbon/PA6 commingled fibres: Processing and mechanical properties
CN109760336B (zh) 一种预置纤维棒z向增强连续纤维复合材料增材制造方法
Zhang et al. Effectiveness of fibre placement in 3D printed open-hole composites under uniaxial tension
EP2527130B1 (en) Laying-up method for non-planar composite material components
CN109228404A (zh) 一种用于连续纤维增强复合材料结构成型的多维度增材制造方法
CN111251627A (zh) 一种提高Z-pin增强复合材料层间强度效果的方法
Verma et al. The key role of thread and needle selection towards ‘through-thickness reinforcement’in tufted carbon fiber-epoxy laminates
AU2019202460B2 (en) Composite toughening using three dimensional printed thermoplastic pins
An et al. Three-dimensional printing of continuous carbon fiber-reinforced polymer composites via in-situ pin-assisted melt impregnation
Najafloo et al. Investigation on process window of 3D printed continuous glass fiber‐reinforced thermosetting composites
US20160144595A1 (en) Composite laminate including interlayers with through-plane regions fused to fiber beds
CN112297421A (zh) 一种利用微波辐照修复fdm 3d打印制品层与层之间粘接强度的方法
Cormier et al. Durability of polymer matrix composites fabricated via additive manufacturing
US20240262047A1 (en) Hybrid transparent structural composite
Myers Tech Sheet for Isotropic Fiber Reinforced Polymer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant