CN112646169B - 一种制备PPEs高荧光纳米粒子方法 - Google Patents

一种制备PPEs高荧光纳米粒子方法 Download PDF

Info

Publication number
CN112646169B
CN112646169B CN202011443076.3A CN202011443076A CN112646169B CN 112646169 B CN112646169 B CN 112646169B CN 202011443076 A CN202011443076 A CN 202011443076A CN 112646169 B CN112646169 B CN 112646169B
Authority
CN
China
Prior art keywords
ppes
pcl
fluorescence
tetrahydrofuran
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011443076.3A
Other languages
English (en)
Other versions
CN112646169A (zh
Inventor
权莉
宋钦涌
童捷
赵应时
魏言春
王毅庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN202011443076.3A priority Critical patent/CN112646169B/zh
Publication of CN112646169A publication Critical patent/CN112646169A/zh
Application granted granted Critical
Publication of CN112646169B publication Critical patent/CN112646169B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • C08G65/485Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/44Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols by oxidation of phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3328Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkyne-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/74Further polymerisation of the obtained polymers, e.g. living polymerisation to obtain block-copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyethers (AREA)

Abstract

本发明公开了聚苯醚(PPEs)荧光染料改性技术,特别涉及一种制备PPEs高荧光纳米粒子方法,其步骤包含:PPEs‑OH的合成:在施楞克烧瓶中,将2‑(2,5‑二碘‑4‑甲基)苯乙醇、1,4‑二乙炔基‑2,5‑二辛氧基苯和哌啶按照物质的量1~3:1~3:1~3.3混合溶解到四氢呋喃中,加入0.00001~1当量的双三苯基磷二氯化钯((PPh3)2PdCl2)和0.00001~1当量的碘化亚铜(CuI),在室温下搅拌20‑28h;本发明首先合成PPEs‑OH,用羟基引发己内酯开环聚合得到PCL修饰的PPEs,然后与嵌段共聚物PEG‑PCL自组装成纳米粒子,PCL的修饰有效阻滞PPEs聚集改善PPEs荧光性能,同时提高PPEs的光稳定性。本发明改善了PPEs的亲水性和生物相容性,使PPEs具有更广泛的应用。

Description

一种制备PPEs高荧光纳米粒子方法
技术领域
本发明涉及聚苯醚(PPEs)荧光染料改性技术,特别涉及一种制备PPEs高荧光纳米粒子方法。
背景技术
共轭聚合物,如聚噻吩(PT)、聚对苯撑乙烯PPV)和聚苯醚(PPEs)是一类有机半导体材料,其特点是其聚合物主链上存在的大型非定域氢键。它们表现出优异的光物理性能,如高荧光性和光稳定性,这是生物传感和细胞成像等各种生物应用的关键参数。共轭聚合物的光学性质敏感地依赖于聚合物主链的化学组成和侧链的物理填充。尽管关于能量在链内和链间迁移的理论复杂且有争议,但共轭聚合物在固态时由于链间的强对偶叠加,容易形成H聚集,导致荧光量子产率大大降低,这一观点已被广泛接受。
荧光探针在生物医学研究中得到了广泛的研究,如细胞成像、生物传感,甚至用于疾病诊断的临床应用。理想情况下,该探针应具有较高的荧光量子产率和光稳定性,且与细胞或其他生物物质的非特异性相互作用最小。聚苯醚(PPEs)作为共轭聚合物的重要组成之一,在有机溶剂中表现出极高的荧光量子产率(QYs),几乎达到100%。自从Bunz的小组在2003年的先锋工作报告以来,许多基于PPE的探针已经被开发用于各种各样的生物传感应用。为了研制水溶性共轭聚合物探针,通常在聚合物主链上添加羧酸盐、硫酸盐、季铵盐或聚乙二醇等离子侧链,然而,PPEs的疏水主链由于有较强的潜聚作用,仍然容易聚集,形成准分子态,这将极大地降低荧光10-100倍,这些探针的QYs通常下降到1-10%,这给PPEs荧光探针在应用中的准确性和灵敏性带来极大的困扰。
发明内容
本发明目的在于提供一种简单通用的制备PPEs高荧光纳米粒子方法,首先合成PPEs-OH,用羟基引发己内酯开环聚合得到PCL修饰的PPEs,然后与嵌段共聚物PEG-PCL自组装成纳米粒子,PCL的修饰有效阻滞PPEs聚集改善PPEs荧光性能,同时提高PPEs的光稳定性,本发明改善了PPEs的亲水性和生物相容性,使PPEs具有更广泛的应用,可以有效解决背景技术中提出的问题。
一种制备PPEs高荧光纳米粒子方法,其步骤包含:
S1.合成PPEs-OH
在施楞克烧瓶中,将2-(2,5-二碘-4-甲基)苯乙醇、1,4-二乙炔基-2,5-二辛氧基苯和哌啶按照物质的量1~3:1~3:1~3.3混合溶解到四氢呋喃中,加入0.00001~1当量的双三苯基磷二氯化钯((PPh3)2PdCl2)和0.00001~1当量的碘化亚铜(CuI),在室温下搅拌20-28h;所得聚合物用二氯甲烷提取至少2次,真空蒸发去除溶剂,得到固体,再先后用5%-20%氨和5%-20%盐酸洗涤;减压抽滤去除溶剂;得到产物,再用二氯甲烷溶解,用甲醇沉降,过滤,此过程重复至少2次,得到深绿色固体;
S2.对S1制备的PPEs-OH进行修饰,得到PCL-PPEs
取S1步骤制备的PPEs-OH样品在50℃-90℃油泵真空下干燥后加入ε-己内酯,其中PPEs-OH与ε-己内酯(PCL)按1:1-1:1500(摩尔比)比例投料,将混合物加热到70-140℃,直到聚合物溶解,加入0.01~1当量二价亚锡化合物作为催化剂,混合物变成固体后,反应停止,将产品溶于氯仿中,用甲醇沉降后过滤,在油泵真空下干燥得到PCL修饰的PPEs;
S3.将PPEs-PCL和PEG-PCL共组装
将0.1-100mg所述PCL修饰的PPEs(PPEs-PCL)与0-1000mg PCL2K-PEG5K共溶于1-100ml四氢呋喃中,然后把四氢呋喃溶液缓慢滴加到10-1000ml水中制得溶液,去除四氢呋喃,并在-20℃至-50℃下冻干,得到黄色粉末状的PPEs荧光纳米粒子。
进一步地,所述PPEs-OH分子量的范围为500-10000g/mol,浓度范围为0.01mM-100mM,所述PCL分子量的范围为0-150000g/mol,浓度范围为0.1mM-10000mM。
进一步地,所述S2中的ε-己内酯(PCL)分子量在0-150000g/mol。
进一步地,所述催化剂为辛酸亚锡或锡(II)2-乙基己酸。
优选地,所述辛酸亚锡或锡(II)2-乙基己酸物质的量范围为0.1mM-10000mM。进一步地,所述S3中去除四氢呋喃的方法是用透析袋透析。
PCL-PPEs的合成路径具体如下:
Figure BDA0002830704780000031
与现有技术相比,本发明的有益效果是:
一、用ε-己内酯(PCL)修饰,ε-己内酯(PCL)可以有效阻滞PPEs堆积,保护荧光;
二、用ε-己内酯(PCL)修饰相当于给每个PPEs加上一个保护壳,在保护荧光的同时提高PPEs的光稳定性;
三、把聚苯醚(PPEs)做成纳米粒子,增加了聚苯醚(PPEs)水溶性和生物相容性,拓展了聚苯醚(PPEs)在有机电子和传感领域中的应用。
附图说明
图1为不同PCL链长修饰的PPEs的荧光图,具体表现为PPEs分子量在≤10000da的情况下,PPEs荧光强度随着PCL分子量的增加而增强;
图2为不同PCL链长修饰的PPEs的与PEG-PCL共组装纳米粒子电镜图与动态光散射图,图形具体阐述如下:PPEs在PCL修饰前后,与PEG-PCL共组装的纳米粒子其粒径随着PCL分子量的增加而缓慢增加,如PCL0-PPEs与PEG-PCL共组装的纳米粒子的粒径为20nm,PCL2280-PPEs与PEG-PCL共组装的纳米粒子的粒径为23nm,PCL6840-PPEs与PEG-PCL共组装的纳米粒子的粒径为25nm;
图3为PCL修饰PPEs前后光稳定性,稳定性具体表现:PCL修饰之后,PPEs的光稳定性得到很大的提高,在光照1h后,荧光强度降低了4%。
具体实施方式
化学试剂:辛酸亚锡、ε-己内酯和涉及到的其他试剂从西格玛奥德里奇(上海)获得最高纯度,PCL2K-PEG5K购自(南京聚优)。
使用仪器:动态光散射纳米粒度电位仪,墨尔文仪器;透射电子显微镜JEOL JEM-2010(HR);紫外-可见分光光度计(日本岛津公司UV-3600);Horiba PTI QuantaMaster 400稳态荧光体系;Bruker1H质子NMR 400DRX光谱仪。
以下实施例涉及到的荧光检测方法具体为:在稀释的氯仿溶液中,测试PPEs纳米粒子吸收和发射光谱;以硫酸奎宁为参照,通过吸收和发射光谱测得PPEs纳米粒子的相对荧光量子产率。
实施例1
S1.PPEs-OH的合成
在施楞克烧瓶中加入1.00mmol 2-(2,5-二碘-4-甲基)苯乙醇、1.00mmol 1,4-二乙炔基-2,5-二辛氧基苯和1.60mL哌啶,用1.60mL四氢呋喃(THF),将三种物质溶解,再加入0.1μmol双三苯基磷二氯化钯((PPh3)2PdCl2),1.80μmol碘化亚铜(CuI)混合,在室温下搅拌24h;
所得聚合物每次用1ml二氯甲烷提取,提取3次,真空蒸发去除溶剂,得到固体,再先后用10%氨水和10%盐酸洗涤;减压抽滤去除溶剂得产物,再用1ml二氯甲烷提取,提取3次后用甲醇沉降,过滤,得到深绿色固体P0;
S2.PPEs-PCL的合成:取10mgS1制备的样品PPEs-OH,在70℃油泵真空下干燥后加入0.2mlε-己内酯,将混合物加热到110℃,直到聚合物溶解,然后加入辛酸亚锡(0.1mg,0.3mol),混合物变成固体后,反应停止,将产品溶于2ml氯仿中,用甲醇沉降,过滤,在油泵真空下干燥,得到产物P20;
S3.PPEs-PCL组装:将S2制备的1.00mgPPEs-PCL溶解在1ml四氢呋喃中,在涡流作用下,将混合物滴入10ml去离子水中1h,然后用透析袋透析去除四氢呋喃,并在-50℃下冻干,得到黄色粉末。
按照上述的荧光检测方法,实施例1制备出来的目标物的荧光量子产率为0.05。
实施例2
S1.PPEs-OH的合成
在施楞克烧瓶中加入2.00mmol 2-(2,5-二碘-4-甲基)苯乙醇、2.00mmol 1,4-二乙炔基-2,5-二辛氧基苯和3.20mL哌啶,用3.20mL四氢呋喃(THF),将三种物质溶解,再加入0.2μmol双三苯基磷二氯化钯((PPh3)2PdCl2),3.60μmol碘化亚铜(CuI)混合,在室温下搅拌24小时;
所得聚合物每次用2ml二氯甲烷提取,提取3次,真空蒸发去除溶剂,得到固体,再先后用10%氨水和10%盐酸洗涤;减压抽滤去除溶剂得产物,再用2ml二氯甲烷提取,提取3次后用甲醇沉降,过滤,得到深绿色固体P0;
S2.PPEs-PCL的合成:取100mgS1制备的样品PPEs-OH,在70℃油泵真空下干燥后加入2mlε-己内酯,将混合物加热到110℃,直到聚合物溶解,然后加入锡(II)2-乙基己酸(1mg,3mol),混合物变成固体后,反应停止,将产品溶于5ml氯仿中,用甲醇沉降,过滤,在油泵真空下干燥,得到产物P20;
S3.PPEs-PCL和PCL2K-PEG5K共组装:将S2制备的5mgPPEs-PCL和55mgPCL2K-PEG5K(市场采购)溶解在4ml四氢呋喃,在涡流作用下,将混合物滴入15ml去离子水中1h,然后用透析袋透析去除四氢呋喃,并在-50℃下冻干,得到黄色粉末。
按照上述的荧光检测方法,实施例2制备出来的目标物的荧光量子产率为0.37。
实施例3
A.PPEs-PCL的合成:取100mg实施例2中S2步骤制得的样品P20,在70℃油泵真空下干燥后加入4mlε-己内酯,将混合物加热到110℃,直到聚合物溶解,然后加入辛酸亚锡(1mg,3mol),混合物凝固后,反应就停止了,将产品溶于氯仿中,用甲醇沉降,过滤,在油泵真空下干燥,得到产物P60。
B.PPEs-PCL和PCL2K-PEG5K共组装:将A步骤制备的1.00mgPPEs-PCL和11mgPCL2K-PEG5K(市场采购)溶解在1ml,在涡流作用下,将混合物滴入15ml去离子水中1h,然后用透析袋透析去除四氢呋喃,并在-50℃下冻干,得到黄色粉末。
按照上述的荧光检测方法,实施例3制备出来的目标物的荧光量子产率为0.78。
实施例4
该技术方案是在实施例3方案基础上的进一步实验,实施方式同实施例3,唯一不同的是用100mg P60与2mlε-己内酯反应得到P100;其余实施方式同实施例3,此处不予赘述。
按照上述的荧光检测方法,实施例4制备出来的目标物的荧光量子产率为0.87。
实施例5
该技术方案是在实施例4方案基础上的进一步实验,实施方式同实施例3,唯一不同的是用100mg P100与5mlε-己内酯反应得到P200;其余实施方式同实施例3,此处不予赘述。
按照上述的荧光检测方法,实施例5制备出来的目标物的荧光量子产率为0.96。
实施例6
该技术方案是在实施例5方案基础上的进一步实验,实施方式同实施例3,唯一不同的是用100mg P200与10ml己内酯反应得到P400;其余实施方式同实施例3,此处不予赘述。
按照上述的荧光检测方法,实施例6制备出来的目标物的荧光量子产率为0.68。
本发明实现以上目的采用的技术方案是,先用PCL对PPEs进行修饰,再与PEG-PCL共组装形成纳米粒子,PCL长度对PPEs荧光性能有一定的影响,即PPEs分子量在≤10000da的情况下,PCL分子量与PPEs的荧光性能成抛物线性关系:即随着PCL分子量的增加,PPEs荧光量子产率随着增加,当PCL分子量的增加到一定数值(具体数值取决于PPEs的分子量)后PPEs荧光量子产率将达到一个最佳值,然后PPEs荧光量子产率会随着PCL分子量的增加而下降。
对比例
现有制备聚苯醚荧光材料的具体过程:(Macromolecules,Vol.40,No.6,2007)将1,4-二碘-2-甲基苯(482mg,1.40mmol)与哌啶(1.5mL)、THF(1.5mL)、(PPh3)2PdCl2(2mg,2mol,0.2mol%)和CuI(1mg,5mol,0.4mol%)混合在施仑克烧瓶中。用乙炔气(34ml,1.40mmol)保护,混合物在室温下搅拌24h,然后用二氯甲烷(50mL)提取。用氢氧化铵(10%,2 50mL)和盐酸(10%,50mL)洗涤有机层。有机层在MgSO4上干燥,在减压下浓缩。剩余的混合物(10ml)用酸化甲醇沉淀。用一个烧结漏斗过滤,收集聚合物,在二氯甲烷中重新溶解和用甲醇再沉淀进行纯化。得到了一种黄绿色聚合物。
按照上述的荧光检测方法,对比例制备出来的目标物的荧光量子产率为0.38。
现有制备聚苯醚荧光材料的方法其产物由于PPEs分子堆积作用导致其量子产率比较低,而用本方案得到的产物其荧光性能可以得到很好地保护和改善。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.一种制备PPEs高荧光纳米粒子方法,其特征在于,包括以下步骤:
S1.合成PPEs-OH
在施楞克烧瓶中,将2-(2,5-二碘-4-甲基)苯乙醇、1,4-二乙炔基-2,5-二辛氧基苯和哌啶按照物质的量1 ~ 3:1 ~ 3:1 ~ 3.3混合溶解到四氢呋喃中,加入0.00001 ~ 1当量的双三苯基磷二氯化钯((PPh3)2PdCl2)和0.00001 ~ 1当量的碘化亚铜(CuI),在室温下搅拌20-28h;所得聚合物用二氯甲烷提取至少2次,真空蒸发去除溶剂,得到固体,再先后用浓度为5%-20%氨水和浓度为5%-20%盐酸洗涤;减压抽滤去除溶剂;得到产物,再用二氯甲烷溶解,用甲醇沉降,过滤,此过程重复至少2次,得到深绿色固体;
S2.对S1制备的PPEs-OH进行修饰,得到PCL-PPEs
取S1步骤制备的PPEs-OH样品在50℃-90℃油泵真空下干燥后加入ε-己内酯,其中PPEs-OH与ε-己内酯按摩尔比为1:1-1:1500比例投料,将混合物加热到70-140℃,直到聚合物溶解,加入0.01 ~ 1当量二价亚锡化合物作为催化剂,混合物变成固体后,反应停止,将产品溶于氯仿中,用甲醇沉降后过滤,在油泵真空下干燥得到PCL修饰的PPEs;
S3.将PPEs-PCL和PEG-PCL共组装
将0.1-100 mg 所述PCL修饰的PPEs(PPEs-PCL)与大于0至1000 mg PCL 2K -PEG 5K共溶于1-100ml四氢呋喃中,然后把四氢呋喃溶液缓慢滴加到10-1000 ml水中制得溶液,去除四氢呋喃,并在-20℃至-50℃下冻干,得到黄色粉末状的PPEs荧光纳米粒子。
2.根据权利要求1所述的一种制备PPEs高荧光纳米粒子方法,其特征在于,所述PPEs-OH分子量的范围为500-10000 g/mol,浓度范围为0.01 mM-100 mM,所述PCL-PPEs中PCL分子量的范围为大于0至150000 g/mol,浓度范围为0.1 mM-10000 mM。
3.根据权利要求1所述的一种制备PPEs高荧光纳米粒子方法,其特征在于,所述催化剂为辛酸亚锡或锡(II)2-乙基己酸。
4.根据权利要求3所述的一种制备PPEs高荧光纳米粒子方法,其特征在于,所述辛酸亚锡或锡(II)2-乙基己酸物质的量范围为0.1 mM-10000 mM。
5.根据权利要求1所述的一种制备PPEs高荧光纳米粒子方法,其特征在于,所述S3中去除四氢呋喃的方法是用透析袋透析。
CN202011443076.3A 2020-12-11 2020-12-11 一种制备PPEs高荧光纳米粒子方法 Active CN112646169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011443076.3A CN112646169B (zh) 2020-12-11 2020-12-11 一种制备PPEs高荧光纳米粒子方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011443076.3A CN112646169B (zh) 2020-12-11 2020-12-11 一种制备PPEs高荧光纳米粒子方法

Publications (2)

Publication Number Publication Date
CN112646169A CN112646169A (zh) 2021-04-13
CN112646169B true CN112646169B (zh) 2022-03-22

Family

ID=75350990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011443076.3A Active CN112646169B (zh) 2020-12-11 2020-12-11 一种制备PPEs高荧光纳米粒子方法

Country Status (1)

Country Link
CN (1) CN112646169B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608635A (zh) * 2018-12-03 2019-04-12 淮海工学院 一种新型高分子发光材料及其制备方法
CN109666178A (zh) * 2017-10-17 2019-04-23 翁秋梅 一种杂化动态聚合物组合物及其应用
CN109666165A (zh) * 2017-10-17 2019-04-23 翁秋梅 一种基于动态聚合物组合物的吸能方法
WO2019084582A1 (de) * 2017-10-30 2019-05-09 Technische Farben Ges.B.R. Sensortinte zur erfassung von komponenten in geschlossenen verpackungen, verfahren zur herstellung eines fluoreszenzsensors mit der sensortinte sowie sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109666178A (zh) * 2017-10-17 2019-04-23 翁秋梅 一种杂化动态聚合物组合物及其应用
CN109666165A (zh) * 2017-10-17 2019-04-23 翁秋梅 一种基于动态聚合物组合物的吸能方法
WO2019084582A1 (de) * 2017-10-30 2019-05-09 Technische Farben Ges.B.R. Sensortinte zur erfassung von komponenten in geschlossenen verpackungen, verfahren zur herstellung eines fluoreszenzsensors mit der sensortinte sowie sensor
CN109608635A (zh) * 2018-12-03 2019-04-12 淮海工学院 一种新型高分子发光材料及其制备方法

Also Published As

Publication number Publication date
CN112646169A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
Liu et al. Bright far-red/near-infrared fluorescent conjugated polymer nanoparticles for targeted imaging of HER2-positive cancer cells
CN110128665B (zh) 基于偶氮还原酶响应的两亲性嵌段聚合物近红外荧光探针及应用
Abd-El-Aziz et al. Aggregation enhanced excimer emission (AEEE) with efficient blue emission based on pyrene dendrimers
Ibrahimova et al. Facile synthesis of cross-linked patchy fluorescent conjugated polymer nanoparticles by click reactions
Murphy et al. Precise synthesis of poly (macromonomer) s containing sugars by repetitive ROMP and their attachments to poly (ethylene glycol): synthesis, TEM analysis and their properties as amphiphilic block fragments
Zhang et al. Renewable itaconic acid based cross-linked fluorescent polymeric nanoparticles for cell imaging
Du et al. Conjugated coordination polymers based on 8-hydroxyquinoline ligands: impact of polyhedral oligomeric silsesquioxanes on solubility and luminescence
CN110194822B (zh) 一种基于单臂TPE分子的温敏型双荧光Pdots的制备及应用
JP2003147418A (ja) シェル架橋型ミセルを鋳型とする金属ナノ粒子の調製
CN109438700B (zh) 一种聚甲基三唑甲酸酯及其制备方法与应用
Hemmati et al. Synthesis and characterization of pH-responsive nanohydrogels as biocompatible drug carriers based on chemically modified tragacanth gum polysaccharide
CN108484819B (zh) 一类水溶性星形荧光聚合物及其纳米颗粒的制备方法
Li et al. Solution-processible hyperbranched conjugated polymer nanoparticles with tunable particle sizes by Suzuki polymerization in miniemulsion
CN112028900B (zh) 光控原位溴-碘转换rdrp法合成星形聚合物及单分子胶束
Kurniasih et al. Synthesis and transport properties of new dendritic core–shell architectures based on hyperbranched polyglycerol with biphenyl-PEG shells
Augusto et al. Oxygen-proof fluorescence temperature sensing with pristine C 70 encapsulated in polymer nanoparticles
Shao et al. Self-assembly of luminescent triblock bottlebrush copolymers in solution
CN112646169B (zh) 一种制备PPEs高荧光纳米粒子方法
CN108559064B (zh) 共轭主链掺杂的两性离子型聚芴乙烯撑及其制备与应用
JP2006241334A (ja) らせん状導電性高分子ナノワイヤー/多糖複合体
Sun et al. Optimizing conditions for encapsulation of QDs by varying PEG chain density of amphiphilic centipede-like copolymer coating and exploration of QDs probes for tumor cell targeting and tracking
CN115926018B (zh) 一种壳聚糖基二醛六亚甲基异氰酸酯荧光水凝胶膜及其制备方法和应用
Salinas-Castillo et al. Synthesis of a new fluorescent conjugated polymer microsphere for chemical sensing in aqueous media
CN107353410B (zh) 两亲性聚合物及水分散醛基功能化荧光纳米胶束和制备方法
Ceunen et al. Synthesis and supramolecular organization of chiral poly (thiophene)–magnetite hybrid nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20210413

Assignee: JIANGSU KANGQIANG FOOD LTD.

Assignor: HUAIYIN INSTITUTE OF TECHNOLOGY

Contract record no.: X2022980004399

Denomination of invention: A method for preparing PPE high fluorescence nanoparticles

Granted publication date: 20220322

License type: Common License

Record date: 20220418