CN112557775B - 膜层结构测试系统及膜层电学参数测试结构 - Google Patents

膜层结构测试系统及膜层电学参数测试结构 Download PDF

Info

Publication number
CN112557775B
CN112557775B CN202011295120.0A CN202011295120A CN112557775B CN 112557775 B CN112557775 B CN 112557775B CN 202011295120 A CN202011295120 A CN 202011295120A CN 112557775 B CN112557775 B CN 112557775B
Authority
CN
China
Prior art keywords
piezoelectric
electrode
signal
layer
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011295120.0A
Other languages
English (en)
Other versions
CN112557775A (zh
Inventor
沈宇
占瞻
石正雨
童贝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAC Technologies Holdings Shenzhen Co Ltd
Science and Education City Branch of AAC New Energy Development Changzhou Co Ltd
Original Assignee
AAC Acoustic Technologies Shenzhen Co Ltd
Science and Education City Branch of AAC New Energy Development Changzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AAC Acoustic Technologies Shenzhen Co Ltd, Science and Education City Branch of AAC New Energy Development Changzhou Co Ltd filed Critical AAC Acoustic Technologies Shenzhen Co Ltd
Priority to CN202011295120.0A priority Critical patent/CN112557775B/zh
Priority to PCT/CN2020/135858 priority patent/WO2022104960A1/zh
Publication of CN112557775A publication Critical patent/CN112557775A/zh
Application granted granted Critical
Publication of CN112557775B publication Critical patent/CN112557775B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/22Measuring piezoelectric properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开一种膜层结构测试系统,其包括信号产生模块、待测模块、信号放大模块以及信号处理模块,信号产生模块用于产生检测信号;待测模块包括压电薄膜,待测模块用于接收检测信号,将压电薄膜通过逆压电效应产生形变并将形变转换成电信号,再将该电信号在压电薄膜通过正压电效应产生输出电信号;信号放大模块用于将接收的输出电信号进行放大处理产生放大电信号;信号处理模块用于分别接收检测信号和放大电信号,再进行比较处理,获得压电薄膜的电学参数。本发明还公开两种应用于膜层结构测试系统的膜层电学参数测试结构。与相关技术相比,本发明的膜层结构测试系统和膜层电学参数测试结构的结构简单且易于测试。

Description

膜层结构测试系统及膜层电学参数测试结构
【技术领域】
本发明涉及测试技术领域,尤其涉及应用于压电薄膜的膜层结构测试系统及膜层电学参数测试结构。
【背景技术】
压电材料在各种领域均有广泛的应用,如压电换能器,压电传感器,压电驱动器,滤波器,谐振器等。随着半导体加工工艺的发展无线终端的多元化的需求,MEMS压电麦克风,MEMS压电扬声器,SAW,FBAR逐步走向商用产品中。为了满足压电MEMS器件的微型化、低功耗、高性能的需求,上述器件往往采用压电膜层结构(即压电材料薄膜),而压电系数正是衡量上述器件的性能的重要指标。目前,压电系数一般采用通过商业设备进行测试。目前,压电系数通过商业专业测试设备进行测试。
相关技术的压电系数测试的系统和结构一般采用两种方法:第一种是利用“逆压电效应”,即通过加电信号使材料产生形变,再通过光学检测设备测量材料的形变量的大小,测量压电系数,如激光干涉法,激光多普勒测振仪和压电力显微镜。第二种是利用“正压电效应”,即通过施加力使材料产生电荷,通过测量电荷的大小测量压电系数。
然而,相关技术的测试的准确度均受限于台面面型与工装夹具的精度。其中,检测多利用光学方案获取振幅,测试系统复杂且昂贵,需要考虑反射、折射、损耗等。当膜层结构为超微小的膜层结构时,受限测试光斑尺寸,无法获取超微小膜层结构相关性能。
因此,有必要对上述系统进行改进以解决上述问题。
【发明内容】
本发明的目的是克服上述技术问题,提供一种结构简单且易于测试的膜层结构测试系统及膜层电学参数测试结构。
为了实现上述目的,本发明提供一种膜层结构测试系统,所述膜层结构测试系统包括:
信号产生模块,用于产生检测信号;
待测模块,所述待测模块包括待测试的压电薄膜,所述待测模块用于接收所述检测信号,将根据该检测信号在所述压电薄膜通过逆压电效应产生形变,并将所述形变转换成电信号,再将该电信号在所述压电薄膜通过正压电效应产生输出电信号;
信号放大模块,用于接收所述输出电信号,再将接收的所述输出电信号进行放大处理产生放大电信号;
信号处理模块,用于分别接收所述检测信号和所述放大电信号,再将所述检测信号和所述放大电信号进行比较处理,获得所述压电薄膜的电学参数。
优选的,所述电学参数包括压电系数、频率响应曲线、品质因数以及谐振频率。
优选的,所述检测信号为高频电信号。
优选的,所述信号处理模块为锁相放大器。
优选的,所述膜层结构测试系统处于真空状态下进行测试。
本发明还提供一种膜层电学参数测试结构,其应用于如上中任意一项的所述膜层结构测试系统,所述压电薄膜包括膜层结构测试结构;所述膜层电学参数测试结构包括具有空腔的衬底、压电层以及贴设于所述压电层相对两侧的上电极和下电极;所述压电层、所述上电极以及所述下电极形成一体结构,所述一体结构通过所述下电极与所述衬底连接并悬置于所述空腔上方;所述衬底、所述压电层、所述上电极以及所述下电极共同形成谐振器电路;所述上电极包括位于所述压电层相对两端的第一上电极和第二上电极,所述下电极包括位于所述压电层相对两端的第一下电极和第二下电极,所述第一上电极与所述第一下电极对应设置,所述第二上电极和所述第二下电极对应设置;所述第一上电极作为信号输入端,所述第二上电极作为信号输出端,所述第一下电极和所述第二下电极接地,或所述第一上电极和所述第二上 电极接地,所述第一下电极作为信号输入端,所述第二下电极作为信号输出端。
优选的,所述第一上电极包括多个,所述第一下电极包括多个;所述第二上电极包括多个,所述第二下电极包括多个。
本发明还提供一种膜层电学参数测试结构,其应用于如上中任意一项的所述膜层结构测试系统,所述压电薄膜包括膜层结构测试结构;所述膜层电学参数测试结构包括具有空腔的衬底、压电层以及间隔贴设于所述压电层相对两侧的多个电极层,所述电极层为三层且包括依次叠设的上电极层、中间电极层和下电极层,所述压电层、所述上电极层与所述下电极层形成一体结构,所述一体结构的一端通过所述下电极层与所述衬底连接,另一端悬置于所述空腔上方形成悬臂梁;所述衬底、所述压电层以及所述电极层共同形成谐振器电路;所述悬臂梁为5层堆叠结构,所述压电层为两层且包括第一压电层和第二压电层;所述上电极层包括相互间隔的第一段上电极、第二段上电极以及第三段上电极;所述中间电极层包括相互间隔的第一段中间电极、第二段中间电极以及第三段中间电极;所述下电极层包括相互间隔的第一段下电极、第二段下电极以及第三段下电极;所述第一段中间电极为信号输入端,所述第一段上电极、所述第一段下电极以及所述第二段中间电极均电连接至接地;所述第二段上电极、所述第二段下电极以及所述第三段中间电极均电连接并处于悬浮状态,所述第三段上电极电连接至所述第三段下电极并作为所述信号输出端。
优选的,所述第一段上电极、所述第一段中间电极、所述第一段下电极在设置于所述压电层的相对两侧的表面时沿着厚度方向有重叠部分;所述第二段上电极、所述第二段中间电极、所述第二段下电极设置于所述压电层的相对两侧的表面时沿着厚度方向有重叠部分,所述第三段上电极、所述第三段中间电极、所述第三段下电极在分布于所述压电层相对两侧的表面时沿着厚度方向有重叠部分,以施加电信号时可在所述压电层内部产生电场。
与现有技术相比,本发明的膜层结构测试系统通过设置信号产生模块、待测模块、信号放大模块以及信号处理模块。其中,待测模块分别通过正压电效应和逆压电效应耦合,从而实现对所述压电薄膜的产生输出电信号,再通过信号放大模块对输出电信号进行放大处理产生放大电信号,再将信号处理模块将信号产生模块产生的检测信号和所述放大电信号进行比较处理,获得所述压电薄膜的电学参数。整个测试系统采用电学测试,测试系统结构简单,同时也易于操作测试。本发明的应用于膜层结构测试系统的膜层结构测试结构采用谐振器的器件直接电驱动、电检测,操作方便,且可用于压电系数的晶圆级别的测试尤其可以获得超微小的膜层结构的压电系数;并且尤其在器件谐振的状态下,可以得到更大的输出电压,有利于信号的检测,且减少工频干扰,所述膜层结构测试系统及膜层电学参数测试结构获得电学参数的可靠性更高。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明的膜层结构测试系统的结构框图;
图2为本发明的膜层电学参数测试结构的的电路连接关系的结构示意图;
图3为本发明在不同的压电薄膜的压电系数情况下的输出电信号的电压与时间的关系图;
图4为本发明另一种的膜层电学参数测试结构的部分立体结构示意图;
图5为图4的电路连接关系的结构示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1所示,本发明提供一种膜层结构测试系统100。
所述膜层结构测试系统100包括信号产生模块20、待测模块10、信号放大模块30以及分别于所述信号产生模块20和所述信号放大模块30电连接的信号处理模块40。
所述信号产生模块20用于产生检测信号。
所述信号产生模块20将所述检测信号分别输出至所述待测模块10和所述信号处理模块40。具体的,所述信号产生模块20将所述检测信号分别输出至所述待测模块10的信号输入端ACINPUT和所述信号处理模块40 的参考输入端REF。
所述待测模块10包括待测试的压电薄膜101。
所述待测模块10设有信号输入端ACINPUT和信号输出端OUTPUT。
所述信号输入端ACINPUT用于将外部的检测信号输入。
本实施方式中,所述检测信号为高频电信号。高频电信号有利于使得所述压电材料薄膜1产生形变而不会破坏材料。
所述信号输出端OUTPUT用于将所述待测模块10产生的输出电信号。
所述待测模块10用于接收所述检测信号,将根据该检测信号在所述压电薄膜101通过逆压电效应产生形变,并将所述形变转换成电信号,再将该电信号在所述压电材料薄膜1通过正压电效应产生输出电信号。
逆压电效应是指当在所述压电薄膜101的电介质的极化方向施加电场,这些所述压电薄膜101的电介质就在一定方向上产生机械变形或机械压力,当外加电场撤去时,这些变形或应力也随之消失。正压电效应是指由于形变而产生电极化的现象。当对压电材料施以物理压力时,材料体内之电偶极矩会因压缩而变短,此时压电材料为抵抗这变化会在材料相对的表面上产生等量正负电荷,以保持原状。这种通过形变而产生电极化的现象称为“正压电效应”。
所述信号放大模块30用于接收所述待测模块10的所述输出电信号,再将所述输出电信号进行放大处理产生放大电信号。
所述信号放大模块30将所述放大电信号输出至所述信号处理模块40。
具体的,将所述放大电信号输出至所述信号处理模块40的信号检测输入端TEST。所述信号放大模块30所述输出电信号为所述压电薄膜101形变产生电荷形成。其中,所述信号放大模块30获取所述待测模块10的信号输出端OUTPUT的输出电信号。
所述信号处理模块40用于分别接收所述检测信号和所述放大电信号,再将所述检测信号和所述放大电信号进行比较处理,获得所述压电薄膜 101的电学参数。
本实施方式中,所述电学参数包括压电系数d31、频率响应曲线、品质因数以及谐振频率。
本实施方式中,所述信号处理模块40为锁相放大器。通过锁相放大器将所述放大电信号与所述检测信号进行比较处理,从而将正压电效应和逆压电效应耦合而使得所述压电薄膜101的电学参数更易于获得,尤其易于获得压电系数d31
为了更好的实现对压电系数d31测量,减少外界环境对测量的影响,本实施方式中,所述膜层结构测试系统100处于真空状态下进行测试。
(实施例一)
请参阅图2所示,本实施方式为实施例一,实施例一提供的是一种所述膜层电学参数测试结构200。
所述膜层电学参数测试结构200应用于所述膜层结构测试系统100,所述压电薄膜101包括所述膜层电学参数测试结构200。
所述膜层电学参数测试结构200用以实现正压电效应和逆压电效应耦合;而且通过合理优化电极,可在不影响机械性能前提下,获得所述压电薄膜101的电学参数。
具体的,所述膜层电学参数测试结构200包括具有空腔40的衬底4、压电层1以及贴设于所述压电层1相对两侧的上电极2和下电极3。其中,所述压电层1为压电薄膜。
所述压电层1、所述上电极2以及所述下电极3形成一体结构,所述一体结构通过所述下电极3与所述衬底4连接并悬置于所述空腔40上方。即所述一体结构沿所述膜层电学参数测试结构200的厚度方向位于所述空腔40的一侧。
本实施方式中,所述上电极2和所述下电极3分别位于所述压电层1 长轴的相对两端。
所述衬底4、所述压电层1、所述上电极2以及所述下电极3共同形成谐振器电路,其中一个所述上电极2或所述下电极3作为信号输入端,另一个所述上电极2或所述下电极3作为信号输出端。
具体的,所述上电极2包括贴设与所述压电层1的同一侧的第一上电极21和第二上电极22,所述第一上电极21作为所述信号输入端,所述第二上电极22作为所述信号输出端。
所述下电极3包括贴设与所述压电层1的另一侧的第一下电极31和第二下电极32,所述第一下电极31和所述第二下电极32均电连接至接地。
本实施方式中,所述压电层1呈矩形。所述第一上电极21和所述第一下电极31正对设置;所述第二上电极22和所述第二下电极32正对设置;所述第一上电极21和所述第二上电极22分别设置于所述压电层1长轴的相对两端。该结构有利于交流信号在所述膜层电学参数测试结构200中进行正压电效应和逆压电效应的转化,从而使得所述膜层电学参数测试结构 200的压电系数d31评估和测试更为容易和准确性高。
本实施方式中,所述第一上电极21包括多个;所述第一下电极31包括多个;所述第一上电极21和所述第一下电极31一一对应。所述第二上电极22包括多个。该结构使得交流信号作用于所述第一上电极21和所述第一下电极31更为均衡,从而使得压电层1的逆压电效应更易于产生。
本实施方式中,所述第二下电极32包括多个;所述第二上电极22和所述第二下电极32一一对应。该结构使得所述压电层1形变产生所述输出电信号更易于获得,从而使得所述压电层1的压电系数d31评估和测试更为容易和准确性高。
请参阅图3所示,图3为本发明在不同的所述压电层1的压电系数d31情况下的输出电信号的电压与时间的关系图。W1、W2、W3及W4为所述压电层1(即压电薄膜)的压电系数d31的电压-时间曲线。其中,W1、W2、 W3及W4的关系如下:W1为2.0倍的d31,W2为1.5倍的d31,W3为1.0 倍的d31,W4为0.5倍的d31,由W1、W2、W3及W4的曲线图可以得出,本发明的所述压电性能测试方法和所述膜层电学参数测试结构200可用于压电系数d31的晶圆级别的测试尤其可以获得超微小的膜层结构的压电系数d31
综合上述,本发明所述膜层电学参数测试结构200采用通过正压电效应和逆压电效应耦合,从而实现对所述压电层1的电学参数(尤其压电系数d31)评估和测试。更优的,所述膜层电学参数测试结构200直接电驱动、电检测,操作方便,且可用于压电系数d31的晶圆级别的测试尤其可以获得超微小的膜层结构的压电系数d31;并且整个测试系统采用电学测试,测试系统结构简单,同时也易于操作测试。尤其在器件谐振的状态下,可以得到更大的输出电压,有利于信号的检测,且减少工频干扰,所述膜层电学参数测试结构200获得压电系数d31的可靠性更高。
(实施例二)
请同时参阅图4-5所示,本实施方式为实施例二,实施例二提供的是一种所述膜层电学参数测试结构300。
所述膜层电学参数测试结构300应用于所述膜层结构测试系统100,所述压电薄膜101包括所述膜层电学参数测试结构300。
所述膜层电学参数测试结构300用以实现正压电效应和逆压电效应耦合;而且通过合理优化电极,可在不影响机械性能前提下,获得所述压电薄膜101的电学参数。
所述膜层电学参数测试结构300与所述膜层电学参数测试结构200不同的是:所述膜层电学参数测试结构300中的电极在压电薄膜轴向的同一端。
具体的,所述膜层电学参数测试结构300包括具有空腔40a的衬底4a、压电层b以及间隔贴设于所述压电层b相对两侧的多个电极层c。其中,所述电极层c两层且包括上电极层1c、中间电极层2c和下电极层3c。
所述压电层b、所述上电极层1c与所述下电极层3c形成一体结构,所述一体结构的的一端通过所述下电极层3c与所述衬底4a连接,另一端悬置于所述空腔40a上方形成悬臂梁。
所述衬底4a、所述压电层b以及所述电极层c共同形成谐振器电路,其中一个或多个所述电极层c作为信号输入端,其中一个或者多个所述电极层c作为信号输出端,其中一个或者多个所述电极层c悬浮。
本实施方式中,所述悬臂梁为5层堆叠结构。所述压电层b两层且包括第一压电层b1和第二压电层b2。
具体的,所述上电极层1c包括相互间隔的第一段上电极1c11、第二段上电极1c22以及第三段上电极1c33。所述中间电极层2c包括相互间隔的第一段中间电极2c11、第二段中间电极2c22以及第三段中间电极2c33。所述下电极层3c包括相互间隔的第一段下电极3c11、第二段下电极3c22 以及第三段下电极3c33。
其中,各个部件的电路连接关系为:
所述第一段中间电极2c11为信号输入端,所述第一段上电极1c11、所述第一段下电极3c11以及所述第二段中间电极2c22均电连接至接地。所述第二段上电极1c22、所述第二段下电极3c22以及所述第三段中间电极 2c33均电连接并处于悬浮状态。所述第三段上电极1c33电连接至所述第三段下电极3c33并作为所述信号输出端。
本实施方式中,所述第一段上电极1c11、所述第一段中间电极2c11、所述第一段下电极3c11在设置于所述压电层b的相对两侧的表面时沿着厚度方向有重叠部分。所述第二段上电极1c22、所述第二段中间电极2c22、所述第二段下电极3c22设置于所述压电层b的相对两侧的表面时沿着厚度方向有重叠部分。所述第三段上电极1c33、所述第三段中间电极2c33、所述第三段下电极3c33在分布于所述压电层b相对两侧的表面时沿着厚度方向有重叠部分,以施加电信号时可在所述压电层b内部产生电场。
通过所述膜层电学参数测试结构300的结构和电路连接关系,采用多级的谐振器的器件直接电驱动、电检测,操作方便,且可用于压电系数d31的晶圆级别的测试尤其可以获得超微小的膜层结构的压电系数d31。并且整个测试系统采用电学测试,测试系统结构简单,同时也易于操作测试。尤其在器件谐振的状态下,可以得到更大的输出电压,有利于信号的检测,且减少工频干扰,所述膜层电学参数测试结构300获得压电系数d31的可靠性更高。
与现有技术相比,本发明的膜层结构测试系统通过设置信号产生模块、待测模块、信号放大模块以及信号处理模块。其中,待测模块分别通过正压电效应和逆压电效应耦合,从而实现对所述压电薄膜的产生输出电信号,再通过信号放大模块对输出电信号进行放大处理产生放大电信号,再将信号处理模块将信号产生模块产生的检测信号和所述放大电信号进行比较处理,获得所述压电薄膜的电学参数。整个测试系统采用电学测试,测试系统结构简单,同时也易于操作测试。本发明的应用于膜层结构测试系统的膜层结构测试结构采用谐振器的器件直接电驱动、电检测,操作方便,且可用于压电系数的晶圆级别的测试尤其可以获得超微小的膜层结构的压电系数;并且尤其在器件谐振的状态下,可以得到更大的输出电压,有利于信号的检测,且减少工频干扰,所述膜层结构测试系统及膜层电学参数测试结构获得电学参数的可靠性更高。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

1.一种膜层结构测试系统,其特征在于,所述膜层结构测试系统包括:
信号产生模块,用于产生检测信号;
待测模块,所述待测模块包括待测试的压电薄膜,所述待测模块用于接收所述检测信号,将根据该检测信号在所述压电薄膜通过逆压电效应产生形变,并将所述形变转换成电信号,再将该电信号在所述压电薄膜通过正压电效应产生输出电信号;所述压电薄膜包括膜层结构测试结构;所述膜层电学参数测试结构包括具有空腔的衬底、压电层以及贴设于所述压电层相对两侧的上电极和下电极;所述压电层、所述上电极以及所述下电极形成一体结构,所述一体结构通过所述下电极与所述衬底连接并悬置于所述空腔上方;所述衬底、所述压电层、所述上电极以及所述下电极共同形成谐振器电路;所述上电极包括位于所述压电层相对两端的第一上电极和第二上电极,所述下电极包括位于所述压电层相对两端的第一下电极和第二下电极,所述第一上电极与所述第一下电极对应设置,所述第二上电极和所述第二下电极对应设置;所述第一上电极作为信号输入端,所述第二上电极作为信号输出端,所述第一下电极和所述第二下电极接地,或所述第一上电极和所述第二上电极接地,所述第一下电极作为信号输入端,所述第二下电极作为信号输出端;
信号放大模块,用于接收所述输出电信号,再将接收的所述输出电信号进行放大处理产生放大电信号;
信号处理模块,用于分别接收所述检测信号和所述放大电信号,再将所述检测信号和所述放大电信号进行比较处理,获得所述压电薄膜的电学参数。
2.根据权利要求1所述的膜层结构测试系统,其特征在于,所述电学参数包括压电系数、频率响应曲线、品质因数以及谐振频率。
3.根据权利要求1所述的膜层结构测试系统,其特征在于,所述检测信号为高频电信号。
4.根据权利要求1所述的膜层结构测试系统,其特征在于,所述信号处理模块为锁相放大器。
5.根据权利要求1所述的膜层结构测试系统,其特征在于,所述膜层结构测试系统处于真空状态下进行测试。
6.根据权利要求1所述的膜层结构测试系统,其特征在于,所述第一上电极包括多个,所述第一下电极包括多个;所述第二上电极包括多个,所述第二下电极包括多个。
7.一种膜层电学参数测试结构,其特征在于,其应用于膜层结构测试系统,所述膜层结构测试系统包括:
信号产生模块,用于产生检测信号;
待测模块,所述待测模块包括待测试的压电薄膜,所述待测模块用于接收所述检测信号,将根据该检测信号在所述压电薄膜通过逆压电效应产生形变,并将所述形变转换成电信号,再将该电信号在所述压电薄膜通过正压电效应产生输出电信号;信号放大模块,用于接收所述输出电信号,再将接收的所述输出电信号进行放大处理产生放大电信号;
信号处理模块,用于分别接收所述检测信号和所述放大电信号,再将所述检测信号和所述放大电信号进行比较处理,获得所述压电薄膜的电学参数;
所述压电薄膜包括膜层结构测试结构;所述膜层电学参数测试结构包括具有空腔的衬底、压电层以及间隔贴设于所述压电层相对两侧的多个电极层,所述电极层为三层且包括依次叠设的上电极层、中间电极层和下电极层,所述压电层、所述上电极层与所述下电极层形成一体结构,所述一体结构的一端通过所述下电极层与所述衬底连接,另一端悬置于所述空腔上方形成悬臂梁;所述衬底、所述压电层以及所述电极层共同形成谐振器电路;所述悬臂梁为5层堆叠结构,所述压电层为两层且包括第一压电层和第二压电层;所述上电极层包括相互间隔的第一段上电极、第二段上电极以及第三段上电极;所述中间电极层包括相互间隔的第一段中间电极、第二段中间电极以及第三段中间电极;所述下电极层包括相互间隔的第一段下电极、第二段下电极以及第三段下电极;所述第一段中间电极为信号输入端,所述第一段上电极、所述第一段下电极以及所述第二段中间电极均电连接至接地;所述第二段上电极、所述第二段下电极以及所述第三段中间电极均电连接并处于悬浮状态,所述第三段上电极电连接至所述第三段下电极并作为信号输出端。
8.根据权利要求7所述的膜层电学参数测试结构,其特征在于,所述第一段上电极、所述第一段中间电极、所述第一段下电极在设置于所述压电层的相对两侧的表面时沿着厚度方向的投影有重叠部分;所述第二段上电极、所述第二段中间电极、所述第二段下电极设置于所述压电层的相对两侧的表面时沿着厚度方向的投影有重叠部分,所述第三段上电极、所述第三段中间电极、所述第三段下电极在分布于所述压电层相对两侧的表面时沿着厚度方向的投影有重叠部分,以施加电信号时可在所述压电层内部产生电场。
CN202011295120.0A 2020-11-18 2020-11-18 膜层结构测试系统及膜层电学参数测试结构 Active CN112557775B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011295120.0A CN112557775B (zh) 2020-11-18 2020-11-18 膜层结构测试系统及膜层电学参数测试结构
PCT/CN2020/135858 WO2022104960A1 (zh) 2020-11-18 2020-12-11 膜层结构测试系统及膜层电学参数测试结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011295120.0A CN112557775B (zh) 2020-11-18 2020-11-18 膜层结构测试系统及膜层电学参数测试结构

Publications (2)

Publication Number Publication Date
CN112557775A CN112557775A (zh) 2021-03-26
CN112557775B true CN112557775B (zh) 2022-03-29

Family

ID=75043821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011295120.0A Active CN112557775B (zh) 2020-11-18 2020-11-18 膜层结构测试系统及膜层电学参数测试结构

Country Status (2)

Country Link
CN (1) CN112557775B (zh)
WO (1) WO2022104960A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687136A (zh) * 2021-08-09 2021-11-23 武汉佰力博科技有限公司 一种压电测量装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1220399A (zh) * 1997-12-18 1999-06-23 大宇电子株式会社 薄膜形压电材料的压电常数的测量方法
JP2001264373A (ja) * 2000-03-23 2001-09-26 Matsushita Electric Ind Co Ltd 圧電薄膜の圧電定数測定装置および測定方法
CN1253722C (zh) * 2003-12-01 2006-04-26 中国科学技术大学 铁电薄膜材料介电性能多频率自动测试方法及装置
CN100370263C (zh) * 2005-06-23 2008-02-20 中国科学技术大学 用扫描近场微波显微镜测量材料压电系数的方法及装置
CN101074975A (zh) * 2007-06-25 2007-11-21 武汉科技学院 一种测量薄膜压电系数d33的方法
CN101493487A (zh) * 2008-11-27 2009-07-29 电子科技大学 基于原子力显微镜的纳米电子薄膜微区压电系数测量方法
CN102662111B (zh) * 2012-05-25 2014-10-15 电子科技大学 一种压电系数检测方法
CN103134999B (zh) * 2013-01-30 2015-04-08 湘潭大学 一种测量压电材料压电系数d15的准静态方法
CN104181403B (zh) * 2014-08-07 2017-06-27 中国科学院声学研究所 压电薄膜厚度机电耦合系数的检测方法
CN104333346A (zh) * 2014-11-27 2015-02-04 王少夫 一种新型超宽带压电滤波器
CN104363001A (zh) * 2014-11-30 2015-02-18 王少夫 一种新型压电滤波器
US10327052B2 (en) * 2015-04-08 2019-06-18 King Abdullah University Of Science And Technology Piezoelectric array elements for sound reconstruction with a digital input
CN107228990A (zh) * 2016-03-23 2017-10-03 北京纳米能源与系统研究所 压电材料压电系数的测试方法及测试装置
CN109884346A (zh) * 2019-03-10 2019-06-14 复旦大学 一种铁电膜宏/微观结构与电学性能联合测试系统
CN112557774B (zh) * 2020-11-18 2022-03-29 瑞声新能源发展(常州)有限公司科教城分公司 压电性能测试方法及结构

Also Published As

Publication number Publication date
WO2022104960A1 (zh) 2022-05-27
CN112557775A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US9242273B2 (en) Method for operating CMUTs under high and varying pressure
US4435986A (en) Pressure transducer of the vibrating element type
CN213818184U (zh) 声换能器和麦克风组件
Kon et al. A high-resolution MEMS piezoelectric strain sensor for structural vibration detection
CN112557775B (zh) 膜层结构测试系统及膜层电学参数测试结构
JP4864438B2 (ja) 圧力を検知するためのシステム及び方法
CN113507676A (zh) 硅基悬臂梁式mems压电麦克风的结构及装置
EP1821127A1 (en) Deformable mirror
Wu et al. Design and fabrication of AlN RF MEMS switch for near-zero power RF wake-up receivers
CN112557774B (zh) 压电性能测试方法及结构
CN112816109A (zh) 射频压力传感器
US7343802B2 (en) Dynamic-quantity sensor
CN111076806B (zh) 一种基于聚偏氟乙烯(pvdf)压电薄膜的结构健康监测装置及方法
CN108195505A (zh) 具有三梁音叉的微谐振式压差传感器及压差检测方法
Ganji Design and fabrication of a novel mems silicon microphone
Simeoni et al. A Miniaturized (100 µm x 100 µm) 45 kHz Aluminum Nitride Ultrasonic Transducer for Airborne Communication and Powering
Ganji et al. Fabrication of a novel mems capacitive microphone using lateral slotted diaphragm
Hu et al. A ScAlN-based piezoelectric MEMS microphone with sector-connected cantilevers
CN109194302B (zh) 一种声表面波三换能器双端对谐振器
Byju et al. An enhanced voltage amplifier scheme insensitive to cable parasitic capacitance for interfacing piezoelectric sensors
CN113639921B (zh) 一种基于拓扑光子高q腔的mems压力传感器
RU2212736C2 (ru) Пьезоэлектрический изгибный преобразователь
US11889264B2 (en) Fiber optic MEMS microphone
CN215956645U (zh) 硅基悬臂梁式mems压电麦克风的结构及装置
Sun et al. Fabry-Perot Diaphragm Fiber Optic Sensor (DFOS) for Acoustic Detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant