CN112643040B - 一种激光烧蚀制备微纳米中熵和高熵材料的方法 - Google Patents

一种激光烧蚀制备微纳米中熵和高熵材料的方法 Download PDF

Info

Publication number
CN112643040B
CN112643040B CN202011094113.4A CN202011094113A CN112643040B CN 112643040 B CN112643040 B CN 112643040B CN 202011094113 A CN202011094113 A CN 202011094113A CN 112643040 B CN112643040 B CN 112643040B
Authority
CN
China
Prior art keywords
entropy
laser
nano
medium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011094113.4A
Other languages
English (en)
Other versions
CN112643040A (zh
Inventor
邹志刚
王冰
姚颖方
吴聪萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202011094113.4A priority Critical patent/CN112643040B/zh
Priority to US17/092,218 priority patent/US20220111466A1/en
Priority to US17/103,937 priority patent/US11575093B2/en
Publication of CN112643040A publication Critical patent/CN112643040A/zh
Application granted granted Critical
Publication of CN112643040B publication Critical patent/CN112643040B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种激光烧蚀制备微纳米中熵和高熵材料的方法,1)将拟合成中熵或高熵材料中各元素的前驱体以等摩尔比或近等摩尔比均匀溶解在溶剂中,然后滴涂至基底上蒸干;2)将步骤(1)中的基底转移至容器(烧杯)中,在液相环境下激光处理。实现前驱体混合物向中熵或高熵材料的快速化学转变。本发明操作简单,成本低廉,反应条件温和,快速高效且环保无污染。本发明技术可以实现中熵和高熵材料包括合金和陶瓷在任何材质基底上的担载,并且可以通过调控激光参数、液相温度等实验条件实现从纳米到微米级尺寸中熵和高熵材料的合成。

Description

一种激光烧蚀制备微纳米中熵和高熵材料的方法
技术领域
本发明涉及中熵和高熵材料的制备技术,尤其是一种基于激光烧蚀技术制备微纳米中熵和高熵材料的方法。
背景介绍
高熵材料包括高熵合金和高熵陶瓷。高熵合金通常包含五种或以上的主元,且每种主元的摩尔百分数不会超过35%且不会低于5%,即按照等原子比或近等原子比形成单相固溶体结构。高熵陶瓷是由高熵合金延伸而来,常指由五种或五种以上陶瓷组元形成的固溶体,主要包括高熵氧化物、高熵硫化物、高熵磷化物等。这些高熵材料具有众多优异的性能,比如低层错能、热稳定性、抗辐照、抗腐蚀、优异的软磁性、以及易于克服性能上的“trade-off”效应等,这些独特的性能使其在工程应用领域展现了远大的发展前景。为了进一步扩宽高熵材料的应用范围,目前研究者开始关注微纳米高熵材料的合成,但相关技术还不成熟。本发明采用无靶材的激光液相烧蚀工艺合成微纳米高熵材料,该方法可以大幅度简化目前合成高熵材料的繁琐步骤,使在简单温和环境下量产微纳米高熵材料成为可能。此外,本发明的制备技术还可以合成由三种或四种主元组成的微纳米中熵合金或陶瓷。本发明技术可以实现中熵和高熵材料包括合金和陶瓷在任何材质基底上的担载,并且可以通过调控激光参数、液相温度等实验条件实现从纳米到微米级尺寸中熵和高熵材料的合成。
发明内容
本发明所要解决的技术问题是,提供一种激光烧蚀制备微纳米中熵和高熵材料的方法。该方法操作简单,成本低廉,反应条件温和,快速高效且环保无污染。
为了实现上述目的,本发明通过如下技术方案实现,一种激光烧蚀制备微纳米中熵和高熵材料的方法,包括以下步骤:
(1)将拟合成中熵和高熵材料中各元素的前驱体以等摩尔比或近等摩尔比(一般不超过等摩尔比15%的偏差)均匀溶解在溶剂中,然后滴涂至基底上干燥(如蒸发干燥等)。
(2)将步骤(1)中的基底转移至容器(烧杯)中,在施加液相的环境下激光处理。
进一步地,在步骤(1)中所涉及的中熵和高熵材料包括但不限于合金、氧化物、磷化物、硫化物、碳化物、氮化物以及硼化物。
中熵和高熵材料元素包括但不限于铂、金、钯、铱、钌、铑、铯、铜、铬、锡、铁、钴、镍、锌、锰、钒、钽、钨、铼、锇、铪、铟、铷、锶、硫、碳、氮、氧、磷、硼、锂等;各元素的前驱体包括但不限于氯化盐、硫酸盐、磷酸盐、硝酸盐以及硫粉、磷粉、次磷酸钠、硼酸钠以及氢氧化物等。
溶剂包括但不限于乙醇、甲醇、水、丙酮、异丙醇、二硫化碳等。
基底包括但不限于碳基底、金属基底、有机材料基底以及无机材料基底等。
更进一步地,在步骤(2)中所涉及的液相环境包括但不限于各类烷烃、乙醇、水、甲醇等。
激光包括但不限于纳秒激光以及飞秒激光。
激光处理参数为功率密度为105~109W/cm2,,频率为1Hz-80kHz。
激光波长涵盖紫外、可见和近红外光。
有益效果:本发明大幅度简化了目前合成中熵和高熵材料的繁琐步骤,使在简单温和环境(液相环境温度可调控)下量产微纳米中熵和高熵合金材料成为可能。本发明技术可以实现中熵和高熵材料包括合金和陶瓷在任何材质基底上的担载,并且可以通过调控激光参数、液相温度等实验条件实现从纳米到微米级尺寸中熵(指三至四种成分的合金或陶瓷)和高熵材料的合成。
附图说明
图1A为本发明涉及的由具体实施例1中所合成高熵合金AuFeCoCuCr在纳米碳纤维表面的扫描电镜图(比例尺:100nm);图1B为单个纳米高熵合金颗粒AuFeCoCuCr的透射电镜图(比例尺:20nm);图1C-1G分别为Au,Fe,Co,Cu,Cr元素在图1B中的高熵颗粒中的分布图(比例尺:20nm)。
图2A为本发明涉及的由具体实施例2中所合成的单个纳米高熵合金PtAuPdCuCrSnFeCoNi的透射电镜图(比例尺:20nm);图2B-2J分别为Pt,Au,Pd,Cu,Cr,Sn,Fe,Co,Ni元素在图2A中的高熵合金颗粒中的分布图。
图3为本发明涉及的由具体实施例2中在纳米碳纤维表面合成的高熵合金PtAuPdCuCrSnFeCoNi的XRD谱。
图4A为本发明涉及的由具体实施例3中所合成高熵合金PtAuPdFeCo在木炭表面的扫描电镜图(比例尺:100μm);图4B在木炭表面合成的单个高熵合金颗粒PtAuPdFeCo的扫描电镜图;图4C-4G分别为Pt,Au,Pd,Fe,Co元素在图4B中的高熵合金颗粒的分布图(比例尺:1μm)。
图5A为本发明涉及的由具体实施例4中所合成高熵合金PtIrCuNiCr在石墨烯上的低倍透射电镜图(比例尺:50nm);图5B为PtIrCuNiCr在石墨烯上的低倍透射电镜图(比例尺:10nm);图5C-5G分别为Pt,Ir,Cu,Ni,Cr元素在图5B中的纳米高熵合金上的分布图。
图6为本发明用于电催化水分解图;
图7A为本发明涉及的由具体实施例5中所合成高熵合金PtAuFeCoNi在泡沫铜表面的扫描电镜图(比例尺:10μm);图7B为单个高熵合金纳米颗粒PtAuFeCoNi的扫描电镜图;图7C-7G分别为Pt,Au,Fe,Co,Ni元素在图7B中的单个高熵合金纳米颗粒的分布图(比例尺:500nm)。
图8A为本发明涉及的由具体实施例6中所合成高熵合金AuPdCuSnZn在载玻片表面的扫描电镜图(比例尺:1μm);图8B为在载玻片上的两个纳米高熵合金颗粒AuPdCuSnZn;图8C-8G分别为Au,Pd,Cu,Sn,Zn元素在图8B中的高熵合金颗粒的分布图(比例尺:100nm)。
图9A为本发明涉及的由具体实施例7中所合成高熵硫化物CuCrFeCoNiS在碳纤维表面的扫描电镜图(比例尺:100nm);图9B为单个高熵硫化物CuCrFeCoNiS的透射电镜图;图9C-9H分别为Cu,Cr,Fe,Co,Ni,S元素在图9B中的纳米高熵硫化物颗粒上的分布图(比例尺:50nm)。
图10A为本发明涉及的由具体实施例8中所合成高熵氧化物CuCrFeCoNiO在碳纤维表面的扫描电镜图(比例尺:100nm);图10B为高熵氧化物CuCrFeCoNiO在纳米碳纤维上的高倍透射电镜图;图10C-10H分别为Cu,Cr,Fe,Co,Ni,O元素在图10B中的纳米高熵硫化物颗粒上的分布图(比例尺:50nm)。
图11A为本发明涉及的由具体实施例9中所合成的单个纳米中熵合金PtAuCu的透射电镜图(比例尺:200nm);图11B-11D分别为Pt,Au,Cu元素在图11A中的中熵合金颗粒中的分布图(比例尺:100nm)。
具体实施方式
下面将通过结合附图和具体实施例对本发明做进一步的具体描述,但不能理解为是对本发明保护范围的限定。
实施例1
本发明提供了一种激光烧蚀制备微纳米中熵和高熵材料的方法,包括如下步骤:
(1)将氯金酸、氯化铁、氯化钴、氯化铜以及氯化铬以各金属元素为0.01mol/L的浓度均匀溶解在乙醇中,然后以1ml/cm2的剂量将混合溶液滴涂至静电纺丝制备的纳米碳纤维上,并加热使溶剂蒸干。
(2)将步骤(1)中的碳纤维转移至盛有己烷烧杯的底部(液面离杯底约1cm),利用脉宽为5ns的纳秒脉冲激光扫描碳纤维表面,激光平均功率密度设置为2×105W/cm2,频率为20kHz,激光波长属于红外波段。
从图1电镜图可知,由实施例1合成的高熵合金纳米颗粒中金、铁、钴、铜、铬元素均匀分散其中,而合金颗粒均匀分布在碳纤维表面。实施例1所合成的高熵合金颗粒平均粒径约为70纳米。
实施例2
实施例2与实施例1的区别在于,包括以下步骤:
(1)将氯铂酸、氯金酸、氯化钯、氯化镍、氯化铁、氯化钴、氯化铜以及氯化铬、氯化锡以各金属元素为0.01mol/L的浓度均匀溶解在乙醇中,然后以1ml/cm2的剂量将混合溶液滴涂至静电纺丝制备的碳纤维上,并加热使溶剂蒸干。
(2)将步骤(1)中的碳纤维转移至盛有己烷烧杯的底部(液面离杯底约1cm),利用脉宽为5ns的纳秒脉冲激光扫描碳纤维表面,激光平均功率密度设置为2×105W/cm2,频率为20kHz。
从图2电镜图可知,实施例2合成的高熵合金纳米颗粒中铂、金、钯、铁、钴、镍、铜、铬、锡等元素均匀分散。由实施例2所合成高熵合金颗粒粒径约为50纳米。
从图3XRD图可知,实施例2所合成高熵合金纳米晶粒属于面心立方的固溶体。
实施例3
实施例3与实施例1、2的区别在于,包括以下步骤:
(1)将氯铂酸、氯金酸、氯化钯、氯化铁、氯化钴以各金属元素为0.01mol/L的浓度均匀溶解在乙醇中,然后以1ml/cm2的剂量将混合溶液滴涂至碳化的木块(长×宽×高=3cm×3cm×0.4cm)上,并加热使溶剂蒸干。
(2)将步骤(1)中的木块转移至盛有己烷烧杯的底部(液面离杯底约1cm),利用脉宽为5ns的纳秒脉冲激光扫描木炭表面,激光平均功率密度设置为2×105W/cm2,频率为30kHz。
从图4电镜图可知,实施例3合成的高熵合金微米球均匀分布在木炭表面,铂、金、钯、铁、钴等元素均匀分散在微球内部。由实施例3所合成高熵合金颗粒粒径约为2~3微米。
实施例4
实施例4与实施例1、2、3的区别在于,包括以下步骤:
(1)将氯铂酸、氯铱酸、氯化铜、氯化镍、氯化铬以各金属元素为0.01mol/L的浓度均匀溶解在乙醇中,然后以0.1ml/mg的剂量将混合溶液与石墨烯粉末混合,并加热使溶剂蒸干。
(2)将步骤(1)中的石墨烯转移至盛有己烷的烧杯,搅拌使石墨烯在溶液中分散均匀,利用脉宽为5ns的纳秒脉冲激光照射30分钟,激光平均平均功率密度设置为2×105W/cm2,频率为30kHz。
从图5电镜图可知,实施例4合成的高熵合金纳米颗粒均匀分布在石墨烯,铂、铱、铜、镍、铬等元素均匀分散在颗粒内部。由实施例4所合成高熵合金颗粒平均粒径约为5纳米。
从图6电催化水分解图可知,实施例4所合成的高熵合金作为双功能分解水的电催化剂具有优异的电催化活性。
实施例5
实施例5与实施例1、2、3、4的区别在于,包括以下步骤:
(1)将氯铂酸、氯金酸、氯化铁、氯化钴、氯化镍以各金属元素为0.01mol/L的浓度均匀溶解在乙醇中,然后以1ml/cm2的剂量将混合溶液滴涂至泡沫铜上,并加热使溶剂蒸干。
(2)将步骤(1)中的泡沫铜转移至盛有己烷烧杯的底部(液面离杯底约1cm),利用脉宽为5ns的纳秒脉冲激光扫描表面,平均功率密度设置为2×105W/cm2,频率为20kHz。
从图7电镜图可知,实施例5合成的高熵合金纳米颗粒均匀分布在泡沫铜上,铂、金、铁、钴、镍等元素均匀分散在颗粒内部。由实施例5所合成高熵合金颗粒平均粒径约为700纳米。
实施例6
实施例6与实施例1、2、3、4、5的区别在于,包括以下步骤:
(1)将氯金酸、氯化钯、氯化铜、氯化锡、氯化锌以各金属元素为0.01mol/L的浓度均匀溶解在乙醇中,然后以1ml/cm2的剂量将混合溶液滴涂至载玻片上,并加热使溶剂蒸干。
(2)将步骤(1)中的载玻片转移至盛有己烷烧杯的底部(液面离杯底约1cm),利用脉宽为5ns的纳秒脉冲激光扫描表面,激光平均功率密度设置为2×105W/cm2,频率为10kHz。
从图8电镜图可知,实施例6合成的高熵合金纳米颗粒分散于载玻片表面,金、钯、铜、锡、锌等元素均匀分散在颗粒内部。由实施例6所合成高熵合金颗粒平均粒径约为120纳米。
实施例7
实施例7与实施例1、2、3、4、5、6的区别在于,包括以下步骤:
(1)将氯化铜、氯化铬、氯化铁、氯化钴、氯化镍以各金属元素为0.01mol/L的浓度均匀溶解在乙醇中,然后以1ml/cm2的剂量将混合溶液滴涂至碳纤维上,并加热使溶剂蒸干;进一步地,将0.05mol/L溶有硫粉的二硫化碳溶液以1ml/cm2的剂量滴涂至蒸干后的碳纤维上,并使溶剂挥发完全。
(2)将步骤(1)中的碳纤维转移至盛有己烷烧杯的底部(液面离杯底约1cm),利用脉宽为5ns的纳秒脉冲激光扫描表面,激光平均功率密度设置为2×105W/cm2,频率为10kHz。
从图9电镜图可知,实施例7合成的高熵硫化物纳米颗粒分散于碳纤维表面,铜、铬、铁、钴、镍、硫等元素均匀分散在颗粒内部。
实施例8
实施例8与实施例1、2、3、4、5、6、7的区别在于,包括以下步骤:
(1)将氯化铜、氯化铬、氯化铁、氯化钴、氯化镍以各金属元素为0.01mol/L的浓度均匀溶解在乙醇中,然后以1ml/cm2的剂量将混合溶液滴涂至碳纤维上,并加热使溶剂蒸干;进一步地,将0.05mol/L氢氧化钠水溶液以1ml/cm2的剂量滴涂至蒸干后的碳纤维上,并使溶剂蒸干。
(2)将步骤(1)中的碳纤维转移至盛有己烷烧杯的底部(液面离杯底约1cm),利用脉宽为5ns的纳秒脉冲激光扫描表面,激光平均功率密度设置为2×105W/cm2,频率为10kHz。
从图10电镜图可知,实施例8合成的高熵氧化物纳米颗粒分散于碳纤维表面,铜、铬、铁、钴、镍、氧等元素均匀分散在颗粒内部。
实施例9
实施例9与实施例1、2、3、4、5、6、7、8的区别在于,包括以下步骤:
(1)将氯铂酸、氯金酸、氯化铜以各金属元素为0.01mol/L的浓度均匀溶解在乙醇中,然后以1ml/cm2的剂量将混合溶液滴涂至碳纤维上,并加热使溶剂蒸干。
(2)将步骤(1)中的碳纤维转移至盛有己烷烧杯的底部(液面离杯底约1cm),利用脉宽为5ns的纳秒脉冲激光扫描表面,激光平均功率密度设置为2×105W/cm2,频率为10kHz。
从图11电镜图可知,实施例9合成的中熵合金纳米颗粒,铂、金、铜元素均匀分散在颗粒内部。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,本发明要求保护范围由所附的权利要求书、说明书及其等效物界定。

Claims (5)

1.一种激光烧蚀制备微纳米中熵和高熵材料的方法,其特征在于,包括以下步骤:
(1)将拟合成中熵或高熵材料中各元素的前驱体以等摩尔比或近等摩尔比均匀溶解在溶剂中,然后滴涂至基底上蒸干;
(2)将步骤(1)中的基底转移至容器中,在液相环境下激光处理;所涉及的激光处理参数为功率密度为2×105 W/cm2, 频率10kHz-30 kHz;激光波长范围涵盖紫外、可见和红外光;
在步骤(1)中所涉及的中熵和高熵材料包括合金、氧化物、硫化物、磷化物、碳化物以及硼化物;
在步骤(1)中所涉及的微纳米中熵和高熵材料元素包括铂、金、铜、铬、铁、钴、镍、锌、硫、碳、氧、磷、硼;各元素的前驱体包括氯化盐、硫酸盐、磷酸盐、硝酸盐以及硫粉、磷粉、次磷酸钠、硼酸钠或氢氧化物。
2.根据权利要求1所述的激光烧蚀制备微纳米中熵和高熵材料的方法,其特征在于,在步骤(1)中所涉及的溶剂包括乙醇、甲醇、水、丙酮、异丙醇、二硫化碳。
3.根据权利要求1所述的激光烧蚀制备微纳米中熵和高熵材料的方法,其特征在于,在步骤(1)中所涉及的基底包括碳基底、金属基底或有机材料基底。
4.根据权利要求1所述的激光烧蚀制备微纳米中熵和高熵材料的方法,其特征在于,在步骤(2)中所涉及的液相环境包括各类烷烃、乙醇、水、甲醇。
5.根据权利要求1所述的激光烧蚀制备微纳米中熵和高熵材料的方法,其特征在于,在步骤(2)中所涉及的激光包括纳秒激光以及飞秒激光。
CN202011094113.4A 2019-12-23 2020-10-14 一种激光烧蚀制备微纳米中熵和高熵材料的方法 Active CN112643040B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011094113.4A CN112643040B (zh) 2020-10-14 2020-10-14 一种激光烧蚀制备微纳米中熵和高熵材料的方法
US17/092,218 US20220111466A1 (en) 2020-10-14 2020-11-07 Laser scanning ablation synthesis of medium-entropy and high-entropy particles with size from nanometer to micrometer
US17/103,937 US11575093B2 (en) 2019-12-23 2020-11-24 Pentacene organic field-effect transistor with n-type semiconductor interlayer and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011094113.4A CN112643040B (zh) 2020-10-14 2020-10-14 一种激光烧蚀制备微纳米中熵和高熵材料的方法

Publications (2)

Publication Number Publication Date
CN112643040A CN112643040A (zh) 2021-04-13
CN112643040B true CN112643040B (zh) 2022-06-21

Family

ID=75346767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011094113.4A Active CN112643040B (zh) 2019-12-23 2020-10-14 一种激光烧蚀制备微纳米中熵和高熵材料的方法

Country Status (2)

Country Link
US (1) US20220111466A1 (zh)
CN (1) CN112643040B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113322396B (zh) * 2021-05-26 2021-12-17 沈阳航空航天大学 综合力学性能优异的铜镍基中熵合金及其制备方法
CN113981487B (zh) * 2021-10-25 2022-04-29 成都大学 一种高熵碳酸盐电催化剂及其制备方法
CN114029505B (zh) * 2021-10-27 2022-09-23 南京大学 一种激光烧蚀制备金属单原子的方法
CN114134385B (zh) * 2021-12-03 2023-05-30 东南大学 一种难熔中熵合金及其制备方法
CN114523101B (zh) * 2021-12-31 2023-12-12 宁夏大学 高熵氧化物或高熵氧化物、石墨烯包覆高熵合金的核壳材料及制备双峰组织复合材料方法
CN114920546B (zh) * 2022-05-06 2023-08-08 武汉理工大学 一种高熵陶瓷涂层及其制备方法和应用
CN114988869B (zh) * 2022-05-09 2023-10-03 厦门稀土材料研究所 一种稀土中高熵铪酸盐基陶瓷材料及其制备方法和应用
CN115283685B (zh) * 2022-08-18 2023-06-13 北京科技大学 一种激光制备高熵合金纳米颗粒的方法
CN115466898B (zh) * 2022-08-23 2023-06-16 北京晨晰环保工程有限公司 一种氧化石墨烯插层二维高熵合金的制备方法
CN115609709B (zh) * 2022-11-11 2023-08-04 广州大学 基于木材的微纳/三维碳骨架材料及其制备方法和应用
CN116173983A (zh) * 2023-02-03 2023-05-30 中国工程物理研究院材料研究所 一种加氢催化剂及其制备方法和应用、一种吸氢复合材料
CN116139894A (zh) * 2023-02-10 2023-05-23 中山大学 一种钯系高熵化合物纳米材料的制备及其在电催化和光催化领域中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740667B (zh) * 2009-12-21 2011-04-13 上海交通大学 铜锌锡硒太阳电池吸收层薄膜的制备方法
CN104014800B (zh) * 2014-06-09 2016-01-27 天津大学 利用激光可控合成单分散活泼金属纳米颗粒的制备方法
US11193191B2 (en) * 2017-11-28 2021-12-07 University Of Maryland, College Park Thermal shock synthesis of multielement nanoparticles
EP3924121A1 (en) * 2019-02-11 2021-12-22 The Provost, Fellows, Scholars and other Members of Board of Trinity College Dublin A product and method for powder feeding in powder bed 3d printers
CN110903084B (zh) * 2019-11-12 2021-02-02 西安交通大学 一种高熵氧化物亚微米粉体及其制备方法
CN111112643B (zh) * 2020-02-28 2021-06-25 山东大学 一种纳秒激光辅助硝酸银热分解的纳米银线制备方法、纳米银线和应用

Also Published As

Publication number Publication date
US20220111466A1 (en) 2022-04-14
CN112643040A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
CN112643040B (zh) 一种激光烧蚀制备微纳米中熵和高熵材料的方法
Lonkar et al. Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation
Bajorowicz et al. Quantum dot-decorated semiconductor micro-and nanoparticles: A review of their synthesis, characterization and application in photocatalysis
Zhang et al. Recent Advances in Surfactant‐Free, Surface‐Charged, and Defect‐Rich Catalysts Developed by Laser Ablation and Processing in Liquids
Khashan et al. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid
Yamamoto et al. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine
Charitidis et al. Manufacturing nanomaterials: from research to industry
Wang et al. Controlled synthesis of dendritic Au@ Pt core–shell nanomaterials for use as an effective fuel cell electrocatalyst
Esmaeilifar et al. Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems
Qin et al. Formation of various morphologies of covellite copper sulfide submicron crystals by a hydrothermal method without surfactant
Soo et al. Enhancing the antibacterial performance of titanium dioxide nanofibers by coating with silver nanoparticles
Han et al. Photochemical synthesis in formamide and room-temperature coulomb staircase behavior of size-controlled gold nanoparticles
US20070160899A1 (en) Alloy catalyst compositions and processes for making and using same
Abazari et al. Potential applications of magnetic β-AgVO3/ZnFe2O4 nanocomposites in dyes, photocatalytic degradation, and catalytic thermal decomposition of ammonium perchlorate
Emam et al. Emerging use of homogenic and heterogenic nano-colloids synthesized via size-controllable technique in catalytic potency
Zhang et al. Photoelectrocatalytic properties and bactericidal activities of silver-treated carbon nanotube/titania composites
DE102006005775A1 (de) Thermisches Spritzverfahren mit kolloidaler Suspension
Farooq et al. Self-Assembled Interwoven Nanohierarchitectures of NaNbO3 and NaNb1–x Ta x O3 (0.05≤ x≤ 0.20): Synthesis, Structural Characterization, Photocatalytic Applications, and Dielectric Properties
Lee et al. Evaluation of photocatalysis of Au supported ZnO prepared by the spray pyrolysis method
Joseita dos Santos Costa et al. Photocurrent response and progesterone degradation by employing WO3 films modified with platinum and silver nanoparticles
Yan et al. Fabrication of poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) nanotubes decorated with Ag–Au bimetallic nanoparticles with enhanced catalytic activity for the reduction of 4-nitrophenol
Kumar et al. Kinetic and mechanistic studies of the formation of silver nanoparticles by nicotinamide as a reducing agent
Mourdikoudis et al. Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights
Yang et al. Fabrication of Au functionalized TiO 2 nanofibers for photocatalytic application
Chen et al. In-situ green synthesis of highly active GSH-capped Pt-Au-Ag-hybrid nanoclusters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant