CN112639406B - 用于感应位置传感器的耦合器元件形状 - Google Patents

用于感应位置传感器的耦合器元件形状 Download PDF

Info

Publication number
CN112639406B
CN112639406B CN201980052364.5A CN201980052364A CN112639406B CN 112639406 B CN112639406 B CN 112639406B CN 201980052364 A CN201980052364 A CN 201980052364A CN 112639406 B CN112639406 B CN 112639406B
Authority
CN
China
Prior art keywords
coupler element
sensor assembly
coupler
inductive sensor
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980052364.5A
Other languages
English (en)
Other versions
CN112639406A (zh
Inventor
邵灵敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSR IP Holdings LLC
Original Assignee
KSR IP Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSR IP Holdings LLC filed Critical KSR IP Holdings LLC
Publication of CN112639406A publication Critical patent/CN112639406A/zh
Application granted granted Critical
Publication of CN112639406B publication Critical patent/CN112639406B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2066Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to a single other coil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/2013Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/202Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/225Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils
    • G01D5/2258Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the mutual induction between the two coils by a movable ferromagnetic element, e.g. core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/73Targets mounted eccentrically with respect to the axis of rotation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/70Position sensors comprising a moving target with particular shapes, e.g. of soft magnetic targets
    • G01D2205/77Specific profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means
    • G01D5/24438Special design of the sensing element or scale

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

根据本公开的一个实施例,提供了一种感应位置传感器组件。所述感应传感器组件包括传感器和耦合器元件。所述传感器包括具有内径和外径的发射器线圈和位于所述发射器线圈的外径内的接收器线圈。所述耦合器元件具有几何的连续曲线形状。所述耦合器元件位于所述发射器线圈的所述外径内,使得所述连续曲线形状的最大直径是所述发射器线圈的所述外径。当所述耦合器元件移动时,所述耦合器元件的所述几何的连续曲线形状改变所述发射器线圈和所述接收器线圈之间的电感耦合。

Description

用于感应位置传感器的耦合器元件形状
相关申请的交叉引用
本专利申请要求2018年9月14日递交的申请号为62/731,432的美国临时专利申请的优先权,其整个内容在此完整地并入本申请。
技术领域
本申请涉及感应位置传感器系统,尤其涉及感应位置传感器中的耦合器元件,该耦合器元件在几何上消除了高次谐波误差。
背景技术
感应传感器利用在发射器线圈部分上移动的耦合器来确定与耦合器相关联的目标的位置。传感器在接收器线圈中产生涡流,该涡流与连接器在线圈上方的位置成比例。测量涡流以产生一个模拟信号,该模拟信号与耦合器沿线圈的位置成比例。但是,为了提供准确的位置,必须纠正许多错误。错误源包括耦合器本身的几何形状或轮廓。也就是说,在需要多于一个单极耦合器的应用中,耦合器通常具有包括尖角,直边缘,突变等的几何形状或轮廓。这样,这些几何形状或轮廓会影响涡流和线圈上耦合器的整体位置检测。
因此,需要不影响或最小化对涡流的影响的耦合器几何形状或轮廓。
发明内容
在一个实施例中,提供了一种感应位置传感器组件。所述感应传感器组件包括传感器和耦合器元件。所述传感器包括:具有内径和外径的发射器线圈和位于所述发射器线圈的所述外径内的接收器线圈。所述耦合器元件具有连续曲线形状。所述耦合器元件位于所述发射器线圈的所述外径内,使得所述连续曲线形状的最大直径是所述射线圈的所述外径。当所述耦合器元件移动时,所述耦合器元件的所述连续曲线形状改变所述发射器线圈和所述接收器线圈之间的电感耦合。
结合附图,根据以下详细描述,将更加充分地理解本文所述实施例提供的这些和附加特征。
附图说明
当结合以下详细描述阅读时,将参考附图,其中,贯穿若干视图,相同的附图标记表示相同的部分,其中:
图1示意性地示出了根据本申请的一个或多个实施例的现有技术的耦合器几何形状的俯视图;
图2示意性地示出了根据本申请的一个或多个实施例的包括数学标记的耦合器几何形状的俯视图;
图3是根据本申请的一个或多个实施例的四极连续曲线轮廓耦合器;
图4是根据本申请的一个或多个实施例的三极连续曲线轮廓耦合器;
图5是根据本申请的一个或多个实施例的两极连续曲线轮廓耦合器;
图6是根据本申请的一个或多个实施例的单极连续曲线轮廓耦合器;
图7A示意性地描绘了根据本文的一个或多个实施例的具有单极耦合器形状,发射器线圈和接收器线圈的传感器组件的俯视图;
图7B示意性地示出了根据本申请的一个或多个实施例的图7A的传感器组件的立体等距图;
图8A示意性地示出了根据本申请的一个或多个实施例的具有耦合器形状,发射器线圈和接收器线圈的传感器组件的俯视图;
图8B示意性地示出了根据本申请一个或多个实施例的图8A的传感器组件的立体等距图;和
图9示意性地示出了根据本申请的一个或多个实施例的接收信号的曲线图。
具体实施方式
本文描述的实施例针对感应位置传感器组件。感应传感器组件包括传感器和耦合器元件。该传感器包括具有内径和外径的发射器线圈和位于发射器线圈的外径内的接收器线圈。耦合器元件具有几何连续曲线形状。耦合器元件位于发射器线圈的外径内,使得几何连续曲线形状的最大直径是发射器线圈的外径。几何连续曲线形状是许多不同极点的轮廓,包括一极,两极,三极和四极传感器组件。应当理解,连续的耦合器轮廓具有平滑的轮廓,该轮廓导致改善的线性度和气隙性能。此外,连续耦合器轮廓的光滑轮廓增强了可制造性,由于锐角的减少而减少了工具磨损,并减小了耦合器,传感器组件,轴等上的应力集中。
这样,当耦合器元件移动时,耦合器元件的几何连续曲线形状改变了发射器线圈和接收器线圈之间的电感耦合,从而补偿了在接收信号的波形中发现的高次谐波分量。
现在参照图1,现有的耦合器100可在几何上包括耦合器轮廓,该耦合器轮廓具有可彼此重叠和/或互连的半椭圆形105。通常,半椭圆形105的数量取决于传感器组件的极点数。如图1所示,现有的耦合器100是三极耦合器,因此具有在中心点135处几何相交的三个半椭圆110或凸角。三个半椭圆110或凸角各自包括轮廓,轮廓通常不是连续的曲线,如对应于每个半椭圆形110的多条虚线115所示。这样,三个半椭圆110或凸角在三个半椭圆110或凸角之间的互连部分125处具有多个尖锐过渡。此外,在这些互连部分125附近,现有的耦合器可进一步包括线性或接近线性的部分130。这样,在互连部分125和半椭圆形110处的尖锐过渡包括几乎线性的部分130,该部分在运动过程中确定现有的联接器100的精确位置时产生多个误差。例如,半椭圆形状105或轮廓破坏了流过现有的耦合器100的涡流,这导致高次谐波分量,这又导致接收信号的波形偏离纯正弦波形。此外,在运动期间,现有的耦合器100中存在影响传感器组件中的气隙的性能的线性问题。
现在参考图2,示出为实线的示例性的耦合器200具有单个曲率的连续曲线。这样,图2中的该示例性的耦合器200具有恒定的曲率,其包括在多个凸角202之间的不太尖锐或细长的过渡,是的该凸角和/或每个该多个凸角202中的部分具有更大的弯曲和弧度。这样,该示例性的耦合器200的线性度小于图1的现有的耦合器100的线性度,使得接收信号得到改善,如本文中更详细讨论的。应当理解,与示例性的耦合器400相比,现有的耦合器401可以与仅再次示出以突出几何形状差异的现有的耦合器100相同,其中示例性的耦合器400的几何形状可以与示例性的耦合器200的几何形状相同(图2)。还应当理解,耦合器300、400、500和600中的每一个结合几何差异,这取决于传感器组件700(图7)的极点,如本文中更详细讨论的那样,以形成目标。即,耦合器300、400、500和600中的每一个都是目标或耦合器元件,其被配置为修改发射器线圈702(图7)和两部分式接收器线圈704(图7)之间的感应耦合,如本文更详细地讨论。也就是说,应当理解,每个示例性的耦合器300、400、500和600的几何形状校正了同心度误差的问题,同心度误差会在传感器组件输出曲线中产生偏差或线性误差。
在某些实施例中,耦合器300、400、500和600中的每一个都是金属材料。此外,在一些实施例中,耦合器300、400、500和600中的每个可以形成在轴或其他装置中,该轴或其他装置被配置为例如通过耦合器的旋转,线性移动和其他移动来移动耦合器300、400、500和/或600。在一些实施例中,耦合器300、400、500和/或600中的每个可进一步包括磁性材料层。在这些实施例中,磁性材料层可以是软磁性材料,例如铁氧体。在其他实施例中,适于具有感应涡流的磁性的材料可以是除铁氧体之外的其他材料,例如稀土磁性材料,铝,铁,钴,镍等。应当理解,可以使用本领域技术人员所理解的常规技术来添加磁性材料层。这样,磁性层可以沿着耦合器300、400、500和600的表面形成片。此外,应当理解,磁性材料层的厚度可以基于磁性材料的类型,耦合器和传感器之间的气隙等而改变。
现在回到图2,将描述示例性的耦合器200的几何形状。应当理解,这里关于示例性的耦合器200的几何形状的讨论对于四极示例耦合器300(图3),三极示例耦合器400(图4),两极示例性的耦合器500(图5)和单极示例性的耦合器600(图6)是相同的。因此,将仅详细描述用于形成示例性的耦合器200的形状的几何布置。
还应当理解,示例性的耦合器200的几何布置校正了到信号处理器706(图7)的非正弦输入信号。即,示例性的耦合器200的具有连续曲线或平滑轮廓的几何形状通过允许涡流通过平滑轮廓来校正高阶几何谐波误差,以改善传感器线性误差和气隙性能。示例耦合器200的几何形状由以下参数方程式确定:
Figure GDA0003789089360000051
其中,如本文更详细地讨论的,“N”等于传感器组件中的极点的数量,“a”是耦合器的直径,“b”是中间圆与最大和/或最小圆的半径之差,“θ”是用于定义耦合器形状的变量,即,“θ”可以是形成耦合器的连续曲线并且相对于中心点具有角度的标绘点,如本文更详细地讨论的。
仍然参考图2,示例性的耦合器200被描绘为具有三个凸角202的三极耦合器。应当理解,耦合器200不限于三个凸角202,并且可以根据极点的数量而变化,如本文中更详细地讨论的。为了确定或计算连续的曲线轮廓,图2中绘制了多个假想的圆,如点划线所示,用以帮助说明最小参数,最大参数,凸角之间的过渡等。这样,基于上面的等式,每个凸角202可以被绘制为具有最外部204或点或一系列点,过渡部分206,中心点208等,如本文中更详细地讨论的。
第一圆210或最小圆被描绘为从中心点208径向向外延伸并且具有形成凸角202之间的过渡部分206的位置的圆周。即,每个过渡部分206是弓形的或在凸角202之间的连续曲线。当cos(θ)=-1时,过渡部分206可以被定位或绘制。这样,应当理解,在示例性的耦合器200中,存在三个点,其中cos(θ)=-1,并且因此,存在三个过渡部分206,每个凸角202之间的一部分。
第二圆212或最大圆被描绘为从中心点208径向向外延伸并且具有形成每个凸角202的最外部分204的位置的圆周。这样,第二圆212具有比第一圆210更大的半径和圆周。即,每个凸角202具有最外部204,其中最外部分204是凸角202的弓形或连续曲线。当cos(θ)=1时,最外部分204可以被定位或绘制。因此,应当理解,在示例性的耦合器200中,存在三个点,其中当cos(θ)=1,因此,存在三个最外部分204,它们与中心点208的距离相等,每个凸角202的一个部分。此外,在一些实施例中,每个凸角202的最外部分204不延伸超过发射器线圈702的外径,如下面更详细地讨论的。也就是说,示例性的耦合器200的最大长度(即,在+/-X方向上)和/或宽度(即,在+/-Y方向上)可以受到发射器线圈702的外径的限制。
第三圆214或中间圆在第一圆210和第二圆212之间均匀地间隔开。这样,第三圆214从第一圆210朝第二圆212径向向外延伸。从而,如图所示,第三圆214通常在凸角202的过渡部分206与每个凸角202的最外部分204之间的相等距离处相交或穿过每个凸角202。
仍然参考图2,Y轴216或纵坐标与X轴218或横坐标在中心点208处相交。中心点208,X轴218和/或Y轴216可用于根据上面的方程式帮助形成或绘制耦合器形状。例如,以上等式中的术语“a”可以是从中心点208测量为直线220的第三圆214的半径。术语“a”可以与示例性的耦合器200的直径相关联。作为另一示例,以上等式的术语“b”可以是从第一圆210的外圆周得到的第三圆214的半径222和从外圆上得到的第二圆周212的半径224之间的差。因此,术语“b”可以是与误差相关并与系统成比例的标量。因此,在一些实施例中,术语“a”可以是特定于直径的常数,而“b”项可以是特定于系统的常数。
如图2中所示,术语“x(θ)”可以是从Y轴216到超过第一圆210水平测量的X坐标点,术语“y(θ)”可以是X轴218到超过第一圆210的位置228垂直地测量以形成的Y坐标点。位置226处的X坐标点和位置228处的Y坐标点一起形成绘制点230。这样,应当理解,这与最外部分204和过渡部分206一起从连续的耦合器形状连续。
现在参考回图3-6,将描述现有的耦合器与示例性的耦合器300、400、500和600之间的比较。应该理解的是,图3示意性地示出了四极连续曲线轮廓耦合器300,图4示意性地示出了三极连续曲线轮廓耦合器400,图5示意性地描绘了两极连续曲线轮廓耦合器500和图6示意性地示出了单极连续曲线轮廓耦合器600。应该知道的是,图3至图6包括Y轴216或纵坐标,X轴218或横坐标和中心点208。此外,中心点208可以不在示例性的耦合器300、400、500和600内居中。例如,单极耦合器600(图6)的中心点208具有偏移,使得在耦合器600移动时,无论旋转还是线性移动,第一接收器线圈714和第二接收器线圈716(图7A)耦合器600并不总是被耦合器600覆盖。也就是说,单极耦合器600可以被偏移以用于差分信号识别。此外,虽然图3-5的示例性的耦合器300、400和500示出了凸角202是均匀的或相等的,凸角202并不一定需要是均匀的和/或相等的。此外,在一些实施例中,示例性的耦合器可以具有不是凸角而是圆形的几何连续曲线形状。例如,单极示例性的耦合器600可以具有几何连续曲线形状602,其可以是圆形而不是凸角形状。这样,在一些实施例中,几何连续曲线形状602可具有多个最外部分,而没有最内部分以形成圆形,如本领域技术人员所理解的。
现在参照图7A-7B并再次参照图6,示意性地示出了包括单极连续曲线轮廓耦合器600的第一示例传感器组件700。传感器组件包括发射器线圈702和两部分式接收器线圈704,信号处理器706以及在一些实施例中的印刷电路板(PCB)708。发射器线圈702可以是常规圆形线圈设计中的一个或多个回路,或使用其他配置。发射器线圈702具有预定的内径710和预定的外径712。也可以称为激励器线圈的发射器线圈702可以由交流电源供电。当被电能激励时,发射器线圈702辐射电磁辐射。在发射器线圈702和任何其他附近的线圈之间存在电感耦合,其在该线圈中感应出信号。两部分式接收器线圈704包括第一接收器线圈714和第二接收器线圈716。在发送器线圈702和两部分式接收器线圈704之间的电感耦合在两部分式接收器线圈704中生成接收器信号。
例如,术语“接收器信号”通常可以用来指代在接收器线圈中感应的信号,并且还指基于在两部分式接收器线圈704中感应的信号的任何调节信号。在以下讨论的示例中,单个由两部分式接收器线圈704提供接收器信号,该接收器信号包括来自形成在第一接收器线圈714和第二接收器线圈716环路配置中的第一和第二信号的贡献。即,第一接收器线圈714和第二接收器线圈716分别提供第一和第二信号。接收器信号则是第一和第二信号的某种组合。
例如,第一接收器线圈714和第二接收器线圈716配置可以被配置为生成反相的信号,该接收器信号是第一和第二信号的组合,并且因此当第一和第二信号具有相似的幅值时,接收器信号具有最小值。接收器信号也可以称为差分信号,因为接收器信号的大小是在第一接收器线圈714中感应的第一信号的幅值与在第二接收器线圈716中感应的第二信号幅值之间的差。
在本发明的其他示例中,两部分式接收器线圈704可以将来自分离的回路结构的分离的第一信号和第二信号提供给电子电路以进行处理。
仍参考图7A-7B所示,第一接收器线圈714和第二接收器线圈716可以彼此径向向外偏移。即,第一接收器线圈714和第二接收器线圈716可以在垂直方向上偏移,并且可以通常布置在发送器线圈702的外径712内。这样,单极耦合器600通常在发射器线圈702的外径712内旋转地或线性地移动。然而,在一些实施例中,耦合器或其一部分可在发射器线圈702的内径710内整体旋转或移动。
由第一接收器线圈714和第二接收器线圈716配置的两部分式接收器线圈704可以被配置来通过两部分式接收器线圈704给定磁通量变化提供相反极性的第一和第二电压。两部分式接收器线圈704可以被配置为使得在没有耦合器600的情况下第一信号和第二信号趋于彼此抵消。耦合器600还可以具有零位置,在该位置中,耦合器600均等地阻止通向第一接收器线圈714和第二接收器线圈716的磁通传输,使得第一信号和第二信号有效地相互抵消。当耦合器600在相对于初始位置的第一方向上移动时,其阻止更多的磁通量感应第二信号,而同时阻止更少的磁通量感应第一信号。因此,第一信号的幅值增加,第二信号的幅值减少,并且接收器信号的幅值增加。耦合器600还可以沿第二方向移动,其中第二信号的幅值增大,而第一信号的幅值减小。应当理解,耦合器600旋转或移动到与发射器线圈702和两部分式接收器线圈704相距一定距离。在一些实施例中,耦合器600与第一和第二接收器线圈714、716同心旋转,如在本文中详细说明。
第一接收器线圈714和第二接收器线圈716可以沿轴向或垂直方向(即,沿+/-Z方向)定位在PCB 708的单独的层中,从而在传感器组件700和耦合器600之间产生距离或气隙的差异。应当理解,在一些实施例中,基于气隙或距离所需的信号强度,以与耦合器600的关系来选择第一接收器线圈714和第二接收器线圈716的深度。也就是说,在一些实施例中,第一接收器线圈714可以在PCB 708的一层中,而第二接收器线圈716可以在PCB 708的与第一接收器线圈714不同层或另一层中。在其他实施例中,第一接收器线圈714和第二接收器线圈716可以位于相邻或邻接的层中。在其他实施例中,第一接收器线圈714和第二接收器线圈718可以定位在由另一层间隔开或分离的层中,该另一层可以是未被占用的或者可以包含其他线圈(即,发送器线圈的一部分等)。
这样,第一接收器线圈714的部分可以在第一接收器线圈714的搭接部分之下与第二接收器线圈718的部分和第二接收器线圈718的部分重叠。这样,应当理解,重叠部分不是与线圈的上方和/或下方的路径连接,并且该线圈布置允许从不同的距离或气隙感测耦合器600,并允许第一接收器线圈714和第二接收器线圈718用作独立线圈。在其他实施例中,第一接收器线圈714和第二接收器线圈718的部分设置在PCB 708的同一层内,从而在垂直方向(即,在+/-Z方向上)具有相同的深度或具有耦合器600的气隙。
第一接收器线圈714和第二接收器线圈718可以与发射器线圈702共面,或者可以彼此平行和/或与发射器线圈702处于平行平面。应当理解,两部分式接收器线圈704为相对于耦合器600在轴向或垂直方向(即,在+/-Z方向上)在发射器线圈702上方。在一些实施例中,耦合器600在中心点208处沿着中心轴线720同轴对准。还应当理解,PCB 708可以具有多于三层,并且某些层可以不被线圈等占用。
返回参考图3至6,并继续参照图7和以上描述,应当理解的是,两部分式接收器线圈704的配置可以使得在两部分式接收器线圈704的输出端产生电压,该电压是耦合器300、400、500和/或600的位置的函数。耦合器300、400、500和/或600可以具有相对于两部分式接收器线圈704的初始位置,在该位置上接收器信号是最小的。当耦合器300、400、500和/或600从初始位置移动时,其改变了发射器线圈702和两部分式接收器线圈704配置之间的感应耦合。在一些实施例中,耦合器300、400、500和/或600的初始配置,第一信号和第二信号(一个用于第一接收器线圈714和一个用于第二接收器线圈716)具有相似的幅值并且具有相反的相位,因此他们倾向于互相抵消。随着耦合器300、400、500和/或600的移动,发射器线圈702与第一接收器线圈714之间的电感耦合增加,并且同时发射器线圈702与第二接收器线圈716之间的电感耦合减小,而信号输出则减少了谐波误差。应当理解,耦合器300、400、500和/或600不需要修改发射器线圈702和两部分式接收器线圈704之间的总通量耦合,而可以仅修改通量耦合的空间分布。
现在参考图8A-8B,示意性地示出了包括双极连续曲线轮廓耦合器500的第二示例传感器组件800。第二示例传感器组件800类似于第一示例传感器组件700,不同之处在于第二示例传感器组件800包括双极耦合器500以及两部分式接收器线圈704的第一接收器线圈714和第二接收器线圈714包括其他环路。这样,使用相似的元件编号。两极连续轮廓耦合器500包括彼此相对的两个凸角202,每个凸角具有与中心点208等距离的最外部分204,并且每个凸角通过过渡部分206连接。在一些实施例中,两极连续轮廓耦合器500可以是卡西尼椭圆形,心形和/或类似形状。两极耦合器500通常在发射器线圈702的外径712内旋转地或线性地移动。然而,在一些实施例中,耦合器500或其一部分可以在内径710内和/或在发射器线圈702的外径712之外旋转。
参考图9,示意性地示出了接收信号的说明性曲线图表900。说明性曲线图表900示意性地示出了在图9中以虚线示出的现有的耦合器100(图1)和在图9中以实线示出了示例性的耦合器200(图2)之间的接收信号的差异。
纵坐标902表示接收信号的幅值,并且被示为在1.5至-1.5之间的范围内,而横坐标904表示角度或时间,并且在0度至360度之间的范围内。如图9中所示,来自现有的耦合器100的接收信号并以虚线示出,该信号具有高次谐波分量,该高次谐波分量导致波形偏离纯正弦波形。来自示例性的耦合器200的接收信号,如实线所示,不具有高次谐波分量,并且该波形是或几乎是纯正弦波形。
图9示出了示例性的耦合器200的几何形状已经补偿了在接收信号的波形中发现的任何高阶谐波分量。
因此公开了一种新颖的连续耦合器轮廓,其适用于许多不同的极点,包括一极,两极,三极和四极传感器组件。应当理解,连续的耦合器轮廓具有平滑的轮廓,该轮廓导致改善的线性度和气隙性能。此外,连续耦合器轮廓的光滑轮廓增强了可制造性,由于锐角的减少而减少了工具磨损,并减小了耦合器,传感器组件,轴等上的应力集中。对于本领域技术人员应该清楚的是,在本发明的范围内可以有许多变化。

Claims (16)

1.一种感应传感器组件,包括:
传感器,其包括:
发射器线圈,其具有内径和外径;
接收器线圈,其位于所述发射器线圈的所述外径内;
耦合器元件,其具有连续曲线形状,所述耦合器元件位于所述发射器线圈的所述外径内,使得所述连续曲线形状的最大直径是所述发射器线圈的所述外径;
其中,当所述耦合器元件移动时,所述耦合器元件的所述连续曲线形状改变所述发射器线圈和所述接收器线圈之间的电感耦合;
其中,所述耦合器元件的所述连续曲线形状通过第一方程式确定:
Figure 885153DEST_PATH_IMAGE001
其中,“N”等于在所述传感器组件中的极点的数量,“a”是所述耦合器元件的直径,“b” 是所述耦合器元件的所述连续曲线形状的中间半径与所述耦合器元件的所述连续曲线形 状的最大半径和/或最小半径之间的差,以及“
Figure 152186DEST_PATH_IMAGE002
”是用于定义所述连续曲线形状的具有相对 于中心点的角度的标绘点的变量。
2.根据权利要求1所述的感应传感器组件,其中,所述耦合器元件的所述连续曲线形状包括至少一个凸角。
3.根据权利要求2所述的感应传感器组件,其中,所述耦合器元件的所述连续曲线形状 的所述最大半径由第二方程式确定:
Figure 351086DEST_PATH_IMAGE003
=1。
4.根据权利要求3所述的感应传感器组件,其中,所述至少一个凸角的最外部分由从所述第二方程式确定的所述最大半径确定。
5.根据权利要求4所述的感应传感器组件,其中,所述耦合器元件的所述连续曲线形状 的所述最小半径由第三方程式确定:
Figure 19965DEST_PATH_IMAGE003
=-1。
6.根据权利要求5所述的感应传感器组件,其中,所述至少一个凸角之间的过渡部分由从所述第三方程式确定的所述最小半径确定。
7.根据权利要求6所述的感应传感器组件,其中,四极耦合器元件的所述连续曲线形状包括四个凸角,四个最外部分和在四个凸角中的每一个之间的四个过渡部分。
8.根据权利要求6所述的感应传感器组件,其中,三极耦合器元件的所述连续曲线形状包括三个凸角,三个最外部分和在三个凸角中的每一个之间的三个过渡部分。
9.根据权利要求6所述的感应传感器组件,其中,两极耦合器元件的所述连续曲线形状包括两个相对定位的凸角,两个最外部分以及所述两个相对定位的凸角之间的两个过渡部分。
10.根据权利要求1所述的感应传感器组件,其中,单极耦合器元件的所述连续曲线形状是圆形的。
11.根据权利要求10所述的感应传感器组件,其中,所述单极耦合器元件的所述连续曲 线形状的最大半径由第二方程式确定:
Figure 75646DEST_PATH_IMAGE003
=1。
12.根据权利要求1所述的感应传感器组件,其中,所述接收器线圈是两部分式的接收器线圈。
13.根据权利要求1所述的感应传感器组件,其中,所述耦合器元件的运动是旋转的。
14.根据权利要求1所述的感应传感器组件,其中,所述耦合器元件的运动是线性的。
15.根据权利要求1所述的感应传感器组件,其中,所述耦合器元件的所述连续曲线形状补偿在接收信号的波形中发现的多个高次谐波分量。
16.根据权利要求1所述的感应传感器组件,其中,所述耦合器元件的所述连续曲线形状形成具有平滑轮廓的轮廓,所述平滑轮廓补偿在接收信号的波形中发现的多个高次谐波分量。
CN201980052364.5A 2018-09-14 2019-09-13 用于感应位置传感器的耦合器元件形状 Active CN112639406B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862731432P 2018-09-14 2018-09-14
US62/731,432 2018-09-14
PCT/US2019/051050 WO2020056288A1 (en) 2018-09-14 2019-09-13 Coupler element shapes for inductive position sensors

Publications (2)

Publication Number Publication Date
CN112639406A CN112639406A (zh) 2021-04-09
CN112639406B true CN112639406B (zh) 2022-12-09

Family

ID=69774365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980052364.5A Active CN112639406B (zh) 2018-09-14 2019-09-13 用于感应位置传感器的耦合器元件形状

Country Status (5)

Country Link
US (1) US11519752B2 (zh)
KR (1) KR20210045501A (zh)
CN (1) CN112639406B (zh)
DE (1) DE112019004599T5 (zh)
WO (1) WO2020056288A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10444037B2 (en) 2017-08-22 2019-10-15 Semiconductor Components Industries, Llc Inductive position sensor
DE102019220492A1 (de) * 2019-12-20 2021-06-24 Infineon Technologies Ag Induktiver winkel- und/oder positionssensor
EP3865825B1 (en) * 2020-09-07 2023-05-31 Melexis Technologies SA Inductive angular sensor arrangement, system and motor
WO2022203740A1 (en) 2021-03-25 2022-09-29 Microchip Technology Incorporated Sense coil for inductive rotational-position sensing, and related devices, systems, and methods
US11885649B2 (en) 2021-04-09 2024-01-30 Semiconductor Components Industries, Llc Rotor for inductive slip, eccentricity, and tilt sensing
CN117043552A (zh) * 2021-04-15 2023-11-10 三菱电机株式会社 旋转变压器及搭载该旋转变压器的电动助力转向装置
US20230153482A1 (en) 2021-11-12 2023-05-18 Renesas Electronics America Inc. Method for designing receiver coil based on arbitrary target shape
US20230314180A1 (en) * 2022-04-01 2023-10-05 Microchip Technology Incorporated Target for an inductive angular-position sensor
JP2024072562A (ja) * 2022-11-16 2024-05-28 株式会社デンソー 位置検出装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4113745C2 (de) 1991-04-26 1993-11-25 Mehnert Walter Dr Induktiver Stellungsgeber
JPH088621A (ja) * 1994-06-17 1996-01-12 Nissan Motor Co Ltd Nrdガイド用方向性結合器
US6788221B1 (en) 1996-06-28 2004-09-07 Synaptics (Uk) Limited Signal processing apparatus and method
JPH10122806A (ja) 1996-08-29 1998-05-15 Makome Kenkyusho:Kk 位置検出センサ,複合型位置検出センサ及びこれらを使用する無人搬送車誘導制御システム
FR2771864B1 (fr) * 1997-12-02 2000-01-28 Roulements Soc Nouvelle Anneau magnetique multipolaire
GB9811151D0 (en) 1998-05-22 1998-07-22 Scient Generics Ltd Rotary encoder
US6304076B1 (en) 1999-09-07 2001-10-16 Bei Sensors & Systems Company, Inc. Angular position sensor with inductive attenuating coupler
US6520031B2 (en) * 1999-09-07 2003-02-18 Bei Sensors & Systems Company, Inc. Non contacting torque sensor
WO2002025216A1 (fr) * 2000-09-19 2002-03-28 Honda Giken Kogyo Kabushiki Kaisha Detecteur de position rotatif et moteur equipe de ce dernier
US6573801B1 (en) * 2000-11-15 2003-06-03 Intel Corporation Electromagnetic coupler
US7538544B2 (en) * 2004-04-09 2009-05-26 Ksr Technologies Co. Inductive position sensor
US7276897B2 (en) 2004-04-09 2007-10-02 Ksr International Co. Inductive position sensor
US7191759B2 (en) 2004-04-09 2007-03-20 Ksr Industrial Corporation Inductive sensor for vehicle electronic throttle control
CN1622098A (zh) * 2005-01-07 2005-06-01 北京北大方正电子有限公司 一种计算机模拟动摆线的方法
US7449878B2 (en) * 2005-06-27 2008-11-11 Ksr Technologies Co. Linear and rotational inductive position sensor
US7906960B2 (en) * 2007-09-21 2011-03-15 Ksr Technologies Co. Inductive position sensor
US7911354B2 (en) 2007-12-12 2011-03-22 Ksr Technologies Co. Inductive position sensor
US8098061B2 (en) 2008-04-15 2012-01-17 Ksr Technologies Co. Linear inductive position sensor
KR101023198B1 (ko) 2008-06-30 2011-03-18 주식회사 트루윈 인덕티브 변위센서 및 그 수신코일구조와 갭 보정을 위한 신호처리방법
US8165434B2 (en) * 2009-03-17 2012-04-24 LumenFlow Corp. High efficiency optical coupler
US8508242B2 (en) * 2010-01-25 2013-08-13 Ksr Technologies Co. Inductive position sensor
US8988066B2 (en) * 2011-03-02 2015-03-24 Ksr Ip Holdings Llc Steering position and torque sensor
US8947077B2 (en) * 2011-05-19 2015-02-03 Ksr Ip Holdings Llc. Rotary position sensor
CN104540997B (zh) * 2012-06-28 2016-06-08 徐寅喆 具有缓和曲线的道路弯道及其形成方法
CN203719615U (zh) * 2012-11-13 2014-07-16 半导体元件工业有限责任公司 电感式传感器
US10330499B2 (en) * 2013-05-03 2019-06-25 KSR IP Holdings, LLC Micro inductive sensor
JP6541037B2 (ja) 2013-06-13 2019-07-10 株式会社アミテック 誘導型位置検出装置
KR101491507B1 (ko) * 2014-01-20 2015-02-09 한국오므론전장 주식회사 자계 유도 보상 패턴이 구비되는 유도형 위치 센서
US9958293B2 (en) * 2014-04-22 2018-05-01 KSR IP Holdings, LLC Sensor with shielding element
US9983045B2 (en) 2014-08-22 2018-05-29 Ksr Ip Holdings Llc Inductive sensor
DE102014220454A1 (de) * 2014-10-09 2016-04-14 Robert Bosch Gmbh Sensoranordnung zur berührungslosen Erfassung von Drehwinkeln an einem rotierenden Bauteil
CN204421990U (zh) * 2015-01-14 2015-06-24 江苏多维科技有限公司 一种可消除相邻转轮磁干涉的直读表
US9876590B2 (en) 2015-08-02 2018-01-23 Vayyar Imaging Ltd. Real-time network analyzer and applications
WO2017184994A1 (en) 2016-04-22 2017-10-26 KSR IP Holdings, LLC Inductive sensor for shock absorber
DE102016224854A1 (de) * 2016-12-13 2018-06-14 Robert Bosch Gmbh Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines um mindestens eine Rotationsachse rotierenden Elements

Also Published As

Publication number Publication date
CN112639406A (zh) 2021-04-09
KR20210045501A (ko) 2021-04-26
DE112019004599T5 (de) 2021-05-27
US20200088549A1 (en) 2020-03-19
US11519752B2 (en) 2022-12-06
WO2020056288A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
CN112639406B (zh) 用于感应位置传感器的耦合器元件形状
CN112601936B (zh) 带有金属-铁氧体互补耦合器的轴端感应式角位置传感器
CN105403233B (zh) 线性位置和旋转位置磁传感器、系统和方法
EP3514502B1 (en) Inductive position sensor
US10330498B2 (en) Sensor arrangement for the contactless sensing of angles of rotation on a rotating part
JP6389001B2 (ja) 回転する構成部材の回転角度を非接触式に検出するためのセンサ装置
US11047710B2 (en) Inductive position sensor assembly
US9746346B2 (en) Linear position and rotary position magnetic sensors, systems, and methods
KR20180113518A (ko) 회전각 센서
JP6739436B2 (ja) 誘導性動きセンサ
US11644343B2 (en) Flux coupling sensor
US11162817B2 (en) Flux coupling sensor and target
JP7334367B2 (ja) レゾルバ
US20220341758A1 (en) Harmonic distortion reduction in inductive position sensors
US11901780B2 (en) Resolver
US4809559A (en) Detector for an electromagnetic flowmeter
CN116568994B (zh) 旋转变压器
EP3954973B1 (en) An inductive position sensor with asymmetric target
US11747130B2 (en) Inductive angle sensor with stretched coils
CN113532484A (zh) 用于测量元件的旋转位置的传感器装置和传感器组件
JP2541619B2 (ja) 電磁流量計の検出器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant