CN112635556A - 一种增强型hemt器件及其制备方法 - Google Patents

一种增强型hemt器件及其制备方法 Download PDF

Info

Publication number
CN112635556A
CN112635556A CN202011550452.9A CN202011550452A CN112635556A CN 112635556 A CN112635556 A CN 112635556A CN 202011550452 A CN202011550452 A CN 202011550452A CN 112635556 A CN112635556 A CN 112635556A
Authority
CN
China
Prior art keywords
layer
metal electrode
barrier layer
algan barrier
gradually changed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011550452.9A
Other languages
English (en)
Inventor
李国强
吴能滔
邢志恒
孙佩椰
姚书南
李善杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202011550452.9A priority Critical patent/CN112635556A/zh
Publication of CN112635556A publication Critical patent/CN112635556A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种增强型HEMT器件及其制备方法,包括SiC衬底、AlN缓冲层、GaN沟道层、AlN插入层、Al组分渐变的AlGaN势垒层、Mg掺杂Al组分渐变的AlGaN势垒层、SiNX钝化层、漏金属电极、源金属电极和栅金属电极,本发明采用Al组分渐变的AlGaN势垒层来替代AlGaN势垒层,降低了Mg扩散的难度,避免了传统P型栅因刻蚀所产生的机械损伤,并提高了器件的栅控能力,有利于实现高阈值电压的GaN增强型功率器件。

Description

一种增强型HEMT器件及其制备方法
技术领域
本发明涉及半导体器件领域,具体涉及一种增强型HEMT器件及其制备方法。
背景技术
功率半导体器件是实现能源与电能的转换与利用的关键,为了以绿色发展的方式来满足我们社会迅速增长的能源需求,发展智能、高效的功率转换系统是当今社会发展的趋势。进入二十世纪以来,随着材料生长、器件设计和半导体制造技术的不断发展和完善,基于Si材料的半导体功率器件的功率密度已经接近极限,不足以应对当前市场的需要。为了满足市场的需要,高击穿电压、低导通电阻、高工作温度、低开关损耗以及高开关速度的GaN基功率器件己成为全球研究的热点。
对于开关转换应用,GaN基耗尽型功率器件不仅会给整个系统引入安全隐患,而且会增加驱动电路设计的复杂性,因此制备GaN基增强型功率器件具有至关重要的意义。目前实现增强型器件的主要方法有凹槽栅结构、F离子注入技术、P-GaN栅帽层结构等。在以上方法中,目前能应用于商业用途的增强型功率器件采用的方法是P-GaN栅帽层结构。为了去实现具有P-GaN栅帽层结构的增强型器件,需要对势垒层上面的P-GaN进行刻蚀处理,只留下栅极下方的P-GaN。在整个刻蚀的过程中,不仅难以控制刻蚀的精度以及在刻蚀的过程中,容易造成因刻蚀而造成的机械性损伤,而且刻蚀过程中还产生了大量因刻蚀而引起的缺陷,同样也会影响器件的性能。通过利用Mg掺杂辅助扩散到AlGaN势垒层来代替传统的P-GaN栅帽层有利于避免以上出现的问题,但是随着AlGaN中Al组分的提高,Mg扩散的难度随之而增加,进一步限制了Mg掺杂扩散的深度和浓度。
发明内容
为了克服现有技术存在的缺点与不足,本发明首要目的提供一种增强型HEMT器件,具体是一种基于SiC衬底镁掺杂Al组分渐变的AlGaN势垒层增强型HEMT器件。
本发明的另一个目的是提供一种增强型HEMT器件的制备方法。
本发明的首要目的采用如下技术方案:
一种增强型HEMT器件,包括:SiC衬底、AlN缓冲层、GaN沟道层、AlN插入层、Al组分渐变的AlGaN势垒层、Mg掺杂Al组分渐变的AlGaN势垒层、SiNX钝化层、漏金属电极、源金属电极和栅金属电极,其中:
所述SiC衬底、AlN缓冲层、GaN沟道层、AlN插入层、Al组分渐变的AlGaN势垒层和Mg掺杂Al组分渐变的AlGaN势垒层由下至上依次层叠;
所述SiNX钝化层覆盖在除源、漏、栅金属电极区域外的Al组分渐变的AlGaN势垒层上表面区域;
所述漏金属电极和源金属电极分别位于Al组分渐变的AlGaN势垒层上未被SiNX钝化层覆盖的两侧区域,漏金属电极和源金属电极与Al组分渐变的AlGaN势垒层之间形成欧姆接触;
所述栅金属电极位于Mg掺杂Al组分渐变的AlGaN势垒层上未被SiNX钝化层覆盖的中间区域,栅金属电极与Mg掺杂Al组分渐变的AlGaN势垒层之间形成肖特基接触。
优选地,所述AlN缓冲层的厚度为1~3μm。
优选地,所述GaN沟道层的厚度为1~3μm。
优选地,所述AlN插入层的厚度为1nm。
优选地,所述Al组分渐变的AlGaN势垒层的厚度为5~50nm,铝的组分变化由下至上为50~0%。
优选地,所述金属Mg的厚度为50-200nm。
优选地,所述SiNX钝化层的厚度为50~150nm。
优选地,所述漏金属电极和源金属电极由Ti、Al、Ni和Au四层金属组成。
优选地,所述栅金属电极由Ni和Au两层金属组成。
本发明的次要目的是采用如下技术方案:
一种增强型HEMT器件的制备方法,包括如下步骤:
S1在SiC衬底上外延生长AlN缓冲层;
S2在AlN缓冲层上外延GaN沟道层;
S3在GaN沟道层上外延生长AlN插入层;
S4在AlN插入层上外延生长Al组分渐变的AlGaN势垒层;
S5对S4所得的外延片进行光刻,暴露出栅极区域,进行蒸镀金属Mg、剥离、退火,栅极下的区域形成Mg扩散的P型Al组分渐变的AlGaN层;
S6对S5所得的外延片进行光刻,暴露出源、漏金属电极区域,进行蒸镀、剥离、退火,形成漏、源金属电极;
S7对S6所得的外延片进行台面隔离;
S8,对S7所得的外延片进行光刻,暴露出栅金属电极区域,通过蒸镀、剥离,形成栅金属电极;
S9,在S8所得的外延片上生长SiNX钝化层;
S10,在S9的基础上,经过化学腐蚀处理去除源、漏、栅金属电极区域下的SiNX钝化层,通过蒸镀、剥离,引出源、漏、栅金属电极。
优选地,S1中所述的外延生长AlN缓冲层采用金属有机化学气相沉积(MOCVD)进行生长制备,生长温度为850~950℃。
优选地,S2中所述的外延生长GaN沟道层采用金属有机化学气相沉积(MOCVD)进行生长制备,生长温度为850~950℃。
优选地,S3中所述的外延生长AlN插入层采用金属有机化学气相沉积(MOCVD)进行生长制备,生长温度为850~950℃。
优选地,S4中所述的外延生长Al组分渐变的AlGaN势垒层采用金属有机化学气相沉积(MOCVD)进行生长制备,生长温度为850~950℃,具体为:在衬底温度为900~1000℃下,通入(三甲基铝)TMAl、TMGa与NH3在衬底表面作用,TMAl和TMGa以恒定的摩尔量变化,NH3流量为10~30sccm,通入TMAl、TMGa和NH3的时间均为40~60s,不管Al组成如何变化,保持AlGaN生长速率都是恒定的。
优选地,S5中所述的蒸镀Mg的厚度为50-200nm,退火温度为550-650℃,退火时间为0.3~1h,栅极下方区域形成Mg掺杂Al组分渐变的势垒层;
优选地,S6中欧姆接触所述的快速热退火,具体为:退火气氛为N2,退火温度为800~900℃,保温时间为20~40s,升温速率为15~20℃/s。
优选地,S7中台面隔离即刻蚀至GaN沟道层。
优选地,S8对所得的外延片进行光刻,暴露出栅金属电极区域,通过蒸镀、剥离,形成栅金属电极;
优选地,S9所述SiNX钝化层采用等离子增强化学气相沉积(PECVD)生长制备,生长温度为230~320℃;
优选地,S10中所述的化学腐蚀处理,具体为:采用质量分数比为HF:HN4F=1:7-1:5的缓冲氧化物刻蚀剂(BOE)溶液浸泡50~100s,通过蒸镀、剥离,引出源、漏、栅金属电极。
本发明的有益效果:
(1)本发明采用Al组分渐变的AlxGa1-xN势垒层(x=50~0%)来替代AlGaN势垒层,主要是由于随着AlGaN中Al组分的增加,AlGaN的晶格常数逐渐减少,使得Mg难以在AlGaN中扩散。通过利用Mg扩散到Al组分渐变的AlGaN势垒层,有效降低了扩散的难度,提高Mg扩散的浓度。
(2)本发明器件的P型Al组分渐变的AlxGa1-xN势垒层(x=0~40%),进一步降低了栅极与势垒层之间的距离,增强栅控能力,避免了因刻蚀等问题所产生的损伤,减少表面缺陷。
(3)本发明在实现增强型功率器件的过程中,随着Mg扩散的浓度和深度的增加,有利于提高器件的阈值电压等电学特性。
附图说明
图1是本发明实施例1的结构示意图;
图2是本发明实施例1的转移特性曲线图(VD=6V,阈值电压为1.6V)。
图3是本发明实施例1的输出特性曲线图(VG=1~5)。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
一种基于SiC衬底镁掺杂Al组分渐变的AlGaN势垒层增强型HEMT器件,其结构示意图如图1所示。包括:SiC衬底1、AlN缓冲层2、GaN沟道层3、AlN插入层4、Al组分渐变的AlGaN势垒层5、Mg掺杂Al组分渐变的AlGaN势垒层6、SiNX钝化层7、漏金属电极8、源金属电极9和栅金属电极10,其中:
所述SiC衬底1、AlN缓冲层2、GaN沟道层3、AlN插入层4、Al组分渐变的AlGaN势垒层5和Mg掺杂Al组分渐变的AlGaN势垒层6由下至上依次层叠;
所述SiNX钝化层7覆盖在除源金属电极9、漏金属电极8、栅金属电极10区域外的Al组分渐变的AlGaN势垒层5上表面区域;
所述漏金属电极8和源金属电极9分别位于Al组分渐变的AlGaN势垒层5上未被SiNX钝化层7覆盖的两侧区域,漏金属电极8和源金属电极9与Al组分渐变的AlGaN势垒层之间形成欧姆接触;
所述栅金属电极10位于Mg掺杂Al组分渐变的AlGaN势垒层6上未被SiNX钝化层7覆盖的中间区域,栅金属电极10与Mg掺杂Al组分渐变的AlGaN势垒层6之间形成肖特基接触。
实施例2
制备实施例1所述的基于SiC衬底镁掺杂Al组分渐变的AlGaN势垒层增强型HEMT器件通过如下方法制备,包括:
步骤1,通过在SiC衬底上外延生长AlN缓冲层采用金属有机化学气相沉积(MOCVD)进行生长制备,生长温度为850℃;
步骤2,接着在步骤1中所得外延片上继续采用金属有机化学气相沉积(MOCVD)进行外延生长GaN沟道层,生长温度为850℃;
步骤3,在步骤2的基础上采用金属有机化学气相沉积(MOCVD)进行外延生长AlN插入层,生长温度为850℃;
步骤4,对步骤3上所得的外延片采用金属有机化学气相沉积(MOCVD)进行外延生长Al组分渐变的AlGaN势垒层生长制备,生长温度为850℃,具体为:在衬底温度为900℃下,通入(三甲基铝)TMAl、TMGa与NH3在衬底表面作用,TMAl和TMGa以恒定的摩尔量变化,NH3流量为10sccm,通入TMAl、TMGa和NH3的时间均为40s,不管Al组成如何变化,保持AlGaN生长速率都是恒定的;
步骤5,对步骤4所得的外延片进行光刻、蒸镀,其中金属镁的厚度为50nm,退火温度为550℃,退火时间为0.3h,栅极下方区域形成Mg掺杂Al组分渐变的势垒层;
步骤6,对步骤5所得的外延片进行光刻、蒸镀源、漏接触电极,然后进行快速热退火,具体为:退火气氛为N2,退火温度为800℃,保温时间为20s,升温速率为15℃/s。
步骤7,将步骤6所得的外延片进行台面隔离,刻蚀至GaN沟道层。
步骤8,对步骤7所得的外延片进行光刻,暴露出栅金属电极区域,通过蒸镀、剥离,形成栅金属电极;
步骤9,所述SiNX钝化层采用等离子增强化学气相沉积(PECVD)生长制备,生长温度为230℃;
步骤10,对步骤9所得的外延片进行化学腐蚀处理去除源、漏、栅金属电极区域下的SiNX钝化层,具体为:采用质量分数比为HF:HN4F=1:5的缓冲氧化物刻蚀剂(BOE)溶液浸泡50s,然后进行光刻、蒸镀和剥离金属电极,引出源、漏、栅金属电极。
实施例3
制备如实施例1所述的基于SiC衬底镁掺杂Al组分渐变的AlGaN势垒层增强型HEMT器件通过如下方法,包括如下步骤:
步骤1,通过在Si衬底上外延生长AlN缓冲层采用金属有机化学气相沉积(MOCVD)进行生长制备,生长温度为900℃;
步骤2,接着在步骤1中所得外延片上继续采用金属有机化学气相沉积(MOCVD)进行外延生长GaN沟道层,生长温度为900℃;
步骤3,在步骤2的基础上采用金属有机化学气相沉积(MOCVD)进行外延生长AlN插入层,生长温度为900℃;
步骤4,对步骤3上所得的外延片采用金属有机化学气相沉积(MOCVD)进行外延生长Al组分渐变的AlGaN势垒层生长制备,生长温度为900℃,具体为:在衬底温度为950℃下,通入(三甲基铝)TMAl、TMGa与NH3在衬底表面作用,TMAl和TMGa以恒定的摩尔量变化,NH3流量为20sccm,通入TMAl、TMGa和NH3的时间均为50s,不管Al组成如何变化,保持AlGaN生长速率都是恒定的;
步骤5,对步骤4所得的外延片进行光刻、蒸镀,其中金属镁的厚度为100nm,退火温度为600℃,退火时间为0.65h,栅极下方区域形成Mg掺杂Al组分渐变的势垒层;
步骤6,对步骤5所得的外延片进行光刻、蒸镀源、漏接触电极,然后进行快速热退火,具体为:退火气氛为N2,退火温度为850℃,保温时间为30s,升温速率为17℃/s。
步骤7,将步骤6所得的外延片进行台面隔离,刻蚀至GaN沟道层。
步骤8,对步骤7所得的外延片进行光刻,暴露出栅金属电极区域,通过蒸镀、剥离,形成栅金属电极;
步骤9,所述SiNX钝化层采用等离子增强化学气相沉积(PECVD)生长制备,生长温度为275℃;
步骤10,对步骤9所得的外延片进行化学腐蚀处理去除源、漏、栅金属电极区域下的SiNX钝化层,具体为:采用质量分数比为HF:HN4F=1:6的缓冲氧化物刻蚀剂(BOE)溶液浸泡75s,然后进行光刻、蒸镀和剥离金属电极,引出源、漏、栅电极。
实施例4
制备如实施例1所述的基于SiC衬底镁掺杂Al组分渐变的AlGaN势垒层增强型HEMT器件的方法,包括如下步骤:
步骤1,通过在Si衬底上外延生长AlN缓冲层采用金属有机化学气相沉积(MOCVD)进行生长制备,生长温度为950℃;
步骤2,接着在步骤1中所得外延片上继续采用金属有机化学气相沉积(MOCVD)进行外延生长GaN沟道层,生长温度为950℃;
步骤3,在步骤2的基础上采用金属有机化学气相沉积(MOCVD)进行外延生长AlN插入层,生长温度为950℃;
步骤4,对步骤3上所得的外延片采用金属有机化学气相沉积(MOCVD)进行外延生长Al组分渐变的AlGaN势垒层生长制备,生长温度为950℃,具体为:在衬底温度为1000℃下,通入(三甲基铝)TMAl、TMGa与NH3在衬底表面作用,TMAl和TMGa以恒定的摩尔量变化,NH3流量为30sccm,通入TMAl、TMGa和NH3的时间均为60s,不管Al组成如何变化,保持AlGaN生长速率都是恒定的;
步骤5,对步骤4所得的外延片进行光刻、蒸镀,其中金属镁的厚度为200nm,退火温度为650℃,退火时间为1h,栅极下方区域形成Mg掺杂Al组分渐变的势垒层;
步骤6,对步骤5所得的外延片进行光刻、蒸镀源、漏接触电极,然后进行快速热退火,具体为:退火气氛为N2,退火温度为900℃,保温时间为40s,升温速率为20℃/s。
步骤7,将步骤6所得的外延片进行台面隔离,刻蚀至GaN沟道层。
步骤8,对步骤7所得的外延片进行光刻,暴露出栅金属电极区域,通过蒸镀、剥离,形成栅金属电极;
步骤9,所述SiNX钝化层采用等离子增强化学气相沉积(PECVD)生长制备,生长温度为320℃;
步骤10,对步骤9所得的外延片进行化学腐蚀处理去除源、漏、栅金属电极区域下的SiNX钝化层,具体为:采用质量分数比为HF:HN4F=1:7的缓冲氧化物刻蚀剂(BOE)溶液浸泡100s,然后进行光刻、蒸镀和剥离金属电极,引出源、漏、栅电极。
图2说明本方法制备的HEMT器件,阈值电压为1.6V。
图3说明本方法制备的HEMT器件,它的最大输出电流为200mA/mm。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种增强型HEMT器件,其特征在于,包括SiC衬底、AlN缓冲层、GaN沟道层、AlN插入层、Al组分渐变的AlGaN势垒层、Mg掺杂Al组分渐变的AlGaN势垒层、SiNX钝化层、漏金属电极、源金属电极和栅金属电极;
所述SiC衬底、AlN缓冲层、GaN沟道层、AlN插入层、Al组分渐变的AlGaN势垒层和Mg掺杂Al组分渐变的AlGaN势垒层由下至上依次层叠;
所述SiNX钝化层覆盖在除源、漏、栅金属电极区域外的Al组分渐变的AlGaN势垒层上表面区域;
所述漏金属电极和源金属电极分别位于Al组分渐变的AlGaN势垒层上未被SiNX钝化层覆盖的两侧区域,漏金属电极和源金属电极与Al组分渐变的AlGaN势垒层之间形成欧姆接触;
所述栅金属电极位于Mg掺杂Al组分渐变的AlGaN势垒层上未被SiNX钝化层覆盖的中间区域,栅金属电极与Mg掺杂Al组分渐变的AlGaN势垒层之间形成肖特基接触。
2.根据权利要求1所述的增强型HEMT器件,其特征在于,所述AlN缓冲层的厚度为1~3μm。
3.根据权利要求1所述的增强型HEMT器件,其特征在于,所述GaN沟道层的厚度为1~3μm。
4.根据权利要求1所述的增强型HEMT器件,其特征在于,所述AlN插入层的厚度为1nm。
5.根据权利要求1所述的增强型HEMT器件,其特征在于,Al组分渐变的AlGaN势垒层的厚度为5~50nm,Al的组分变化由下至上为50~0%。
6.根据权利要求1所述的增强型HEMT器件,其特征在于,金属Mg的厚度为50-200nm。
7.根据权利要求1所述的增强型HEMT器件,其特征在于,所述SiNX钝化层的厚度为50~150nm。
8.一种制备权利要求1-7任一项所述的增强型HEMT器件的方法,其特征在于,包括如下步骤:
S1在SiC衬底上外延生长AlN缓冲层;
S2在AlN缓冲层上外延GaN沟道层;
S3在GaN沟道层上外延生长AlN插入层;
S4在AlN插入层上外延生长Al组分渐变的AlGaN势垒层;
S5对S4所得的外延片进行光刻,暴露出栅极区域,进行蒸镀金属Mg、剥离、退火,栅极下方的区域形成Mg扩散的P型Al组分渐变的AlGaN层;
S6对S5所得的外延片进行光刻,暴露出源、漏金属电极区域,进行蒸镀、剥离、退火,形成漏、源金属电极;
S7对S6所得的外延片进行台面隔离;
S8对S7所得的外延片进行光刻,暴露出栅金属电极区域,通过蒸镀、剥离,形成栅金属电极;
S9在S8所得的外延片上生长SiNX钝化层;
S10在S9的基础上,经过化学腐蚀处理去除源、漏、栅金属电极区域下的SiNX钝化层,通过蒸镀、剥离,引出源、漏、栅金属电极。
9.根据权利要求8所述的方法,其特征在于,所述S4中,所述的外延生长Al组分渐变的AlGaN势垒层采用金属有机化学气相沉积进行生长制备,生长温度为850~950℃,具体为:在衬底温度为900~1000℃下,通入TMAl、TMGa与NH3在衬底表面作用,TMAl和TMGa以恒定的摩尔量变化,NH3流量为10~30sccm,通入TMAl、TMGa和NH3的时间均为40~60s,不管Al组成如何变化,保持AlGaN生长速率都是恒定的。
10.根据权利要求8所述的方法,其特征在于,所述S5中,蒸镀Mg的厚度为5-100nm,退火温度为550-650℃,退火时间为0.3~1h。
CN202011550452.9A 2020-12-24 2020-12-24 一种增强型hemt器件及其制备方法 Pending CN112635556A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011550452.9A CN112635556A (zh) 2020-12-24 2020-12-24 一种增强型hemt器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011550452.9A CN112635556A (zh) 2020-12-24 2020-12-24 一种增强型hemt器件及其制备方法

Publications (1)

Publication Number Publication Date
CN112635556A true CN112635556A (zh) 2021-04-09

Family

ID=75324355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011550452.9A Pending CN112635556A (zh) 2020-12-24 2020-12-24 一种增强型hemt器件及其制备方法

Country Status (1)

Country Link
CN (1) CN112635556A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363320A (zh) * 2021-06-04 2021-09-07 上海西源新能源技术有限公司 降低栅极漏电的p-GaN栅增强型GaN-HEMT器件及其制作方法
WO2023103536A1 (zh) * 2021-12-06 2023-06-15 华南理工大学 一种增强型GaN HEMT射频器件及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363320A (zh) * 2021-06-04 2021-09-07 上海西源新能源技术有限公司 降低栅极漏电的p-GaN栅增强型GaN-HEMT器件及其制作方法
WO2023103536A1 (zh) * 2021-12-06 2023-06-15 华南理工大学 一种增强型GaN HEMT射频器件及其制备方法

Similar Documents

Publication Publication Date Title
CN110190116B (zh) 一种高阈值电压常关型高电子迁移率晶体管及其制备方法
CN110034186B (zh) 基于复合势垒层结构的iii族氮化物增强型hemt及其制作方法
CN111916351A (zh) 半导体器件及其制备方法
CN106158923A (zh) 基于多二维沟道的增强型GaN FinFET
CN109037326A (zh) 一种具有p型埋层结构的增强型hemt器件及其制备方法
CN112635556A (zh) 一种增强型hemt器件及其制备方法
CN110459595A (zh) 一种增强型AlN/AlGaN/GaN HEMT器件及其制备方法
CN114899227A (zh) 一种增强型氮化镓基晶体管及其制备方法
CN210429824U (zh) 一种增强型AlN/AlGaN/GaN HEMT器件
CN111081763B (zh) 一种场板下方具有蜂窝凹槽势垒层结构的常关型hemt器件及其制备方法
CN205564759U (zh) 一种新型增强型iii-v异质结场效应晶体管
CN210092091U (zh) 一种辅助掺杂实现常关型GaN HEMT器件
CN114883407B (zh) 基于Fin-FET栅结构HEMT及其制作方法
CN110970499B (zh) GaN基横向超结器件及其制作方法
CN213936195U (zh) 一种增强型hemt器件
CN115881774A (zh) 一种具有阵列侧栅结构的hemt器件及其制备方法
CN114725186A (zh) 一种增强型GaN基HEMT器件及其制备方法和应用
CN115020499A (zh) 基于p型GaN结构的结型肖特基二极管及其制备方法
CN114937597A (zh) 一种双层钝化耗尽型mis-hemt器件及其制备方法
CN115172463A (zh) 一种具有垂直保护环结构的垂直型ⅲ族氮化物功率半导体器件结构及其制备方法
CN111446296B (zh) p型栅增强型氮化镓基高迁移率晶体管结构及制作方法
CN113628962A (zh) Ⅲ族氮化物增强型hemt器件及其制造方法
CN114883396B (zh) 一种凹陷式Fin-JFET栅结构HEMT及制作方法
CN212380426U (zh) 一种二维AlN/GaN HEMT射频器件
CN112768508B (zh) 背栅全控型AlGaN/GaN异质结增强型功率HEMT器件及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination