CN112665103B - 空调器的自清洁控制方法及空调器 - Google Patents

空调器的自清洁控制方法及空调器 Download PDF

Info

Publication number
CN112665103B
CN112665103B CN202110062247.6A CN202110062247A CN112665103B CN 112665103 B CN112665103 B CN 112665103B CN 202110062247 A CN202110062247 A CN 202110062247A CN 112665103 B CN112665103 B CN 112665103B
Authority
CN
China
Prior art keywords
heat exchanger
temperature
dew point
controlling
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110062247.6A
Other languages
English (en)
Other versions
CN112665103A (zh
Inventor
汪亚东
王若峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Qingdao Haier Air Conditioning Electric Co Ltd
Haier Smart Home Co Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Qingdao Haier Air Conditioning Electric Co Ltd
Haier Smart Home Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd, Qingdao Haier Air Conditioning Electric Co Ltd, Haier Smart Home Co Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Priority to CN202110062247.6A priority Critical patent/CN112665103B/zh
Publication of CN112665103A publication Critical patent/CN112665103A/zh
Priority to PCT/CN2021/120690 priority patent/WO2022068731A1/zh
Application granted granted Critical
Publication of CN112665103B publication Critical patent/CN112665103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G15/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

本发明属于空调器技术领域,具体提供一种空调器的自清洁控制方法及空调器。本发明旨在解决现有的空调器无法对油污进行深度清洁的问题。为此目的,本发明的自清洁控制方法具体包括:控制换热器的温度≤第一露点温度,使其表面凝露;向换热器的表面喷洒清洗剂;控制换热器的温度≤第二露点温度,使其表面凝露;控制换热器的温度升高,使其表面重新干燥。本发明提供了一种新的去油污的控制方法,采用了双凝露的方案,能够实现更深层次的自清洁。

Description

空调器的自清洁控制方法及空调器
技术领域
本发明属于空调器技术领域,具体提供一种空调器的自清洁控制方法及空调器。
背景技术
空调器在使用过程中,由于环境的不同,沾染的脏物也有所不同。以厨房或者饭店的空调器为例,由于环境中存在着油烟,长时间使用后,室内机或室外机都会不可避免地沾染油污,同时也沾染有灰尘,然而,沾染油污的空调器相较于单独沾染灰尘的空调器的清洁难度更大,常规的除尘模式无法对其进行根除。
相应的,本领域需要一种新的空调器的自清洁控制方法及空调器来解决现有的空调器无法对油污进行深度清洁的问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有的空调器无法对油污进行深度清洁的的问题,本发明提供了一种空调器的自清洁控制方法,包括:
控制换热器的温度≤第一露点温度,使其表面凝露;
向所述换热器的表面喷洒清洗剂;
控制所述换热器的温度≤第二露点温度,使其表面凝露;
控制所述换热器的温度升高,使其表面重新干燥。
在上述控制方法的优选技术方案中,所述第一露点温度<所述第二露点温度。
在上述控制方法的优选技术方案中,“向所述换热器的表面喷洒清洗剂”的步骤之后,所述控制方法还包括:
控制所述换热器的温度升高至清洗剂最佳工作温度,并维持设定时间。
在上述控制方法的优选技术方案中,“控制换热器的温度≤第一露点温度,使其表面凝露”的步骤具体包括:
控制所述换热器的温度≤第一露点温度,开启风机并以第一转速运行,使其表面凝露。
在上述控制方法的优选技术方案中,“控制换热器的温度≤第二露点温度,使其表面凝露”的步骤具体包括:
控制所述换热器的温度≤第二露点温度,开启风机并以第一转速运行,使其表面凝露。
在上述控制方法的优选技术方案中,“向所述换热器的表面喷洒清洗剂”的步骤具体包括:
关闭风机,然后向所述换热器的表面喷洒清洗剂。
在上述控制方法的优选技术方案中,“控制所述换热器的温度升高,使其表面重新干燥”的步骤具体包括:
控制所述换热器的温度升高,开启风机并以第二转速运行,使其表面重新干燥;
其中,所述第二转速>所述第一转速。
在上述控制方法的优选技术方案中,“控制换热器的温度≤第一露点温度”的步骤具体包括:
控制空调器的四通阀换向,以逆循环的方式控制换热器的温度≤第一露点温度。
在上述控制方法的优选技术方案中,所述第二露点温度=常规露点温度-△T2,其中,所述△T2>0,并且所述△T2的取值随着所述清洗剂的量的不同而不同。
本发明还提供了一种空调器,所述空调器包括处理器,所述处理器设置成能够执行上述技术方案中任一项所述的控制方法。
现有技术当中也开始有技术人员尝试去油污模式,现有技术当中的去油污模式通常是通过油污的量来判断是否去油污,然而,通过发明人长时间的研究与实验,发现这种方式有着较大的弊端,就是一旦存在油污之后,积灰的速度相较于不存在油污的积灰的速度将大大提升,并且,一旦存在油污之后,再次积累相同数量的油污的速度也相较于不存在油污时的速度大大提升,究其原因在于,油污本身具有极强的粘附性,一旦沾染上,再次增加油污量的速度就呈现出了大幅度提升,积灰同理,由于油污本身的粘性较高,便更加容易积灰,也使得积灰速度大大增加。
而现有技术当中的去油污模式,通常是在油污较少时不予理会,或者使用常规的除尘模式进行清洁,以使空调器保持清洁状态。但是,这个方案存在着较大的弊端,油污较少时,不予理会过程将会使得油污积累速度以及积灰速度大幅增加,这会给空调器带来更加沉重的负担,后期清洗也更加难以清洁完全,浪费能源也会更加严重。而油污较少时,通过去积灰模式进行清洁,由于凝露并没有办法冲干净油污,而只能减少油污的量,这样就会导致仍然存留有少量的油污,这些油污依然能够快速积累更多的油污和尘量,这是本领域技术人员不希望看到的。
本领域人员能够理解的是,在本发明的技术方案中,空调器的自清洁控制方法具体包括:控制换热器的温度≤第一露点温度,使其表面凝露;向换热器的表面喷洒清洗剂;控制换热器的温度≤第二露点温度,使其表面凝露;控制换热器的温度升高,使其表面重新干燥。
本发明提供了一种新的去油污的控制方法,采用了双凝露的方案,能够实现更深层次的自清洁。
附图说明
下面参照附图来描述本发明的空调器的自清洁控制方法及空调器。附图中:
图1为本发明的根据油污和积灰量选择不同运行模式的流程图;
图2为本发明的去积灰模式与去油污模式结合运行的流程图;
图3为本发明的去油污模式独立运行的流程图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。例如,尽管说明书中的去油污模式的步骤S423是以维持换热器至清洗剂最佳工作温度为例进行描述的,但是,本发明去掉此步骤显然也没有产生本质上的变化,即使不进行升温,清洗剂仍然能够正常工作,或者随着技术的进步,清洗剂可能还会研发出能在低温下直接发挥出最佳清洗效果的,这时候步骤S423的升温步骤显然也是不需要的,因此,以下几种具体实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
首先参照图1,对本发明的空调器的自清洁控制方法进行描述。
如图1所示,为解决现有的空调器无法对油污进行深度清洁的问题,本发明的空调器的自清洁控制方法包括:
S100、检测换热器的表面是否有油污。
由于油污与灰尘略有不同,油污粘附性更高,因此常规的灰尘检测方式并不完全适用,因此,发明人在此列举几种方法用于油污的检测,例如图像判断法,利用定期拍摄的照片,对照片进行分析判断油污是否存在。又或者使用光洁度判断法,利用反光原理,对换热器的表面进行折射率的测量,油污与灰尘对于折射率影响不同,通过这种方式也能判断换热器的表面是否有油污。当然上述列举的两种方法都是物理式的方法,由于油污与尘土的化学成分差距很大,还可以通过化学物质分析的相关方法进行检测,例如检测在不工作状态下的换热器的翅片间空气的油污浓度测量等方式。
S200、当换热器的表面存在油污时,检测换热器的表面的积灰量。
S300、比较积灰量与第一预设积灰量的大小。
S400、根据积灰量与第一预设积灰量的大小,控制空调器单独执行去油污模式,或者先执行去积灰模式再执行去油污模式。
其中,步骤S400具体包括:
S410、当积灰量≥第一预设积灰量时,控制空调器先执行去积灰模式再执行去油污模式;
S420、当积灰量<第一预设积灰量时,控制空调器单独执行去油污模式。
当判断换热器的表面存在油污时,还需要根据积灰量的多少来进一步判断是先执行去积灰模式再执行去油污模式,抑或是单独执行去油污模式,但是,无论选择何种,其均会进行去油污模式,进而对油污进行彻底清洁,确保后续油污与积灰量的积累速度可控,区别点在于,积灰量过多反过来还会影响到去油污模式的效果,因此针对积灰量再次进行判断。
其中,检测积灰量的方案在现有技术当中的记载较多,例如通过风机的功率大小、风机电流大小、空调器制热能力等方式来进行判断,其有别于油污检测,属于常规技术方案,因此不再进行详细展开。
上面的步骤S200至S420描述了当换热器表面存在油污时的控制方法,下面继续参照图1,对换热器表面不存在油污时的控制方法进行描述。
S500、当换热器的表面不存在油污时,检测换热器的表面的积灰量。
S600、比较积灰量与第二预设积灰量的大小。
S610、当积灰量≥第二预设积灰量时,单独执行去积灰模式。
S620、当积灰量<第二预设积灰量时,不执行自清洁。
其中,第二预设积灰量>第一预设积灰量。
需要说明的是,当没有油污存在时,第二预设积灰量可以按照常规方案进行设置,但是,当油污存在时,由于油污会使积灰更加难以去除,如果还设置成达到第二预设积灰量时进行去积灰操作,在未达到第二预设积灰量时,仍然会出现油污覆盖积灰过多,而使得油污清洁无法彻底的情况,因此,本发明将第一预设积灰量设置的较常规的第二预设积灰量更小,在油污上面积累一定的积灰量时,能够更及时的去除,以使去油污模式的效果更佳。
结合图1,本申请已经描述了空调器自清洁控制方法的整体的流程,而对于其中的步骤S410中提及的“先执行去积灰模式再执行去油污模式”,以及步骤S420中提及的“单独执行去油污模式”,申请人也同样进行了调整与改进,使去油污效果更好,或者更加节能,下面进一步分别参照图2和图3,对本发明的上述两种空调器自清洁控制方法进行详细描述。
如图2所示,首先介绍“先执行去积灰模式再执行去油污模式”的自清洁控制方法的改进,在一种可能的实施方式中,“先执行去积灰模式再执行去油污模式”的步骤具体包括:
S411、控制换热器的温度≤霜点温度,使其表面结霜;其中,霜点温度=常规霜点温度-△T1,△T1>0,并且△T1的取值随着油污的量的不同而不同。
S412、当结霜厚度达到设定值后,控制换热器的温度提升,使其表面化霜;
空调器的去积灰模式属于一种常规的模式,通常为通过换热器先结霜后化霜,然后带走换热器表面的积灰,结霜化霜可以通过四通阀的换向来实现。
S413、当化霜程度刚刚达到完全融化时,向换热器的表面喷洒清洗剂;
S414、控制换热器的温度≤第二露点温度,使其表面凝露。其中,还可以开启风机并以第一转速运行,加快凝露。
S415、控制换热器的温度升高,使其表面重新干燥。在此过程中还可以开启风机并以第二转速运行,加速干燥过程,其中,第二转速>第一转速。
去油污模式本身是需要空调器表面有水时进行喷洒清洗剂,此种方案相较于直接无水状态下喷洒清洗剂,清洗效果是更好的。而本申请在去积灰模式和去油污模式组合的基础上,提出了先去积灰,然后去油污,并且在去积灰过程中刚刚完全融化的化霜的时候喷洒清洗剂,由于此时换热器还残留有雪水,这样便节省了去油污模式当中的凝露的步骤,相较于整体两种模式的直接叠加,节约了时间,也节约了凝露所需的能源,使用户体验提升。
除此之外,对于霜点温度的选择,本申请也并非直接选择的,由于油污量的增加,会导致热量传递困难,此时再直接简单地以外部环境作为霜点温度的判断,将可能会造成换热器表面无法结霜,因此,本申请提出了补偿机制,霜点温度=常规霜点温度-△T1,△T1>0,并且△T1的取值随着油污的量的不同而不同,这个△T1的选取可以是通过经验表格选择,或者是通过换热器的实时换热效率进行计算获得,能够避免无法结霜的情况。
进一步结合图2,对步骤S413进行进一步展开描述。
在一种可能的实施方式中,步骤S413进一步包括:
S4131、当化霜程度刚刚达到完全融化时,重新检测油污量;
S4132、判断油污量与预设油污量的大小;
S4133、当油污量≥预设油污量时,控制换热器的温度≤第一露点温度,使其表面凝露。其中,还可以开启风机并以第一转速运行,加快凝露。
S4134、向换热器的表面喷洒清洗剂;其中,第一露点温度<第二露点温度,第二露点温度=常规露点温度-△T2,△T2>0,并且△T2的取值随着所述清洗剂的量的不同而不同。在喷洒清洗剂的过程中,还可以控制风机关闭,避免清洗剂被吹走。
此种实施方式当中,新增了对于油污量的判断,不直接向换热器表面喷洒清洗剂,原因在于,如果油污量≥预设油污量时,化霜程度刚刚达到完全融化时所剩下的水量并不足以溶解油污量较大时所需的清洗剂的量,这时候直接喷洒清洗剂可能造成清洗剂溶解不充分,进而使得油污有残留。因此,还是新增了一步凝露的过程,但即使是新增了一步过程,由于是在化霜程度刚刚达到完全融化时进行的,本身还是存留有一部分雪水,这将使得凝露时间缩短,能源消耗降低。
除此之外,本发明还基于不同的换热器表面脏污状态,还设置了不同的换热器温度,也即限制了第一露点温度小于第二露点温度,原因在于,在通过换热器温度≤第一露点温度的第一次进行凝露过程中,换热器的表面油污比较多,类似油烟机,油污增多会使热量传递更加困难,不利于凝露,此时第一露点温度温度应当相对于常规露点温度较低,第一露点温度<常规露点温度,能够实现顺利的凝露。而第二次凝露过程中,由于喷洒了清洗剂,油污被溶解,裸露出大片的光洁面,此时凝露变得较为容易,第一露点温度<第二露点温度,但仍然达不到常规凝露的标准,第二露点温度<常规露点温度。因此使第一露点温度<第二露点温度<常规露点温度,更利于凝露,第二露点温度=常规露点温度-△T2,△T2>0,△T2的选择与△T1的选择同理,可以是通过查表,或者通过换热器下换热效率计算获得。
S4135、控制所述换热器的温度升高至清洗剂最佳工作温度,并维持设定时间;
S4136、当油污量<预设油污量时,直接向所述换热器的表面喷洒清洗剂,并进入步骤S4135。
通过增加换热器温度至清洗剂最佳工作温度,并维持设定时间,能够使油污溶解更加彻底。当油污量<预设油污量时,此时说明去积灰模式下的残留的雪水足够清洁使用,便可以去掉第一次凝露过程,直接进行喷洒清洗剂的操作步骤。
上面已经对“先执行去积灰模式再执行去油污模式”的自清洁控制方法的改进进行了介绍,同样地,对于“单独执行去油污模式”也进行了改进,下面参照图3进一步进行介绍。
如图3所示,“单独执行去油污模式”的方案具体包括:
S421、控制换热器的温度≤第一露点温度,使其表面凝露;
S422、向所述换热器的表面喷洒清洗剂;
S423、控制所述换热器的温度≤第二露点温度,使其表面凝露;
S424、控制所述换热器的温度升高,使其表面重新干燥;
S425、控制换热器的温度升高至清洗剂最佳工作温度,并维持设定时间。
在前述部分描述“先执行去积灰模式再执行去油污模式”的过程当中,是包含有许多对于去油污模式的方案的介绍的,而单独执行去油污模式的最凸出的发明点便在于,现有技术当中对于油污是只有第一次凝露过程的,凝露完成后直接喷洒清洗剂,然后进行干燥处理,这将会存在较多的清洗剂以及油污残留,效果不够好,在此背景基础上,本发明提供了一种双凝露的控制方法,喷洒清洗剂前进行了凝露,油污被溶解后又进行了一次凝露冲洗,进而实现更好地清洁效果。
在另一种更优选地实施方式中,第一露点温度<第二露点温度,其优势已经在上述关于去积灰和去油污结合的方案当中进行过阐述,此处便不再赘述。对于风机的控制,与去积灰和去油污结合的方案当中的原理以及效果相同,在凝露过程中控制风机以第一转速运行,增加凝露速度,喷洒清洗剂时关闭风机,干燥换热器时,以第二转速运行。
在另一种实施方式中,第二露点温度=常规露点温度-△T2,其中,△T2>0,并且△T2的取值随着所述清洗剂的量的不同而不同,△T2的获取方式以及此种设置的有益效果在前述也已经提及,便不再赘述。
综上所述,本发明在换热器具有油污时,根据油污量不同选择不同的控制方法,但无论何种控制方法,均包含了油污的处理,使得空调器的自清洁控制方法更加合理。并且,基于不同的控制方法,本发明还提出了去积灰与去油污结合的控制方法,能够节省凝露过程所需的时间以及能源。另外,本发明还提出了一种新的去油污模式的控制方法,也即双凝露的控制方法。
需要说明的是,上述实施方式仅仅用来阐述本发明的原理,并非旨在与限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员能够对上述结构进行调整,以便本发明能够应用于更加具体的应用场景。
例如,在一种可替换的实施方式中,使换热器表面重新干燥是控制换热器的温度升高来实现的,但是,只要放置时间较长,换热器本身也能慢慢实现干燥,因此,提升换热器的温度的方案并不是必须的,只要能实现换热器表面干燥即可,这种方案属于本发明的基础上的简单变化,这些都不偏离本发明的原理,因此都将落入本发明的保护范围之内。
此外,本发明还提供了一种空调器,包括处理器,所述处理器设置成能够执行上述技术方案中任一项所述的空调器的自清洁控制方法。
本领域技术人员可以理解,上述空调器还包括一些其他公知结构,例如处理器、控制器、存储器等,其中,存储器包括但不限于随机存储器、闪存、只读存储器、可编程只读存储器、易失性存储器、非易失性存储器、串行存储器、并行存储器或寄存器等,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等。为了不必要地模糊本公开的实施例,这些公知的结构未在附图中示出。
上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本发明的保护范围之内。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (8)

1.一种空调器的自清洁控制方法,其特征在于,包括:
控制换热器的温度≤第一露点温度,使其表面凝露;
向所述换热器的表面喷洒清洗剂;
控制所述换热器的温度≤第二露点温度,使其表面凝露;
控制所述换热器的温度升高,使其表面重新干燥;
其中,所述第一露点温度<所述第二露点温度;
所述第二露点温度=常规露点温度-△T2,其中,所述△T2>0,并且所述△T2的取值随着所述清洗剂的量的不同而不同。
2.根据权利要求1所述的控制方法,其特征在于,“向所述换热器的表面喷洒清洗剂”的步骤之后,所述控制方法还包括:
控制所述换热器的温度升高至清洗剂最佳工作温度,并维持设定时间。
3.根据权利要求2所述的控制方法,其特征在于,“控制换热器的温度≤第一露点温度,使其表面凝露”的步骤具体包括:
控制所述换热器的温度≤第一露点温度,开启风机并以第一转速运行,使其表面凝露。
4.根据权利要求2所述的控制方法,其特征在于,“控制换热器的温度≤第二露点温度,使其表面凝露”的步骤具体包括:
控制所述换热器的温度≤第二露点温度,开启风机并以第一转速运行,使其表面凝露。
5.根据权利要求3或4所述的控制方法,其特征在于,“向所述换热器的表面喷洒清洗剂”的步骤具体包括:
关闭风机,然后向所述换热器的表面喷洒清洗剂。
6.根据权利要求5所述的控制方法,其特征在于,“控制所述换热器的温度升高,使其表面重新干燥”的步骤具体包括:
控制所述换热器的温度升高,开启风机并以第二转速运行,使其表面重新干燥;
其中,所述第二转速>所述第一转速。
7.根据权利要求1所述的控制方法,其特征在于,“控制换热器的温度≤第一露点温度”的步骤具体包括:
控制空调器的四通阀换向,以逆循环的方式控制换热器的温度≤第一露点温度。
8.一种空调器,其特征在于,所述空调器包括处理器,所述处理器设置成能够执行权利要求1至7中任一项所述的空调器的自清洁控制方法。
CN202110062247.6A 2021-01-18 2021-01-18 空调器的自清洁控制方法及空调器 Active CN112665103B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110062247.6A CN112665103B (zh) 2021-01-18 2021-01-18 空调器的自清洁控制方法及空调器
PCT/CN2021/120690 WO2022068731A1 (zh) 2021-01-18 2021-09-26 空调器的自清洁控制方法及空调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110062247.6A CN112665103B (zh) 2021-01-18 2021-01-18 空调器的自清洁控制方法及空调器

Publications (2)

Publication Number Publication Date
CN112665103A CN112665103A (zh) 2021-04-16
CN112665103B true CN112665103B (zh) 2022-12-23

Family

ID=75415537

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110062247.6A Active CN112665103B (zh) 2021-01-18 2021-01-18 空调器的自清洁控制方法及空调器

Country Status (2)

Country Link
CN (1) CN112665103B (zh)
WO (1) WO2022068731A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112665103B (zh) * 2021-01-18 2022-12-23 青岛海尔空调器有限总公司 空调器的自清洁控制方法及空调器
CN112710063B (zh) * 2021-01-18 2022-10-28 青岛海尔空调器有限总公司 空调器的自清洁控制方法及空调器
CN115127229A (zh) * 2022-06-09 2022-09-30 青岛海尔空调器有限总公司 用于控制空调的方法及装置、空调、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238046A (ja) * 2007-03-27 2008-10-09 Tosoh Corp 洗浄剤の蒸留再生装置
EP2072940A1 (en) * 2007-12-20 2009-06-24 Sanyo Electric Co., Ltd. Cleaning device for heat exchanger
CN104833067A (zh) * 2015-04-30 2015-08-12 青岛海尔空调器有限总公司 一种控制换热温度收集冷凝水清洁空调器的方法及装置
CN111226080A (zh) * 2017-08-23 2020-06-02 江森自控科技公司 用于清洗冷却器系统的系统和方法
JP2020085438A (ja) * 2018-11-22 2020-06-04 グリー エレクトリック アプライアンシーズ インク オブ ズーハイGree Electric Appliances, Inc. Of Zhuhai 霜層厚さを増加可能な蒸発器の自己清浄方法及び空調器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096588A (ja) * 2015-11-27 2017-06-01 パナソニックIpマネジメント株式会社 空気調和機
CN110736190B (zh) * 2017-06-14 2021-04-20 青岛海尔空调器有限总公司 一种空调器自清洁的控制方法及装置
CN109140707B (zh) * 2018-07-19 2019-12-20 珠海格力电器股份有限公司 一种空调器自清洁方法、系统及空调器
CN110873427A (zh) * 2018-09-03 2020-03-10 青岛海尔空调器有限总公司 空调器自清洁方法及装置、空调器、计算机设备、存储介质
CN110906495A (zh) * 2018-09-18 2020-03-24 青岛海尔空调器有限总公司 空调器自清洁控制方法及装置、空调器、计算机设备、存储介质
CN111750733A (zh) * 2019-03-29 2020-10-09 松下电器研究开发(苏州)有限公司 空气调节器的除污控制方法
CN110736193B (zh) * 2019-09-30 2021-11-23 青岛海尔空调器有限总公司 用于空调自清洁的方法、装置和空调
CN110736192B (zh) * 2019-09-30 2022-06-03 重庆海尔空调器有限公司 用于空调自清洁的控制方法及装置、空调
CN110736194B (zh) * 2019-09-30 2022-06-28 青岛海尔空调器有限总公司 用于空调自清洁的方法和空调
CN110906502B (zh) * 2019-11-01 2021-02-26 珠海格力电器股份有限公司 一种空调换热器自清洁系统及空调机组
CN111780329A (zh) * 2020-06-24 2020-10-16 珠海格力电器股份有限公司 空调自清洁控制方法、装置及空调机组
CN112665103B (zh) * 2021-01-18 2022-12-23 青岛海尔空调器有限总公司 空调器的自清洁控制方法及空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238046A (ja) * 2007-03-27 2008-10-09 Tosoh Corp 洗浄剤の蒸留再生装置
EP2072940A1 (en) * 2007-12-20 2009-06-24 Sanyo Electric Co., Ltd. Cleaning device for heat exchanger
CN104833067A (zh) * 2015-04-30 2015-08-12 青岛海尔空调器有限总公司 一种控制换热温度收集冷凝水清洁空调器的方法及装置
CN111226080A (zh) * 2017-08-23 2020-06-02 江森自控科技公司 用于清洗冷却器系统的系统和方法
JP2020085438A (ja) * 2018-11-22 2020-06-04 グリー エレクトリック アプライアンシーズ インク オブ ズーハイGree Electric Appliances, Inc. Of Zhuhai 霜層厚さを増加可能な蒸発器の自己清浄方法及び空調器

Also Published As

Publication number Publication date
WO2022068731A1 (zh) 2022-04-07
CN112665103A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
CN112665103B (zh) 空调器的自清洁控制方法及空调器
CN112710063B (zh) 空调器的自清洁控制方法及空调器
CN112665114B (zh) 空调器的自清洁控制方法及空调器
CN110873388B (zh) 一种空调及其自清洁的控制方法
EP0816549A3 (en) Domestic washing machine having a closed drying circuit, air condensation of vapour and self cleaning filter
CN111306693A (zh) 一种自清洁控制方法、装置及设备
JP5625400B2 (ja) 空気浄化装置
CN110873414A (zh) 一种空调及其自清洁的控制方法
CN110873405A (zh) 一种空调及其自清洁的控制方法
CN112665097B (zh) 一种空调自清洁控制方法
CN103221155B (zh) 清洁电厂设备的水-蒸汽循环的至少一个部件的方法
CN110873367A (zh) 一种空调
CN109916058B (zh) 空调器自清洁控制方法
CN111780329A (zh) 空调自清洁控制方法、装置及空调机组
CN111043703A (zh) 空调器风道自清洁控制方法
CN109405601A (zh) 一种风口自清洁的换热器
CN110873400A (zh) 一种空调及其自清洁的控制方法
JP5127514B2 (ja) 衣類乾燥機
CN110873410A (zh) 一种空调及其自清洁的控制方法
CN110749096B (zh) 一种自清洁方法及热泵热水器
CN206563529U (zh) 一种污泥干化尾气冷凝除湿器的在线除垢装置
CN110873398A (zh) 一种空调及其自清洁的控制方法
CN117760047A (zh) 一种自清洁方法及厨房空调
CN110873411A (zh) 一种空调及其自清洁的控制方法
CN110873396A (zh) 一种空调及其自清洁的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant