CN112621779B - 一种近红外驱动的可视化Janus结构色软体机器人及其制备方法 - Google Patents

一种近红外驱动的可视化Janus结构色软体机器人及其制备方法 Download PDF

Info

Publication number
CN112621779B
CN112621779B CN202011501546.7A CN202011501546A CN112621779B CN 112621779 B CN112621779 B CN 112621779B CN 202011501546 A CN202011501546 A CN 202011501546A CN 112621779 B CN112621779 B CN 112621779B
Authority
CN
China
Prior art keywords
carbon
structural color
visual
infrared
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011501546.7A
Other languages
English (en)
Other versions
CN112621779A (zh
Inventor
赵远锦
许冬雨
王健
王月桐
张大淦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Drum Tower Hospital
Original Assignee
Nanjing Drum Tower Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Drum Tower Hospital filed Critical Nanjing Drum Tower Hospital
Priority to CN202011501546.7A priority Critical patent/CN112621779B/zh
Publication of CN112621779A publication Critical patent/CN112621779A/zh
Application granted granted Critical
Publication of CN112621779B publication Critical patent/CN112621779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/007Means or methods for designing or fabricating manipulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种近红外驱动的可视化Janus结构色软体机器人及其制备方法,该方法基于气液界面自组装策略,生成可以转移至多种基底上的碳基薄膜,将碳基薄膜集成到柔性聚合物基底中,制备得到可拉伸的柔性碳基导体;柔性碳基导体的柔性聚合物侧进行聚多巴胺涂层处理,并进一步沉积二维光子晶体阵列,从而制得近红外驱动的可视化Janus结构色软体机器人。本发明制备的可视化Janus结构色软体机器人呈分层结构,因结构色响应性以及光热转化特性而具有近红外驱动和光电传感的多重特性,自由端在近红外照射下呈现弯曲运动、相应的结构色响应以及电学传感响应,成本低廉,工艺简便,可重复利用。

Description

一种近红外驱动的可视化Janus结构色软体机器人及其制备 方法
技术领域
本发明属于生物材料领域,具体涉及一种近红外驱动的可视化Janus结构色软体机器人及其制备方法。
背景技术
柔性电子材料因其良好的柔韧性、灵敏性及高延展性而广泛应用于软体机器人、电子皮肤和可穿戴设备中。其中,软体机器人为了应对复杂的需求,相较于大多数传统硬质机器人具有良好的柔韧性、导电性、轻便以及在机械运动下的保持良好电子性能等优势。常见的软体机器人可以通过沉积、3D打印、光刻等技术以弹性聚合物、塑料、纺织品等柔性材料为基础材料制备得到。但是,常见的软体机器人少有相关的传感指标来监测软体机器人的运动状况,随着柔性电子技术的发展,可以实时检测运动状况的软体机器人有待研发。
光子晶体阵列是一种具有周期性结构和光子带隙效应的结构,可以用于制备光电器件。由于其出色的结构色和响应性,光子晶体可以用于防伪,印刷,生物医学传感器,应变传感器等。其中,二维光子晶体是一种周期有序的二维紧密光子晶体阵列,具有结构简单、制备方便、各向异性等特性。二维光子晶体阵列可以通过气液界面上的尖端导流法自组装生成,再通过进一步沉积可以转移至多种基底上从而赋予基底可视化的结构色以及相应的结构色响应特性。
因此,基于二维光子晶体阵列的结构色响应性,本发明通过聚多巴胺涂层和多级自组装策略,将碳基材料以及二维光子晶体阵列分别沉积集成到柔性支撑层上,研发了一种基于界面自组装的近红外驱动的可视化Janus结构色软体机器人,对于实时可视化监测软体机器人运动具有重要意义。
发明内容
本发明所要解决的技术问题是针对上述现有软体机器人的不足,提供一种近红外驱动的可视化Janus结构色软体机器人及其制备方法。
为实现上述技术目的,本发明采用的技术方案为:
一种近红外驱动的可视化Janus结构色软体机器人的制备方法,包括如下步骤:
(1)制备碳基乙醇溶液,在气液界面上的借助Marangoni效应自组装生成碳基薄膜;通过提升法多次转移,得到多层碳基薄膜;通过向多层碳基薄膜滴加聚合物溶液并进行固化,得到柔性碳基导体;
(2)对步骤(1)制备的柔性碳基导体的柔性聚合物侧进行聚多巴胺涂层处理;借助二维光子晶体生成装置,通过尖端导流法将胶体粒子溶液分散在气液界面上自组装生成二维光子晶体阵列,将二维光子晶体阵列沉积转移至柔性碳基导体的柔性聚合物侧;将产物室温干燥转移后得到近红外驱动的可视化Janus结构色软体机器人。
步骤(1)中,配置所述碳基乙醇溶液采用的碳基材料选自碳纳米管或石墨烯。
步骤(1)中,所述碳基乙醇溶液的浓度为1mg/ml。
步骤(1)中,所述聚合物溶液选自聚二甲基硅氧烷、聚氨酯、聚酯、聚乙烯醇、聚酰亚胺、聚萘二甲酯乙二醇酯溶液中的一种或多种,借助可挥发溶剂制备得到聚合物溶液;其中,聚合物溶液的浓度为10%-20%m/v。
步骤(1)中,所述柔性碳基导体的碳基材料层被聚合物溶液渗透,固化后形成碳基材料/柔性聚合物复合层,厚度为5-20μm。
步骤(2)中,所述胶体粒子选择二氧化硅、聚苯乙烯、二氧化钛、聚乙烯中的一种。
步骤(2)中,所述二维光子晶体生成装置内置用于放置所述柔性碳基导体的平台,所述的平台倾斜角为30°且底部带有用于缓慢均匀将所述二维光子晶体阵列沉积至所述柔性碳基导体表面的水阀。
步骤(2)中,所述可视化Janus结构色软体机器人厚度为50-200μm,呈现分层结构,底层为碳基导电层、中间层为柔性聚合物支撑层、顶层为二维光子晶体结构色层。
本发明还提供采用上述制备方法制备的一种近红外驱动的可视化Janus结构色软体机器人。
与现有技术相比,本发明的有益效果在于:
1)本发明基于聚多巴胺涂层以及多级自组装策略制备了一种近红外驱动的可视化Janus结构色软体机器人,自由端在近红外光源照射下呈现弯曲运动以及相应的光电双重传感响应,成本低廉,工艺简便,可重复利用;
2)本发明制备的近红外驱动的可视化Janus结构色软体机器人兼具柔性碳基导体和二维光子晶体的优点,其中,二维光子晶体借助聚多巴胺涂层沉积在柔性碳基导体表面为其提供了可视化的结构色,二维光子晶体的光子带隙特性以及各向异性使得其结构色具有角度依赖性,从而为制备的可视化Janus结构色软体机器人提供光学传感指标;柔性碳基导体为所得的可视化Janus结构色软体机器人提供良好的电学性能以及柔韧性;碳基材料具有光热转换特性从而赋予可视化Janus结构色软体机器人以近红外光源照射升温的特性,同时基于可视化Janus结构色软体机器人分层结构以及每层之间的不同热膨胀系数,可视化Janus结构色软体机器人具有近红外驱动弯曲的特性;
3)本发明制备的近红外驱动的可视化Janus结构色软体机器人可监测软体机器人近红外驱动的弯曲运动状况,其中,碳基材料的光热转换特性赋予可视化Janus结构色软体机器人近红外驱动性能,同时其良好电学性能可以作为电学传感指标反馈软体机器人弯曲运动中的实时电阻变化,二维光子晶体阵列因其各向异性以及结构色响应性可以作为光学传感指标进行软体机器人弯曲运动中的可视化颜色传感。
附图说明
图1为近红外驱动的可视化Janus结构色软体机器人的制备工艺流程图。
图2为近红外驱动的可视化Janus结构色软体机器人的近红外照射升温情况图像;其中,图a为实施例2在300,450,600和750mW/cm2功率的近红外光源照射下的红外升温图像;图b为实施例2在650mW/cm2功率的近红外光源照射下10,30,90和180s时的红外升温图像;图c为实施例2在300,450,600和750mW/cm2功率的近红外光源照射下的时间和温度的关系曲线;图d为基于0,1,3,5和7层碳纳米管膜/PDMS的可视化Janus结构色软体机器人在650mW/cm2功率的近红外光源照射下的时间和温度的关系曲线。
图3为可视化近红外驱动的Janus结构色软体机器人的近红外驱动弯曲情况;其中,图a为实施例2在0,0.3,0.6,0.9,1.2和1.5W/cm2功率下的近红外光源照射下弯曲实物图像;图b为基于0,1,3,5和7层碳纳米管膜/PDMS的可视化Janus结构色软体机器人的近红外照射功率和弯曲曲率差的关系曲线;图c为实施例2在0.5,1.0和1.5W/cm2功率的近红外光源照射下循环曲率差变化曲线。
图4为实施例2的角度依赖性结构色的实物图像;其中,图a-d分别为实施例2在观察角度为90°,60°,30°和15°下的结构色实物图像。
图5为实施例2在弯曲角度为30°,60°和90°时的相对电阻和时间的关系。
其中的附图标记为:1-水体,2-碳基薄膜,3-转移基底,4-聚多巴胺涂层,5-二维光子晶体阵列。
具体实施方式
为了使本领域技术领域人员更好地理解本发明的技术方案,下面结合附图对本发明的实施例作进一步详细描述。
下述实施例中所使用的实验方法,如无特殊说明,均为常规方法,所用的试剂、方法和设备,如无特殊说明,均为本技术领域常规试剂、方法和设备。
本发明提供了一种近红外驱动的可视化Janus结构色软体机器人的制备方法,包括如下步骤:
(1)制备柔性碳基导体:将经过超声分散后的1mg/ml的碳基乙醇溶液稳定匀速地分散到水面1上,碳基材料借助Marangoni效应在气液界面上形成薄膜,再利用多孔海绵的虹吸作用力压缩薄膜使其形成紧密结构;在气液界面上形成的碳基薄膜2通过提升法可以被转移至基底3上,借助多次转移可以得到多层碳基薄膜,再滴加聚合物溶液,待聚合物溶液固化后从基底上小心剥离,得到柔性碳基导体。
(2)制备集成二维光子晶体阵列的可视化Janus结构色软体机器人:将步骤1)制得的柔性碳基导体1以碳基材料侧朝下的方式置于疏水基底上,滴加多巴胺缓冲液进行聚多巴胺涂层4处理,超纯水冲洗表面后,置于二维光子晶体生成装置中,通过尖端导流法将胶体粒子溶液分散在气液界面上自组装生成的二维光子晶体阵列5借助聚多巴胺涂层4牢固地沉积转移至柔性碳基导体表面,室温干燥后制得集成二维光子晶体阵列的可视化Janus结构色软体机器人。
步骤(1)中,所述碳基材料选择碳纳米管或石墨烯。
步骤(1)中,所述碳基乙醇溶液浓度为1mg/ml。
步骤(1)中,所述聚合物溶液选自聚二甲基硅氧烷、聚氨酯、聚酯、聚乙烯醇、聚酰亚胺或聚萘二甲酯乙二醇酯溶液中的一种或多种,且借助可挥发溶剂制备得到,聚合物溶液的浓度为10%-20%m/v。
步骤(1)中,所述柔性碳基导体的碳基材料层被聚合物溶液渗透,固化后形成碳基材料/柔性聚合物复合层,厚度为5-20μm。
步骤(2)中,所述胶体粒子选择二氧化硅、聚苯乙烯、二氧化钛、聚乙烯中的一种。
步骤(2)中,所述二维光子晶体生成装置内置用于放置所述柔性碳基导体的倾斜角为30°的平台,且底部带有水阀用于缓慢均匀将所述二维光子晶体阵列5沉积至所述柔性碳基导体表面。
步骤(2)中,所述可视化Janus结构色软体机器人厚度为50-200μm,呈现分层结构,底层为碳基导电层、中间层为柔性聚合物支撑层、顶层为二维光子晶体结构色层。
以下为实施例:
实施例1
一种基于单层碳纳米管/聚二甲基硅氧烷(PDMS)的近红外驱动的可视化Janus结构色软体机器人,制备流程如图1所示,包括以下步骤:
(1)柔性碳纳米管导体的制备
用注射器将在强超声下分散好的1mg/ml的碳纳米管乙醇溶液缓慢地分散在水面上,然后将多孔海绵小心地沿容器边缘伸到水面以下来压缩碳纳米管薄膜直至薄膜不再变小为止。将碳纳米管薄膜转移至55×55mm的聚苯乙烯(PS)基底上得到单层碳纳米管膜,在室温下干燥后再滴加1.2mL12%(m/v)聚二甲基硅氧烷(PDMS)正己烷混合溶液,在通风橱中静置一段时间挥发正己烷后,75℃固化2h,小心剥离得到柔性碳纳米管导体。
(2)柔性碳纳米管导体集成二维光子晶体阵列的过程
将上一步中制得的柔性碳纳米管导体以碳管侧朝下的方式置于疏水基底上,滴加适量2mg/ml多巴胺Tris缓冲液浸泡3h进行聚多巴胺涂层处理,超纯水冲洗表面后,置于二维光子晶体生成装置中。将特征峰为620nm的二氧化硅粒子以20%(m/v)的浓度溶于正丁醇溶液中,再向二氧化硅正丁醇溶液中加入1/2体积的乙醇溶液,混合均匀后作为制备二维光子晶体结构的胶体粒子溶液。用注射器取适量胶体粒子溶液借助尖端导流法将二氧化硅粒子均匀分散在二维光子晶体生成装置的气液界面上自组装形成二维光子晶体阵列,打开生成装置的阀门,缓慢放水,将二维二氧化硅光子晶体阵列沉积转移至到柔性聚合物表面,最后取出复合薄膜,在室温条件下干燥后制得近红外驱动的可视化Janus结构色软体机器人。
实施例2
一种基于5层碳纳米管/聚二甲基硅氧烷(PDMS)的近红外驱动的可视化Janus结构色软体机器人,包括以下步骤:
(1)柔性碳纳米管导体的制备
用注射器将在强超声下分散好的1mg/ml(m/v)碳纳米管乙醇溶液缓慢地分散在水面上,然后将多孔海绵小心地沿容器边缘伸到水面以下来压缩碳纳米管薄膜知道薄膜不再变小为止。将碳纳米管薄膜转移至55×55mm的聚苯乙烯(PS)基底上得到一层碳纳米管膜,在室温下干燥后使用体积比例为0.25%的吐温20溶液进行润湿和纯水冲洗,重复进行上述步骤4次,得到5层碳纳米管膜,再滴加1.2mL12%(m/v)聚二甲基硅氧烷(PDMS)正己烷混合溶液,在通风橱中静置一段时间挥发正己烷后,75℃固化2h,小心剥离得到柔性碳纳米管导体。
(2)柔性碳纳米管导体集成二维光子晶体的过程
将上一步中制得的柔性碳纳米管导体以碳管侧朝下的方式置于疏水基底上,滴加适量2mg/ml多巴胺Tris缓冲液浸泡3h进行聚多巴胺涂层处理,超纯水冲洗表面后,置于二维光子晶体生成装置中。将特征峰为620nm的二氧化硅粒子以20%(m/v)的浓度溶于正丁醇溶液中,再向二氧化硅正丁醇溶液中加入1/2体积的乙醇溶液,混合均匀后作为制备二维光子晶体结构的胶体粒子溶液。用注射器取适量胶体粒子溶液借助尖端导流法将二氧化硅粒子均匀分散在二维光子晶体生成装置的气液界面上自组装形成二维光子晶体阵列,打开生成装置的阀门,缓慢放水,将二维二氧化硅光子晶体阵列沉积转移至到柔性聚合物表面,最后取出复合薄膜,在室温条件下干燥后制得近红外驱动的可视化Janus结构色软体机器人。
实施例3
一种基于5层碳纳米管/聚氨酯(PU)的近红外驱动的可视化Janus结构色软体机器人,包括以下步骤:
(1)柔性碳纳米管导体的制备
用注射器将在强超声下分散好的1mg/ml(m/v)碳纳米管乙醇溶液缓慢地分散在水面上,然后将多孔海绵小心地沿容器边缘伸到水面以下来压缩碳纳米管薄膜直至薄膜不再变小为止。将碳纳米管薄膜转移至55×55mm的聚苯乙烯(PS)基底上得到单层碳纳米管膜,在室温下干燥后使用体积比例为0.25%的吐温20溶液进行润湿和纯水冲洗,重复进行上述步骤4次,得到5层碳纳米管膜,再滴加1.2mL20%(m/v)聚氨酯(PU)N,N-二甲基甲酰胺混合溶液,在通风橱中静置一段时间挥发正己烷后,70℃固化2h,小心剥离得到柔性碳纳米管导体。
(2)柔性碳纳米管导体集成二维光子晶体的过程
将上一步中制得的柔性碳纳米管导体以碳管侧朝下的方式置于疏水基底上,滴加适量2mg/ml多巴胺Tris缓冲液浸泡3h进行聚多巴胺涂层处理,超纯水冲洗表面后,置于二维光子晶体生成装置中。将特征峰为620nm的二氧化硅粒子以20%(m/v)的浓度溶于正丁醇溶液中,再向二氧化硅正丁醇溶液中加入1/2体积的乙醇溶液,混合均匀后作为制备二维光子晶体结构的胶体粒子溶液。用注射器取适量胶体粒子溶液借助尖端导流法将二氧化硅粒子均匀分散在二维光子晶体生成装置的气液界面上自组装形成二维光子晶体阵列,打开生成装置的阀门,缓慢放水,将二维二氧化硅光子晶体阵列沉积转移至到柔性聚合物表面,最后取出复合薄膜,在室温条件下干燥后制得近红外驱动的可视化Janus结构色软体机器人。
实施例4
一种基于5层石墨烯/聚二甲基硅氧烷(PDMS)的近红外驱动的可视化Janus结构色软体机器人,包括以下步骤:
(1)柔性石墨烯导体的制备
用注射器将在强超声下分散好的1mg/ml(m/v)石墨烯乙醇溶液缓慢地分散在水面上,然后将多孔海绵小心地沿容器边缘伸到水面以下来压缩石墨烯薄膜直至薄膜不再变小为止。将石墨烯薄膜转移至55×55mm的聚苯乙烯(PS)基底上得到单层石墨烯膜,在室温下干燥后使用体积比例为0.25%的吐温20溶液进行润湿和纯水冲洗,重复进行上述步骤4次,得到5层石墨烯膜,再滴加1.2mL12%(m/v)聚二甲基硅氧烷(PDMS)正己烷混合溶液,在通风橱中静置一段时间挥发正己烷后,75℃固化2h,小心剥离得到柔性石墨烯导体。
(2)柔性石墨烯导体集成二维光子晶体的过程
将上一步中制得的柔性石墨烯导体以碳管侧朝下的方式置于疏水基底上,滴加适量2mg/ml多巴胺Tris缓冲液浸泡3h进行聚多巴胺涂层处理,超纯水冲洗表面后,置于二维光子晶体生成装置中。将特征峰为620nm的二氧化硅粒子以20%(m/v)的浓度溶于正丁醇溶液中,再向二氧化硅正丁醇溶液中加入1/2体积的乙醇溶液,混合均匀后作为制备二维光子晶体结构的胶体粒子溶液。用注射器取适量胶体粒子溶液借助尖端导流法将二氧化硅粒子均匀分散在二维光子晶体生成装置的气液界面上自组装形成二维光子晶体阵列,打开生成装置的阀门,缓慢放水,将二维二氧化硅光子晶体阵列沉积转移至到柔性聚合物表面,最后取出复合薄膜,在室温条件下干燥后制得近红外驱动的可视化Janus结构色软体机器人。
实施例5
采用以上制备方法制得的近红外驱动的可视化Janus结构色软体机器人的光热转换、近红外驱动弯曲特性以及光电双重传感响应。
以实施例2制得的基于5层碳纳米管/聚二甲基硅氧烷(PDMS)的近红外驱动的可视化Janus结构色软体机器人为例,对软体机器人的光热转换特性表征、近红外驱动弯曲表征、角度依赖性结构色表征以及导电性表征进行测定,具体如下:
光热转换特性表征:将基于碳纳米管/PDMS的可视化Janus结构色软体机器人固定在平面上,分别照射不同功率以及不同时间的近红外光,观察记录基于碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人的升温情况。如图2a-b所示,基于5层碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人在近红外光源照射下,随着照射功率的增大以及照射时间的延长,温度逐渐增加。图2c记录了基于5层碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人在300、450、600以及750mW/cm2功率的近红外光源照射下的随时间变化的升温曲线,该软体机器人可以在20秒内实现快速升温,表明其具有良好快速的光热响应特性。此外,如图2d所示,随着碳纳米管膜的层数增加,基于碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人所达到的终点温度也在增大。因此,该软体机器人呈现出多因素调控的光热升温特性,具有编程调控光热转换特性的潜力。
近红外驱动弯曲特性表征:将尺寸为1×0.1cm的基于碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人一端固定作为固定端,另一端为自由端。对自由端碳纳米管侧照射不同功率的近红外光,观察其弯曲情况(图3)。图3a是尺寸为1×0.1cm的基于5层碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人在不同功率近红外光源照射下,自由端的弯曲情况实物图像。如图3b所示,基于不同层数碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人在一定功率的近红外光源照射下具有良好的弯曲性能(记向结构色侧弯曲为正,向碳纳米管侧弯曲为负)。其中,随着碳纳米管膜层数的增加,软体机器人向结构色层弯曲的角度减小,且基于7层碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人向碳纳米管层弯曲,这是由碳纳米管/PDMS、PDMS以及二维二氧化硅光子晶体层之间不同的热膨胀系数决定的。根据不同层数碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人在同一功率下的不同光热驱动情况,可将其制备成光控抓手用来在近红外光源驱动下抓取物品。此外,如图3c所示,还对基于5层碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人进行了功率为0.5、1.0和1.5W/cm2的近红外光照射循环实验,表明了其光热驱动的稳定性。
角度依赖性结构色表征:将四叶草形状的基于5层碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人固定在平面上,减小观察角度后软体机器人因二维光子晶体阵列的各向异性而发生结构色蓝移的现象(图4)。因为角度依赖性的结构色,而使软体机器人在近红外驱动弯曲下呈现结构色变化,从而实现可视化传感软体机器人运动状况的目的。
导电性表征:如图5所示,将基于5层碳纳米管/PDMS的近红外驱动的可视化Janus结构色软体机器人固定在弹性平面上,改变其弯曲角度并进一步监测到其相对电阻(实时电阻/原始电阻)的变化情况。在不同弯曲角度下的电阻监测使得其具有电学传感监测软体机器人的潜力。
综上,本发明基于聚多巴胺涂层以及多层自组装策略制备的近红外驱动的可视化Janus结构色软体机器人,自由端在近红外光源照射下呈现弯曲运动以及相应的光电双重传感响应,成本低廉,工艺简便,可重复利用;本发明制备的近红外驱动的可视化Janus结构色软体机器人,具有良好的光热转换升温特性(碳基材料赋予),在近红外光源照射下具有良好的光控驱动性(分层结构的不同热膨胀系数导致其在近红外光源照射下会向一侧弯曲),同时具有光电双重传感响应来表征软体机器人的运动状况(二维光子晶体层赋予的结构色响应以及碳基材料赋予的电信号响应),可以用来制备成光控抓手在近红外光源照射下抓取物体,同时以光电双重信号传感来可视化监测软体机器人的运动状况。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (6)

1.一种近红外驱动的可视化Janus结构色软体机器人的制备方法,其特征在于,包括如下步骤:
(1)制备碳基乙醇溶液,在气液界面上的借助Marangoni效应自组装生成碳基薄膜;通过提升法多次转移,得到多层碳基薄膜;通过向多层碳基薄膜滴加聚合物溶液并进行固化,得到柔性碳基导体;
(2)对步骤(1)制备的柔性碳基导体的柔性聚合物侧进行聚多巴胺涂层处理;借助二维光子晶体生成装置,通过尖端导流法将胶体粒子溶液分散在气液界面上自组装生成二维光子晶体阵列,将二维光子晶体阵列沉积转移至柔性碳基导体的柔性聚合物侧;将产物室温干燥转移后得到近红外驱动的可视化Janus结构色软体机器人;
步骤(1)中,配置所述碳基乙醇溶液采用的碳基材料选自碳纳米管或石墨烯;所述聚合物溶液选自聚二甲基硅氧烷、聚氨酯、聚酯、聚乙烯醇、聚酰亚胺、聚萘二甲酯乙二醇酯溶液中的一种或多种,借助可挥发溶剂制备得到聚合物溶液;其中,聚合物溶液的浓度为10%-20% m/v;
步骤(2)中,所述胶体粒子选择二氧化硅、聚苯乙烯、二氧化钛、聚乙烯中的一种。
2.根据权利要求1所述的近红外驱动的可视化Janus结构色软体机器人的制备方法,其特征在于:步骤(1)中,所述碳基乙醇溶液的浓度为1mg/ml。
3.根据权利要求1所述的近红外驱动的可视化Janus结构色软体机器人的制备方法,其特征在于:步骤(1)中,所述柔性碳基导体的碳基材料层被聚合物溶液渗透,固化后形成碳基材料/柔性聚合物复合层,厚度为5-20μm。
4.根据权利要求1所述的近红外驱动的可视化Janus结构色软体机器人的制备方法,其特征在于:步骤(2)中,所述二维光子晶体生成装置内置用于放置所述柔性碳基导体的平台,所述的平台倾斜角为30°且底部带有用于缓慢均匀将所述二维光子晶体阵列沉积至所述柔性碳基导体表面的水阀。
5.根据权利要求1所述的近红外驱动的可视化Janus结构色软体机器人的制备方法,其特征在于:步骤(2)中,所述可视化Janus结构色软体机器人厚度为50-200µm,呈现分层结构,底层为碳基导电层、中间层为柔性聚合物支撑层、顶层为二维光子晶体结构色层。
6.一种近红外驱动的可视化Janus结构色软体机器人,其特征在于,采用权利要求1~5任一项所述的制备方法制备得到。
CN202011501546.7A 2020-12-18 2020-12-18 一种近红外驱动的可视化Janus结构色软体机器人及其制备方法 Active CN112621779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011501546.7A CN112621779B (zh) 2020-12-18 2020-12-18 一种近红外驱动的可视化Janus结构色软体机器人及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011501546.7A CN112621779B (zh) 2020-12-18 2020-12-18 一种近红外驱动的可视化Janus结构色软体机器人及其制备方法

Publications (2)

Publication Number Publication Date
CN112621779A CN112621779A (zh) 2021-04-09
CN112621779B true CN112621779B (zh) 2022-04-08

Family

ID=75317504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011501546.7A Active CN112621779B (zh) 2020-12-18 2020-12-18 一种近红外驱动的可视化Janus结构色软体机器人及其制备方法

Country Status (1)

Country Link
CN (1) CN112621779B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113618711B (zh) * 2021-07-22 2023-08-22 江苏大学 一种基于光磁驱动的复合水凝胶软体机器人
CN113865760B (zh) * 2021-09-24 2024-03-29 国科温州研究院(温州生物材料与工程研究所) 一种用于心肌力学传感的各向异性结构色薄膜的制备方法
CN114102555A (zh) * 2021-11-30 2022-03-01 中国运载火箭技术研究院 一种基于复合薄膜应激变形的仿生微型机器人
CN114808489A (zh) * 2022-04-07 2022-07-29 武汉纺织大学 结构色纤维材料及其制备方法
CN114833831B (zh) * 2022-05-09 2023-06-06 西湖大学 一种光驱动人工肌肉自持续波动的方法、系统及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108395548A (zh) * 2018-02-11 2018-08-14 浙江工业大学 一种具有盐-温度双重响应的双层水凝胶的制备方法、产品及应用
CN110340921A (zh) * 2019-08-13 2019-10-18 安徽大学 一种具有触觉感知功能的气动式软体机械手
CN110723728A (zh) * 2019-11-04 2020-01-24 鲁东大学 一种利用Janus纳米片制备自修复水凝胶柔性传感器的方法
KR20200040152A (ko) * 2018-10-08 2020-04-17 한국생산기술연구원 전기접착식 그리퍼 및 그의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200090237A (ko) * 2017-11-28 2020-07-28 보드 오브 레젼츠, 더 유니버시티 오브 텍사스 시스템 촉매 유도 패턴 전사 기술
US20190345397A1 (en) * 2018-05-11 2019-11-14 Uchicago Argonne, Llc Janus membranes via atomic layer deposition
CN110358262B (zh) * 2019-08-23 2022-02-18 哈尔滨工业大学 一种光致驱动碳纳米管螺旋纤维复合材料驱动器的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108395548A (zh) * 2018-02-11 2018-08-14 浙江工业大学 一种具有盐-温度双重响应的双层水凝胶的制备方法、产品及应用
KR20200040152A (ko) * 2018-10-08 2020-04-17 한국생산기술연구원 전기접착식 그리퍼 및 그의 제조방법
CN110340921A (zh) * 2019-08-13 2019-10-18 安徽大学 一种具有触觉感知功能的气动式软体机械手
CN110723728A (zh) * 2019-11-04 2020-01-24 鲁东大学 一种利用Janus纳米片制备自修复水凝胶柔性传感器的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Biological active matter aggregates: Inspiration for smart colloidal materials;F.J.Vernerey等;《Advances in Colloid and Interface Science》;20190131(第263期);全文 *
聚苯胺/聚多巴胺Janus球的制备及其应用;王昊、王晓伟 等;《华北科技学院学报》;20180415;全文 *
非对称性Janus粒子的制备与可控组装;杨轶、叶伟 等;《物理化学学报》;20121115;全文 *

Also Published As

Publication number Publication date
CN112621779A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN112621779B (zh) 一种近红外驱动的可视化Janus结构色软体机器人及其制备方法
CN110108375B (zh) 一种基于MXene材料的电子皮肤及其制备方法
Xue et al. Highly Conductive MXene/PEDOT: PSS‐Integrated Poly (N‐Isopropylacrylamide) Hydrogels for Bioinspired Somatosensory Soft Actuators
KR101331521B1 (ko) 그래핀 박막의 제조 방법
CN111874896B (zh) 一种精准转移二维材料的方法及其应用
Xiao et al. Ultrafast formation of free-standing 2D carbon nanotube thin films through capillary force driving compression on an air/water interface
Wang et al. Quasi in situ polymerization to fabricate copper nanowire-based stretchable conductor and its applications
KR101111960B1 (ko) 플렉서블 에너지 변환소자 및 이의 제조방법
CN109115282A (zh) 一种仿生柔性应力/应变传感器的制备方法
CN113200523B (zh) 一种大面积层状二维材料的剥离及其转移方法
CN111341703B (zh) 热控可编程气压式转印印章及转印方法
Hwang et al. Stretchable carbon nanotube conductors and their applications
US8852376B2 (en) Method for making heaters
CN108648853B (zh) 石墨烯附着增强的复合导电结构及其制备方法
CN112718028B (zh) 一种光操控液滴运动材料及其制备方法和应用
CN113776423A (zh) 基于MXene的驱动传感一体化智能薄膜的制备方法
CN112625281B (zh) 一种用于可视化传感的Janus结构色薄膜及其制备方法
CN108078543A (zh) 一种高灵敏度电子皮肤的制备方法
CN107910128B (zh) 一种氧化石墨烯自组装复合银纳米线改善柔性器件机械性能的方法
CN111003702B (zh) 一种由石墨烯纳米片组成的二维层流矩阵碳材料及其制备方法
CN110350081B (zh) 一种有序结构的多功能柔性压电复合薄膜及其制备方法
CN107240544B (zh) 一种图形化薄膜、薄膜晶体管及忆阻器的制备方法
CN106297964A (zh) 一种复合透明导电薄膜及其制备方法
KR101364593B1 (ko) 그래핀 필름의 패터닝 방법
Liu et al. A liquid metal–based shape memory composite with the multi-responsive regulation of solid/liquid adhesion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant