CN112647042A - 一种用热板制备二维WS2/PbI2垂直异质结的制备方法 - Google Patents

一种用热板制备二维WS2/PbI2垂直异质结的制备方法 Download PDF

Info

Publication number
CN112647042A
CN112647042A CN202011496896.9A CN202011496896A CN112647042A CN 112647042 A CN112647042 A CN 112647042A CN 202011496896 A CN202011496896 A CN 202011496896A CN 112647042 A CN112647042 A CN 112647042A
Authority
CN
China
Prior art keywords
pbi2
substrate
dimensional
heterojunction
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011496896.9A
Other languages
English (en)
Inventor
张礼杰
牛丽娟
豆振军
董幼青
邹超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of New Materials and Industrial Technology of Wenzhou University
Original Assignee
Institute of New Materials and Industrial Technology of Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of New Materials and Industrial Technology of Wenzhou University filed Critical Institute of New Materials and Industrial Technology of Wenzhou University
Priority to CN202011496896.9A priority Critical patent/CN112647042A/zh
Publication of CN112647042A publication Critical patent/CN112647042A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本专利公开了一种用热板制备二维WS2/PbI2垂直异质结的制备方法,其技术方案要点是:使用热板作为热源,直接蒸发碘化铅,制备方法简单,对环境的要求降低,对样品的损伤小,对仪器的要求低,基本每个实验室都能满足,成本低,样品结晶质量高,并且扩展了二维层状材料体系,范德瓦尔斯异质结构更加多样化。

Description

一种用热板制备二维WS2/PbI2垂直异质结的制备方法
技术领域
本专利涉及材料的气相合成法制备领域,具体涉及一种用热板制备二维WS2/PbI2垂直异质结的制备方法。
背景技术
石墨烯的发现引起了人们对二维层状材料的广泛关注,其中包含石墨烯、六方氮化硼(hBN)和过渡金属双卤代烃(TMDs)等。由于这些层状材料层内以共价键结合,层间以弱的范德华力作用,可以很容易地分离或合成为单原子层或少原子层,并且可以灵活的组合成不同的异质结构。
除了石墨烯和六方氮化硼,对于于二维层状材料的研究主要集中在硫族化合物,比如过渡金属双卤代烃(TMDs)、IIIA-VIA族(GaS2、 GaSe2)、IVA-VIA族(SnS2、SnSe2)等材料,这些硫系材料通常表现出层数依赖的电子和光学性质。
除了硫族化合物,IVA-VIIA族金属卤化物最近也引起了一些关注。PbI2 是一种层状半导体,在可见范围内有2.5eV左右的带隙。与TMDs类似,PbI2具有六方晶系,铅原子层夹在两层碘原子之间,层间以较强的共价键结合,层间以弱的范德华力结合。更重要的是,PbI2为p 型半导体,而MoS2和WS2这样的大多数显示n型行为。PbI2与不同的TMDs结合可以形成丰富多样的p-n结,成为现代电子设备的基本构件。
最成熟的晶体生长方法是基于蒸汽和溶液处理技术,物理蒸汽输运(PVT)通常产生与基片紧密接触的高质量单晶;然而,它相对比较复杂和成本高,因为它必须包括一个高真空或惰性载气环境。此外,它的原料利用率,即初始的粉末与生长在基底单晶的比例,比较低。由此,基于溶液的处理技术更受人们的青睐,但是一些材料对溶剂的溶解度不高,并且形成的晶体可能含有溶剂分子,这限制了溶液法的应用,尽管在过去的几十年里发展了大量的改良生长方法,但由于生产效率低、通用性差,特别对溶解度差、稳定性差的材料,具有一定的阻碍。目前,合成PbI2的方法主要有原子层沉积(ALD),液相剥离法,溶液法,物理气相沉积法(PVD),但是这些方法的应用成本高,生产效率低,可控性差,开发一种有效而简单的方法来生长晶体材料是很重要的。本发明使用热板法生长PbI2,制备简单,操作方便,成本低,不需要昂贵的实验设备,基本每个实验室都可以配备,并且结晶度高。
发明内容
针对现有研究内容的不足,本专利的目的在于提供一种利用用热板制备二维WS2/PbI2垂直异质结的方法,以PbI2为源,热板提供热源,利用载玻片形成微间距,可控的制备WS2/PbI2异质结。
为了实现以上目的,本专利采用以下实验方案:
这种用热板制备二维WS2/PbI2垂直异质结的制备方法,包括如下步骤:
(1)通过热蒸发和具有镂空图案的掩膜版在300nm SiO2/Si基底上蒸镀12nm WO3源,得到具有图案的12nm WO3源的SiO2/Si 基底;
(2)用化学气相沉积的方法,将带有图案的SiO2/Si基底放置在管式炉温区中心,通入300sccm氩气,10-20min后,调整氩气流量为12sccm,将炉温升温至1000℃,通入20sccm硫化氢气体,反应 90-100s,打开炉盖降温并且停止通入硫化氢气体,得到WS2三角片;
(3)将上述CVD制备的WS2三角片作为基底制备异质结。将加热台温度设置为330℃,在加热台上放置载玻片形成微间距,待温度达到330℃时放置PbI2粉末和WS2三角片于载玻片上,产生温度差,WS2基底片和PbI2之间设有间距,产生类真空环境,反应1-2min,得到二维WS2/PbI2垂直异质结。
进一步的,炉温以25℃/分钟升温至1000℃。
本发明的有益效果:
使用热板作为热源,直接蒸发碘化铅,制备方法简单,对环境的要求降低,对样品的损伤小,对仪器的要求低,基本每个实验室都能满足,成本低,样品结晶质量高,并且扩展了二维层状材料体系,范德瓦尔斯异质结构更加多样化。
附图说明
图1为本发明的制备流程图;
图2为通过热板生长的二维WS2/PbI2垂直异质结光学图;
图3为本发明的异质结的拉曼光谱图;
图4为本发明的异质结的荧光光谱图;
图5为本发明的异质结的AFM图。
具体实施方式:
以下将结合附图对本专利作进一步的描述,需要说明的是,本实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本专利的保护范围并不限于本实施例。
实施例1
这种用热板制备二维WS2/PbI2垂直异质结的制备方法,包括如下步骤:
(1)通过热蒸发和具有镂空图案的掩膜版在300nm SiO2/Si基底上蒸镀12nm WO3源,得到具有图案的12nm WO3源的SiO2/Si 基底;
(2)用化学气相沉积的方法,将带有图案的SiO2/Si基底放置在管式炉温区中心,通入300sccm氩气,10min后,调整氩气流量为 12sccm,炉温以25℃/分钟升温至1000℃,通入20sccm硫化氢气体,反应90s,打开炉盖降温并且停止通入硫化氢气体,得到WS2 三角片;
(3)将上述CVD制备的WS2三角片作为基底制备异质结。将加热台温度设置为330℃,在加热台上放置载玻片形成微间距,待温度达到330℃时放置PbI2粉末和WS2三角片于载玻片上,产生温度差,WS2基底片和PbI2之间设有间距,产生类真空环境,反应1-2min,得到二维WS2/PbI2垂直异质结。
实施例2
这种用热板制备二维WS2/PbI2垂直异质结的制备方法包括如下步骤:
(1)通过热蒸发和具有镂空图案的掩膜版在300nm SiO2/Si基底上蒸镀12nm WO3源,得到具有图案的12nm WO3源的SiO2/Si 基底;
(2)用化学气相沉积的方法,将带有图案的SiO2/Si基底放置在管式炉温区中心,通入300sccm氩气,15min后,调整氩气流量为 12sccm,将炉温升温至1000℃,通入20sccm硫化氢气体,反应95s,打开炉盖降温并且停止通入硫化氢气体,得到WS2三角片;
(3)将上述CVD制备的WS2三角片作为基底制备异质结。将加热台温度设置为330℃,在加热台上放置载玻片形成微间距,待温度达到330℃时放置PbI2粉末和WS2三角片于载玻片上,产生温度差,WS2基底片和PbI2之间设有间距,产生类真空环境,反应1-2min,得到二维WS2/PbI2垂直异质结。
实施例3
这种用热板制备二维WS2/PbI2垂直异质结的制备方法,包括如下步骤:
(1)通过热蒸发和具有镂空图案的掩膜版在300nm SiO2/Si基底上蒸镀12nm WO3源,得到具有图案的12nm WO3源的SiO2/Si 基底;
(2)用化学气相沉积的方法,将带有图案的SiO2/Si基底放置在管式炉温区中心,通入300sccm氩气,20min后,调整氩气流量为 12sccm,将炉温升温至1000℃,通入20sccm硫化氢气体,反应100s,打开炉盖降温并且停止通入硫化氢气体,得到WS2三角片;
(3)将上述CVD制备的WS2三角片作为基底制备异质结。将加热台温度设置为330℃,在加热台上放置载玻片形成微间距,待温度达到330℃时放置PbI2粉末和WS2三角片于载玻片上,产生温度差,WS2基底片和PbI2之间设有间距,产生类真空环境,反应1-2min,得到二维WS2/PbI2垂直异质结。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种用热板制备二维WS2/PbI2垂直异质结的制备方法,其特征在于,包括如下步骤:
(1)通过热蒸发和具有镂空图案的掩膜版在300nm SiO2/Si基底上蒸镀12nm WO3源,得到具有图案的12nm WO3源的SiO2/Si基底;
(2)用化学气相沉积的方法,将带有图案的SiO2/Si基底放置在管式炉温区中心,通入300sccm氩气,10-20min后,调整氩气流量为12sccm,将炉温升温至1000℃,通入20sccm硫化氢气体,反应90-100s,打开炉盖降温并且停止通入硫化氢气体,得到WS2三角片;
(3)将上述CVD制备的WS2三角片作为基底制备异质结。将加热台温度设置为330℃,在加热台上放置载玻片形成微间距,待温度达到330℃时放置PbI2粉末和WS2三角片于载玻片上,产生温度差,WS2基底片和PbI2之间设有间距,产生类真空环境,反应1-2min,得到二维WS2/PbI2垂直异质结。
2.根据权利要求1所述的一种用热板制备二维WS2/PbI2垂直异质结的制备方法,其特征在于:炉温以25℃/分钟升温至1000℃。
CN202011496896.9A 2020-12-17 2020-12-17 一种用热板制备二维WS2/PbI2垂直异质结的制备方法 Pending CN112647042A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011496896.9A CN112647042A (zh) 2020-12-17 2020-12-17 一种用热板制备二维WS2/PbI2垂直异质结的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011496896.9A CN112647042A (zh) 2020-12-17 2020-12-17 一种用热板制备二维WS2/PbI2垂直异质结的制备方法

Publications (1)

Publication Number Publication Date
CN112647042A true CN112647042A (zh) 2021-04-13

Family

ID=75354653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011496896.9A Pending CN112647042A (zh) 2020-12-17 2020-12-17 一种用热板制备二维WS2/PbI2垂直异质结的制备方法

Country Status (1)

Country Link
CN (1) CN112647042A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768463A (zh) * 2017-11-03 2018-03-06 电子科技大学 一种自驱动光电探测器及其制备方法
CN110284189A (zh) * 2019-07-15 2019-09-27 山东大学 微距升华法生长分子晶体方法与装置
CN111472049A (zh) * 2020-06-05 2020-07-31 温州大学 一种层数可控的二硫化钨单晶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107768463A (zh) * 2017-11-03 2018-03-06 电子科技大学 一种自驱动光电探测器及其制备方法
CN110284189A (zh) * 2019-07-15 2019-09-27 山东大学 微距升华法生长分子晶体方法与装置
CN111472049A (zh) * 2020-06-05 2020-07-31 温州大学 一种层数可控的二硫化钨单晶的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱兴华等: "近空间升华法制备PbI2厚膜及其性质研究", 《功能材料》 *

Similar Documents

Publication Publication Date Title
US10689775B2 (en) Solution deposition method for forming metal oxide or metal hydroxide layer
CN104846428B (zh) 一种金属助熔剂法生长过渡金属硫属化合物晶体的方法
CN103526297A (zh) 一种制备拓扑绝缘体Bi2Se3薄膜的方法
CN108039403B (zh) 一种高质量晶圆级硒氧化铋半导体单晶薄膜的批量化制备方法
CN106558475B (zh) 晶圆级单层二硫化钼膜及其制备方法
JP2006321681A (ja) 炭化珪素単結晶の製造方法
CN109437124B (zh) 一种合成单层过渡金属硫族化合物的方法
CN101965419B (zh) 使碳化硅单晶生长的方法
CN112663144B (zh) 二维In2S3/SnS异质结晶体材料的制备方法
US10017878B2 (en) Growth method of graphene
CN1113987C (zh) 一种利用熔盐法生长氮化镓单晶的方法
Zhou et al. Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition
KR101742391B1 (ko) 인듐 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
CN113186590B (zh) 一种厘米级三氧化钼单晶的制备方法
CN113410287B (zh) 二维SnSe-SnSe2 p-n异质结及其制备方法
CN112647042A (zh) 一种用热板制备二维WS2/PbI2垂直异质结的制备方法
Yoon et al. Preparation of CuInSe2 thin films through metal organic chemical vapor deposition method by using di-μ-methylselenobis (dimethylindium) and bis (ethylisobutyrylacetato) copper (II) precursors
CN106185897B (zh) 一种在多种基底上可控制备石墨烯纳米带的方法
Kim et al. Preparation of copper (Cu) thin films by MOCVD and their conversion to copper selenide (CuSe) thin films through selenium vapor deposition
Kim et al. Optical absorption of Co2+ ions in In2S3 thin films
CN113737279A (zh) 一种黑磷砷晶体的制备方法
CN112850660A (zh) 一种α-MnSe纳米片及其制备方法与用途
KR101114293B1 (ko) 실리콘 박막 형성 방법
CN112647047B (zh) 一种铯锡碘薄膜的制备方法及其应用
Sims et al. Synthesis of heteroepitaxial BP and related Al-B-Sb-As-P films via CVD of Al (BH4) 3 and MH3 (M= P, As, Sb) at temperatures below 600° C

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210413