CN112557659A - 用于检测muc1的多重信号放大生物传感器的制备和应用 - Google Patents

用于检测muc1的多重信号放大生物传感器的制备和应用 Download PDF

Info

Publication number
CN112557659A
CN112557659A CN201910914390.6A CN201910914390A CN112557659A CN 112557659 A CN112557659 A CN 112557659A CN 201910914390 A CN201910914390 A CN 201910914390A CN 112557659 A CN112557659 A CN 112557659A
Authority
CN
China
Prior art keywords
muc1
dnase
signal amplification
sdr
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910914390.6A
Other languages
English (en)
Other versions
CN112557659B (zh
Inventor
李根喜
彭英
吴帅
孙召伟
韩祎巍
潘艳红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201910914390.6A priority Critical patent/CN112557659B/zh
Publication of CN112557659A publication Critical patent/CN112557659A/zh
Application granted granted Critical
Publication of CN112557659B publication Critical patent/CN112557659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4725Mucins, e.g. human intestinal mucin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4746Cancer-associated SCM-recognition factor, CRISPP

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • Hospice & Palliative Care (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种可以定量检测粘蛋白1的无酶多重信号放大生物传感器的构建方法和应用。粘蛋白1(MUC1)的定量分析对于癌症预防和早期诊断具有重要作用。本发明基于链置换反应(SDR)和DNA酶循环扩增,构建了一种检测MUC1的高灵敏信号放大策略。MUC1和适体探针(AP)结合启动链置换反应,释放MUC1/AP复合物用于再循环并在双链产物的两端形成DNA酶。该DNA酶可循环切割底物信号探针(SP),同时释放G‑四链体序列和新的活性DNA酶序列。这种SDR诱导的多重信号放大体系可产生大量G‑四链体序列,在孵育氯化血红素后可产生显着增强的比色信号以提高灵敏度。该方法可有效区分MUC1与其他干扰蛋白,在临床诊断方面具有巨大潜力。

Description

用于检测MUC1的多重信号放大生物传感器的制备和应用
技术领域
本发明属于分析化学领域,涉及多重信号放大生物传感器的构建原理,过程,实验条件及应用。
发明背景
蛋白质的超灵敏定量分析对于医学诊断和生物学应用非常重要。粘蛋白1(MUC1)是一类由粘蛋白1基因表达的具有高分子量的糖基化跨膜蛋白。它由具有69个氨基酸的胞质结构域,具有31个氨基酸的疏水跨膜结构域和具有20个氨基酸可变串联重复序列的胞外结构域组成,对上皮细胞的更新和分化以及维持上皮组织完整性具有重要作用。同时,它在人类上皮细胞腺癌中异常表达,包括肺癌,乳腺癌,卵巢癌,膀胱癌,结直肠癌,胰腺癌,前列腺癌和胃癌,故可作为重要的肿瘤生物标志物。因此,MUC1的高选择性和超灵敏检测方法的构建在癌症的早期诊断中具有重要的临床价值。
在生物传感器的构建当中,为了提高检测的灵敏度,常常会引入一些信号放大方法。目前,较为成熟的信号放大体系例如滚环扩增(RCA),酶辅助目标物循环以及纳米材料已经被引入到MUC1的检测方法中,然而,由于生物酶和纳米材料的参与,这些方法对检测环境的要求很高,同时也涉及复杂的材料合成过程。因此,在MUC1的检测中需要开发更为简单有效的信号放大方法。链置换反应(SDR)是一种熵驱动和快速的等温过程,是一条外部侵入单链DNA结合到未配对区域(toehold)并从双链体DNA中提取较短的另一条单链DNA的过程。SDR可以克服酶辅助扩增的缺点,包括精确控制温度和复杂的技术。金属离子依赖性DNA酶是一种具有催化活性的功能性单链DNA,含有催化核心序列和底物识别序列,可在金属离子存在下剪切底物并且释放两个片段产物的,用于随后的反应。这种技术由于其独特的稳定性,可设计性,多功能性,高催化效率和优异的生物相容性而被广泛用作检测各种目标物的信号放大活性元件。因此,同时将SDR和金属离子依赖性DNA酶整合到生物传感器的构建中将具有巨大优势。
发明内容
本发明的目的是提供一种可以定量检测MUC1的无酶多重信号放大生物传感器及其制备方法和应用。
为了达到解决上述问题的目的,本发明采用以下机理:如图1所示,反应体系涉及四种DNA探针,包括适体探针(AP),燃料探针(FP),信号探针(SP)和含有一段足点区域的三链复合物(SS/CS1/CS2)探针。为了在没有目标物MUC1的情况下抑制活性DNAzyme结构的组装,将DNAzyme序列分成两个单独的部分并分别插入到SS以及FP的3’和5’末端。在没有目标物的情况下,四个探针是亚稳定的,他们没有明显的交叉杂交过程,因此无法形成完整的DNA酶序列。在目标物存在时,它与AP的适体区域结合,以改变AP的构型,暴露茎部区域与三链双链复合物杂交。结果,CS1从复合体中释放出来,并且在SS的中间产生了一个4个碱基的新足点区域。此后,FP可以从该处开始与SS杂交,在产物的两端形成活性DNA酶,同时置换下CS2和MUC1/AP复合物。释放的MUC1/AP可以再次结合未反应的三链复合物,同时形成的DNA酶将SP循环切割成两个区段:G-四链体序列和新的活性DNAzyme序列。释放的新的DNAzyme序列可以作为SP切割的第二触发因素,其也可以导致G-四链体序列和活性DNAzyme序列的释放。这种多重信号放大体系在孵育TMB底物的情况下,只需要添加极少量的MUC1便可产生大量的G-四链体序列,从而得到显著增强的比色信号以达到超灵敏检测MUC1的目的。
需要的试剂:
由HPLC纯化的DNA序列由上海生工生物技术有限公司(中国上海)合成。人血清来自东南大学第二附属医院。牛血清白蛋白(BSA),溶菌酶(lysozyme),凝血酶(thrombin)和氯化血红素(hemin)以及MUC1购自Sigma-Aldrich(中国上海)。将氯化血红素溶解在二甲基亚砜(DMSO)中制备浓度为30mM的储备溶液,并在-20℃状态下避光储存。TMB(3,3’5,5’,四甲基联苯胺)购自Neogen(Lexington,KY),其形式为即用型试剂,包括增强的K-蓝色底物和H2O2。所用的所有其他化学试剂均为分析纯。所有溶液均用去离子水制备,用Milli-Q纯化系统(Bedford,MA,USA)纯化至电阻为18.2MΩcm。
根据上述机理,本发明采用如下技术方案:
一、用于多重放大检测MUC1的比色传感器的执行程序:
首先,为了制备三链复合物探针,将底物序列(SS,1μM),互补序列1(CS1,1μM)和互补序列2(CS2,1μM)的混合物在20mM Tris-HCl缓冲液(100mM NaCl,50mM KCl,15mM MgCl2,pH 7.4)中加热至95度并且保持5分钟,然后缓慢冷却至室温。类似地,FP(1.1μM)和SP(5μM)在相同的退火程序下处理以确保它们形成发夹结构。将不同浓度的MUC1添加到AP(100nM),三链双链复合物(100nM),FP(110nM)和SP(500nM)的混合物中,在37℃下反应150分钟。随后,将氯化铁血红素(1μM)引入反应混合溶液中孵育30分钟,总反应体积维持在50μL。之后,加入50μL TMB底物在黑暗中进行过氧化反应。最后,通过加入100μL H2SO4(1M)终止过氧化反应,然后在UV-vis光谱分光光度计(UV-1800,Shimadzu,Japan)上测量紫外-可见吸收强度。
二、传感器的可行性探究:
为了验证该传感器的可行性,我们将不同溶液的紫外-可见吸收光谱进行了记录。如图2所示,对于SP的溶液,观察到最小的紫外-可见吸收强度(曲线a),因为G-四链体序列被锁定在发夹结构的茎部结构中无法形成完整的DNA酶结构。AP,三链双链复合物探针,FP和SP的混合溶液表现出略微增强的信号响应,可能是它们之间的较弱的非特异性杂交(曲线b)所导致的。值得注意的是,当向该溶液中加入MUC1时,紫外-可见吸收大大增强,表明SS和FP成功组装成二聚体样活性DNA酶以及发生了随后的DNA酶循环切割反应。这些结果证明了该多信号放大传感平台在MUC1检测中的潜在应用价值。
三、本发明相关参数的优化:
我们对本发明几个关键的参数,包括FP,Mg2+和hemin的浓度,以及反应时间进行了优化。这里使用净荧光信号ΔA来分析(ΔA=A-A0,A和A0分别表示目标物存在和不存在的情况下的信号强度)。首先探究FP的浓度的影响,如图3A所示,随着FP的浓度从90nM增加到110nM,ΔA值逐渐升高,因为随着FP的量增加,HA/FP的产量增加。但是,FP的进一步增加导致ΔA值的降低。这种减少可以归因于过量FP引发的增强的非特异性杂交反应。因此,将FP的浓度固定在110nM,用于后续实验。如图3B所示,当Mg2+的浓度从5mM增加到15mM,ΔA的值增强,15mM后维持在相对稳定的状态。因此,选择15mM的Mg2+浓度用于随后的实验。图3C显示了ΔA值对氯化血红素浓度的依赖性。ΔA随着hemin的浓度的增加而升高,然后在1μM时达到的最大值后逐渐降低。这种降低可能是由于hemin本身对TMB具有弱催化活性的事实。因此,选择1μM作为我们工作中hemin的最佳浓度。根据图3D可知,在60分钟到150分钟范围内,我们可以看到ΔA的值随着反应时间的延长而逐渐增强,此后达到几乎稳定的平台。因此,我们将150分钟作为最佳反应时间。
四、该传感器的灵敏度探究:
为了探究该传感器的灵敏度,我们在最佳实验参数下探究了紫外-可见吸收峰对各种浓度的MUC1的响应。如图4A所示,随着MUC1浓度从0.1nM增加到1000nM,反应混合物的紫外-可见吸收逐渐增强,表明信号变化高度依赖于MUC1的浓度。根据图4B,紫外-可见吸收值与MUC1的浓度表现出良好的线性相关性,得到的线性方程为A=0.19367Lg c+0.3016(A和c分别指的是紫外-可见吸收强度和MUC1的浓度)。通过3σ规则估算的检测限为35pM,这优于许多先前报道的用于检测MUC1的信号放大传感器。
五、该传感器的选择性探究:
通过在与上述相同的实验条件下测量几种对照蛋白(包括thrombin,BSA和lysozyme)的紫外-可见吸收响应来评估该传感器的选择性。如图5A显示,MUC1的存在可以导致反应溶液产生显着紫外-可见吸收峰。然而由类似对照蛋白的反应溶液引起的信号变化与背景信号相当,即使它们的浓度是MUC1的10倍。类似地,从图5B可以看出,与空白溶液相比,只有含有MUC1的反应溶液显示出显著的颜色变化。显然,该发明在检测MUC1方面具有出色的选择性。
六、结论
通过利用SDR和DNAzyme的独特信号放大能力,我们发明了一种新的无酶多重信号放大策略,具有高灵敏度和选择性,可用于MUC1的比色检测。加入MUC1会启动三个扩增循环,释放大量G-四链体序列用于MUC1的比色分析。该体系具有35pM的超低检测限。此外,该传感平台显示出良好的选择性以区分MUC1与其他对照蛋白。需要说明的是在本发明的技术构思范围内,可以对本发明进行检测底物的替换,这些检测底物的替换均属于本发明的保护范围内,另外需要说明的是,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。
说明书附图
图1:无酶多重信号放大比色生物传感器检测MUC1示意图。
图2:各种混合物的紫外-可见吸收光谱:(a)SP,(b)AP,三链复合物,FP和SP的混合物(c)MUC1,AP,三链双链复合物,FP和SP的混合物。首先将MUC1(10nM)加入到AP(100nM),三链双链复合物(100nM),SS(100nM)和SP(500nM)的混合物中反应180分钟,然后加入氯化血红素(2μM)孵育持续30分钟。最后加入TMB底物进行过氧化反应。
图3:各种参数包括(A)FP,(B)Mg2+,(C)氯化血红素的浓度,以及(D)反应时间对响应信号的影响。
图4:(A)加入不同浓度MUC1后传感器的紫外-可见吸收光谱:(a)0,(b)0.1nM,(c)1nM,(d)10nM,(e)50nM,(f)100nM,(g)500nM,(h)1000nM。(B)紫外-可见吸收光谱与MUC1浓度的线性关系。(C)各种浓度的MUC1的可视化检测的照片:(a)0,(b)1nM,(c)10nM,(d)50nM,(e)100nM,(f)500nM,(g)1000nM。
种浓度的MUC1的可视化检测的照片:(a)0,(b)1nM,(c)10nM,(d)50nM,(e)100nM,(f)500nM,(g)1000nM。
图5:该传感器的选择性探究。(A)紫外-可见吸收光谱和(B)可视化检测的照片。MUC1的浓度固定在10nM,而干扰物浓度固定在100nM。
Figure ISA0000190990990000011

Claims (3)

1.权利要求1请求保护本发明设计原理思想:MUCl和适体探针(AP)的结合导致预先锁定在AP中的足点区域暴露以启动链置换反应(SDR),释放MUCl/AP复合物用于再循环并在dsDNA产物的两端形成DNA酶。形成的DNA酶在Mg2+存在下循环切割底物信号探针(SP),并触发游离G-四链体序列和也可结合SP的新活性DNA酶序列的释放。这种SDR诱导的目标物循环扩增与多重DNA酶扩增相结合的体系可产生大量G-四链体序列,在孵育TMB底物的情况下,可以得到显著增强的比色信号。
2.权利要求2请求保护用于MUCl的无酶多重信号放大比色生物传感器包括如下步骤:(1)该比色传感器的执行程序;(2)实验条件优化;(3)该比色传感器设计与应用。
3.权利要求3请求保护本专利中关于序列核苷酸的设计。
CN201910914390.6A 2019-09-25 2019-09-25 用于检测muc1的多重信号放大生物传感器的制备和应用 Active CN112557659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910914390.6A CN112557659B (zh) 2019-09-25 2019-09-25 用于检测muc1的多重信号放大生物传感器的制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910914390.6A CN112557659B (zh) 2019-09-25 2019-09-25 用于检测muc1的多重信号放大生物传感器的制备和应用

Publications (2)

Publication Number Publication Date
CN112557659A true CN112557659A (zh) 2021-03-26
CN112557659B CN112557659B (zh) 2021-11-23

Family

ID=75029841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910914390.6A Active CN112557659B (zh) 2019-09-25 2019-09-25 用于检测muc1的多重信号放大生物传感器的制备和应用

Country Status (1)

Country Link
CN (1) CN112557659B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107510A (zh) * 2021-12-10 2022-03-01 湖南工程学院 基于dna三链介导构建多维dna酶矩阵的超灵敏循环核酸检测体系、试剂盒和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001376A2 (en) * 2006-06-28 2008-01-03 Yissum Research Development Company Of The Hebrew University Of Jerusalem Detection of analytes in a medium
CN103014148A (zh) * 2012-10-29 2013-04-03 中国科学院成都生物研究所 一种rna的等温检测方法
WO2015179619A1 (en) * 2013-05-21 2015-11-26 Stc.Unm Signal propagation biomolecules, devices, and methods
CN105802963A (zh) * 2016-04-01 2016-07-27 中国科学院成都生物研究所 一种寡核苷酸探针
CN110229872A (zh) * 2019-06-14 2019-09-13 中国科学院化学研究所 一种基于G-四链体探针结构解旋的可视化识别microRNA的检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001376A2 (en) * 2006-06-28 2008-01-03 Yissum Research Development Company Of The Hebrew University Of Jerusalem Detection of analytes in a medium
CN103014148A (zh) * 2012-10-29 2013-04-03 中国科学院成都生物研究所 一种rna的等温检测方法
WO2015179619A1 (en) * 2013-05-21 2015-11-26 Stc.Unm Signal propagation biomolecules, devices, and methods
CN105802963A (zh) * 2016-04-01 2016-07-27 中国科学院成都生物研究所 一种寡核苷酸探针
CN110229872A (zh) * 2019-06-14 2019-09-13 中国科学院化学研究所 一种基于G-四链体探针结构解旋的可视化识别microRNA的检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JING YANG等: "Entropy-driven DNA logic circuits regulated by DNAzyme", 《NUCLEIC ACIDS RESEARCH》 *
SHENG CHENG等: "A target-triggered strand displacement reaction cycle: The design and application in adenosine triphosphate sensing", 《ANALYTICAL BIOCHEMISTRY》 *
黎泓波: "基于信号放大核酸适配体和G-四链体探针的生化分析新方法", 《中国优秀博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107510A (zh) * 2021-12-10 2022-03-01 湖南工程学院 基于dna三链介导构建多维dna酶矩阵的超灵敏循环核酸检测体系、试剂盒和方法
CN114107510B (zh) * 2021-12-10 2023-10-03 湖南工程学院 基于dna三链介导构建多维dna酶矩阵的超灵敏循环核酸检测体系、试剂盒和方法

Also Published As

Publication number Publication date
CN112557659B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
Hu et al. An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification
Ji et al. Binding-induced DNA walker for signal amplification in highly selective electrochemical detection of protein
EP1700912B1 (en) Method of detecting target molecule by using aptamer
Mairal et al. Aptamers: molecular tools for analytical applications
Bi et al. Exponential amplification for chemiluminescence resonance energy transfer detection of microRNA in real samples based on a cross-catalyst strand-displacement network
Park et al. Universal, colorimetric microRNA detection strategy based on target-catalyzed toehold-mediated strand displacement reaction
Li et al. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals
Wang et al. Electrochemical detection of thrombin based on aptamer and ferrocenylhexanethiol loaded silica nanocapsules
JP5731016B2 (ja) リガンドを高感度に検出する核酸分子並びに該核酸分子のスクリーニング方法および該核酸分子の感度の最適化方法
Liu et al. An ultrasensitive electrochemical miRNAs sensor based on miRNAs-initiated cleavage of DNA by duplex-specific nuclease and signal amplification of enzyme plus redox cycling reaction
US8753809B2 (en) Methods and compositions for detection and enrichment of target small RNAs
Zhang et al. A DNA tetrahedral structure-mediated ultrasensitive fluorescent microarray platform for nucleic acid test
CA2884338A1 (en) Detection of non-nucleic acid analytes using strand displacement exchange reactions
WO2013140681A1 (ja) ターゲットの分析用デバイスおよび分析方法
Jia et al. An electrochemical aptasensor for the highly sensitive detection of 8-hydroxy-2′-deoxyguanosine based on the hybridization chain reaction
US20110294125A1 (en) Colorimetric biosensor with allosteric dnazyme activation and rolling circle signal amplification
Lin et al. Target-driven assembly of DNAzyme probes for simultaneous electrochemical detection of multiplex microRNAs
Fan et al. Dual signal amplification strategy for specific detection of Circulating microRNAs based on Thioflavin T
CN112557659B (zh) 用于检测muc1的多重信号放大生物传感器的制备和应用
Zhao et al. Application of tetrahedral-deoxyribonucleic acid electrochemistry platform coupling aptazymes and hybridized hairpin reactions for the measurement of extracellular adenosine triphosphate in plants
Yang et al. Target-induced cyclic DNAzyme formation for colorimetric and chemiluminescence imaging assay of protein biomarkers
Zhang et al. A new strategy based on aptasensor to time-resolved fluorescence assay for adenosine deaminase activity
Li et al. Design of a stretchable DNAzyme for sensitive and multiplexed detection of antibodies
Xu et al. Label-free colorimetric aptasensor for highly sensitive and selective detection of proteins by using PNA/DNA hybrids and a cyanine dye
Yang et al. RNase H amplified RNA probe and graphene oxide system for highly sensitive detection of (CAG) n DNA repeat sequences

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant