CN112517818A - 一种低温用钢制法兰的生产工艺验证方法 - Google Patents

一种低温用钢制法兰的生产工艺验证方法 Download PDF

Info

Publication number
CN112517818A
CN112517818A CN202011233129.9A CN202011233129A CN112517818A CN 112517818 A CN112517818 A CN 112517818A CN 202011233129 A CN202011233129 A CN 202011233129A CN 112517818 A CN112517818 A CN 112517818A
Authority
CN
China
Prior art keywords
forging
temperature
heating
steel
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011233129.9A
Other languages
English (en)
Other versions
CN112517818B (zh
Inventor
赵红玉
孟庆云
朱维兴
张春环
何东
赵德清
蔡金辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Cang Hai Nuclear Equipment Technology Co ltd
Original Assignee
Hebei Cang Hai Nuclear Equipment Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Cang Hai Nuclear Equipment Technology Co ltd filed Critical Hebei Cang Hai Nuclear Equipment Technology Co ltd
Priority to CN202011233129.9A priority Critical patent/CN112517818B/zh
Publication of CN112517818A publication Critical patent/CN112517818A/zh
Application granted granted Critical
Publication of CN112517818B publication Critical patent/CN112517818B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K29/00Arrangements for heating or cooling during processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

本发明涉及一种低温用钢制法兰的生产工艺验证方法,包括材料准备、钢坯加热、锻造、热处理、机加工和质量检测工序,锻造工序包括㈠镦粗‑冲孔和㈡锻制成型两部分。镦粗为沿工件轴向进行锻打,使其长度减小,横截面积增大,冲孔为利用冲头在工件上冲出通孔或盲孔。锻制成型的过程为:⑴钢坯加热,⑵快锻首火次锻造;⑶中间坯加热;⑷快锻中间火次锻造;⑸中间坯加热;⑹快锻末火次锻造;⑺快锻坯加热;⑻径锻机锻造。本发明通过优化低温钢法兰的锻造工艺成型过程,提高了低温用钢制法兰铸件的质量,并对锻件进行质量检测,保证了锻件的质量,从而验证了其工艺成型参数的有效性及可实用性,满足对低温用大型法兰锻件的质量需求。

Description

一种低温用钢制法兰的生产工艺验证方法
技术领域
本发明属于工业生产技术领域,涉及一种低温用钢制法兰的生产工艺验证方法。
背景技术
低温钢法兰,又叫法兰凸缘盘或突缘.法兰是管子与管子之间相互连接的零件,用于管端之间的连接;也有用在设备进出口上的法兰,用于两个设备之间的连接,如减速机法兰.法兰连接或法兰接头,是指由法兰,垫片及螺栓三者相互连接作为一组组合密封结构的可拆连接。管道法兰系指管道装置中配管用的法兰,用在设备上系指设备的进出口法兰。
低温钢是高性能低温压力容器用低合金钢的,随着低温压力容器设计标准的不断提高,低温钢的应用越来越广泛,对低温钢的性能要求越来越高。低温钢法兰是指以铁素体~奥氏体型双相钢为材料的法兰,它在化工、石油、能源、海洋等工业方面都有广泛的应用,主要应用于钢管通道等处,连接钢管时,需要将法兰焊接在钢管端口,通过两个对应的法兰将两端钢管连接。现有技术中的低温钢法兰,将其焊接在钢管端口时,法兰与钢管的接触面小,焊接点仅为围绕法兰的一圈,使其与钢管的连接不牢靠容易松动,且两个法兰仅通过螺栓进行连接,虽然连接的牢靠,但两个法兰之间的密封性低,在应用时容易漏出管道内的液体。
发明内容
本发明的目的是提供一种低温用钢制法兰的生产工艺验证方法,优化低温钢法兰的锻造成型过程,提高低温用钢制法兰铸件的质量,满足国家重大管道工程和装备对低温用大型法兰锻件的需求。
本发明的技术方案是:低温用钢制法兰的生产工艺验证方法,包括材料准备、钢坯加热、锻造、热处理、机加工和质量检测工序,锻造工序包括㈠镦粗-冲孔和㈡锻制成型两部分。镦粗为沿工件轴向进行锻打,使其长度减小,横截面积增大,冲孔为利用冲头在工件上冲出通孔或盲孔。锻制成型的过程为:
⑴钢坯加热:加热炉升温至580~600℃时,将钢坯装入加热炉,以45~50℃/h的升温速率升温至1000℃~1060℃,保温2h~4h,然后以55~60℃/h的升温速率升温至1050℃~1150℃,保温2h~4h;
⑵快锻首火次锻造:对钢坯进行拔长,钢坯锻造加热温度1050℃~1150℃,变形量12%~15%;
⑶中间坯加热:中间坯回炉加热温度1050℃~1150℃,再加热时间2h~3h;
⑷快锻中间火次锻造:钢坯进行1~3火次镦粗+拔长,锻造加热温度1050℃~1150℃,变形量35%~45%;钢坯进行拔长,锻造加热温度1050℃~1150℃,变形量20%~35%;
⑸中间坯加热:中间坯回炉加热温度1050℃~1150℃,再加热时间2h~3h;
⑹快锻末火次锻造:钢坯进行单向拔长,锻造加热温度1050℃~1150℃,变形量45%~55%;
⑺快锻坯加热:快锻坯回炉加热温度1050℃~1150℃,再加热时间2h~3h;
⑻径锻机锻造:径锻机一火次锻至成品规格,变形量大于30%。
热处理过程采用燃气炉或电炉加热,加热有效区炉温公差控制在±10℃范围内,采用挡火墙,避免火焰直接喷射到工件表面。两锻坯之间间隔100mm以上,热处理完成后对锻坯进行硬度测量。热处理完成后对锻坯进行拉伸、夏比冲击、金相组织及晶粒度、超声波检测等检测手段进行逐项检测,检测时探头的每次扫查覆盖率大于探头尺寸的15%,探头的扫查速度≤150mm/s,扫查灵敏度至少比基准灵敏度高6dB。质量检测包括力学性能检测、硬度检测、几何尺寸检测和无损检测。力学性能检测的试样从同批号单独锻成的检验锻坯上制取,硬度检测每批抽检3%且不应少于2件,几何尺寸检测逐件进行检验。无损检测在其它检测完成后进行,用磁粉检测方法或超声波方法按NB/T47013标准进行检测。
机加工过程对锻件采用立车和镗床按标准及技术规格书要求对锻件进行机加工。低温用钢制法兰的材料为16MnD、08Ni3D低温合金钢,06Cr19Ni10/S30408、06Cr17Ni12Mo2/S31608奥氏体不锈钢,以及LF2CL1、LF3CL1、Type.1、F304、F304L、F316和F316L国外钢材。对各种钢材法兰铸件在-20℃、-40℃、-70℃、-196℃下的夏比冲击试验值进行比对。对不锈钢材质的法兰进行酸洗和钝化;所述酸洗的酸洗成分为:氢氟酸90~120g/L、硝酸30~40g/L、其余为水,酸洗温度为40~60℃。钝化在钝化池中进行,钝化的钝化液为10%~20%体积的硝酸水溶液,钝化温度15~40℃,钝化时间为10~30分钟。法兰钝化进行冲洗然后放入热清水池内清洗,清水池内的水温保持在60~80℃。冲洗和清水池的水质氯离子≤25PPm.氟离子≤2PPm。
本发明低温用钢制法兰的生产工艺验证方法,通过优化低温钢法兰的锻造成型过程,提高了低温用钢制法兰铸件的质量,并对锻件进行力学性能检测、硬度检测、几何尺寸检测和无损检测,保证了锻件相应的物理性能符合相关质量标准,满足国家重大管道工程和装备对低温用大型法兰锻件的需求。
附图说明
图1为低温用钢制法兰的生产工艺验证过程的流程示意图;
其中:1—材料准备工序、2—材料加热工序、3—锻造工序、4—热处理工序、5—机加工工序、6—质量检工序。
具体实施方式
下面结合实施例和附图对本发明进行详细说明。本实发明保护范围不限于实施例,本领域技术人员在权利要求限定的范围内做出任何改动也属于本发明保护的范围。
本发明低温用钢制法兰的生产工艺验证过程,如图1所示,包括材料准备工序1、钢坯加热工序2、锻造工序3、热处理工序4、机加工工序5和质量检测工序6。低温用钢制法兰的材料选用F316、F304和16MnD低温合金钢。锻造工序采用㈠镦粗-冲孔和㈡锻制成型两部分。
㈠镦粗-冲孔
镦粗为沿工件轴向进行锻打,使其长度减小,横截面积增大,冲孔为利用冲头在工件上冲出通孔或盲孔。用钢叉将达到规定温度的锻坯从燃气炉中取出放置工作台面上,启动锻锤,按规定开始断料生产。镦粗、冲孔将钢锭心部的冶金缺陷通过冲孔去除。再用相应规格的芯棒和上平下V型砧拔长成形,严格控制各部分尺寸在工艺范围之内,使锻件的金属纤维流线沿轴向分布,改善锻件的受力状况,同时保证冒口端和底部端都有足够的弃料,将缺陷排除在锻件本体之外。
㈡锻制成型:
将钢锭料块投入燃气炉中,按照钢材质加热到规定温度,保温一定的时间后打开炉门,用钢叉将钢锭料块用钢叉叉出,放置在工作台面上,锻锤操作工启动大锤进行锻制。锻制成型的过程为:
⑴钢坯加热:加热炉升温至580~600℃时,将钢坯装入加热炉,以45~50℃/h的升温速率升温至1000℃~1060℃,保温2h~4h,然后以55~60℃/h的升温速率升温至1050℃~1150℃,保温2h~4h;
⑵快锻首火次锻造:对钢坯进行拔长,钢坯锻造加热温度1050℃~1150℃,变形量12%~15%;
⑶中间坯加热:中间坯回炉加热温度1050℃~1150℃,再加热时间2h~3h;
⑷快锻中间火次锻造:钢坯进行1~3火次镦粗+拔长,锻造加热温度1050℃~1150℃,变形量35%~45%;钢坯进行拔长,锻造加热温度1050℃~1150℃,变形量20%~35%;
⑸中间坯加热:中间坯回炉加热温度1050℃~1150℃,再加热时间2h~3h;
⑹快锻末火次锻造:钢坯进行单向拔长,锻造加热温度1050℃~1150℃,变形量45%~55%;
⑺快锻坯加热:快锻坯回炉加热温度1050℃~1150℃,再加热时间2h~3h;
⑻径锻机锻造:径锻机一火次锻至成品规格,变形量大于32~34%。
锻件在锻造完成后,及时装炉进行等温退火,并充分扩氢,一方面预防白点的产生,另一方面起到细化晶粒、改善组织、提高金属切削加工性能等作用,并为热处理奠定良好的基础。热处理过程采用燃气炉加热,加热有效区炉温公差控制在±10℃范围内,采用挡火墙,避免火焰直接喷射到工件表面。两锻坯之间间隔100mm以上,热处理完成后对锻坯进行硬度测量。热处理完成后对锻坯进行拉伸、夏比冲击、金相组织及晶粒度、超声波检测等检测手段进行逐项检测,检测时探头的每次扫查覆盖率大于探头尺寸的15%,探头的扫查速度≤150mm/s,扫查灵敏度至少比基准灵敏度高6dB。
机加工过程对锻件采用立车和镗床按标准及技术规格书要求对锻件进行机加工。
质量检测包括力学性能检测、硬度检测、几何尺寸检测和无损检测。力学性能检测的试样从同批号单独锻成的检验锻坯上制取,硬度检测每批抽检3%且不应少于2件,几何尺寸检测逐件进行检验。无损检测在其它检测完成后进行,用磁粉检测方法或超声波方法按NB/T47013标准进行检测。表1为低温钢制法兰的机械性能等级要求;表2为(F316)低温用钢制法兰力学性能及硬度检测结果;表3为(F304)低温用钢制法兰力学性能及硬度检测结果;表4(16MnD)温用钢制法兰力学性能及硬度检测结果;表5为金相检验结果。
本发明力学性能检测和硬度检测结果,表低
表1.低温钢制法兰铸件的机械性能要求
Figure BDA0002765860520000061
表2.低温用钢制法兰力学性能及硬度检测结果(F316)
Figure BDA0002765860520000062
表3.低温用钢制法兰力学性能及硬度检测结果(F304)
Figure BDA0002765860520000063
Figure BDA0002765860520000071
表4.低温用钢制法兰力学性能及硬度检测结果(16MnD)
Figure BDA0002765860520000072
表3.金相检验结果
Figure BDA0002765860520000073
其中:A、B、C、D分别代表夹杂物的类型和形态,A类(硫化物类);具有高的延展性,有较宽范围形态比(长度/宽度)的单个灰色夹杂物,一般端部呈圆角。B类(氧化铝类):大多数没有变形,带角,形态比较小,(一般<3),黑色或带蓝色的颗粒,沿轧制方向排成一行。C类(硅酸铝类):具有高的延展性,有较宽范围形态比(一般≥3)的单个呈黑色或深灰色夹杂物,一般端部呈锐角。D类(球状氧化物类):不变形,带角或圆形,形态比较小,(一般<3),黑色或带蓝色的无规则分布的颗粒。
另外,对不锈钢材质的法兰进行酸洗和钝化;所述酸洗的酸洗成分为:氢氟酸90~120g/L、硝酸30~40g/L、其余为水,酸洗温度为40~60℃。酸洗的时间根据不同直径的法兰按表6给出的时间选定。
表6.酸洗时间
法兰外径 酸洗时间
≤DN100 60-180min
DN150-300 90-180min
DN350-450 120-210min
≥DN500 150-300min
钝化过程在钝化池中进行,钝化的钝化液为10%~20%体积的硝酸水溶液,钝化温度15~40℃,钝化时间为10~30分钟;法兰钝化进行冲洗然后放入热清水池内清洗,清水池内的水温保持在60~80℃;冲洗和清水池的水质氯离子≤25PPm.氟离子≤2PPm。

Claims (8)

1.一种低温用钢制法兰的生产工艺验证方法,包括材料准备、钢坯加热、锻造、热处理、机加工和质量检测工序;所述锻造工序包括㈠镦粗-冲孔和㈡锻制成型两部分,所述镦粗为沿工件轴向进行锻打,使其长度减小,横截面积增大,所述冲孔为利用冲头在工件上冲出通孔或盲孔;其特征是:所述锻制成型的过程为:
⑴钢坯加热:加热炉升温至580~600℃时,将钢坯装入加热炉,以45~50℃/h的升温速率升温至1000℃~1060℃,保温2h~4h,然后以55~60℃/h的升温速率升温至1050℃~1150℃,保温2h~4h;
⑵快锻首火次锻造:对钢坯进行拔长,钢坯锻造加热温度1050℃~1150℃,变形量12%~15%;
⑶中间坯加热:中间坯回炉加热温度1050℃~1150℃,加热时间2h~3h;
⑷快锻中间火次锻造:钢坯进行1~3火次镦粗+拔长,锻造加热温度1050℃~1150℃,变形量35%~45%;钢坯进行拔长,锻造加热温度1050℃~1150℃,变形量20%~35%;
⑸中间坯加热:中间坯回炉加热温度1050℃~1150℃,再加热时间2h~3h;
⑹快锻末火次锻造:钢坯进行单向拔长,锻造加热温度1050℃~1150℃,变形量45%~55%;
⑺快锻坯加热:快锻坯回炉加热温度1050℃~1150℃,再加热时间2h~3h;
⑻径锻机锻造:径锻机一火次锻至成品规格,变形量大于30%。
2.根据权利要求1所述的低温用钢制法兰的生产工艺验证方法,其特征是:所述热处理过程采用燃气炉或电炉加热,加热有效区炉温公差控制在±10℃范围内,采用挡火墙,避免火焰直接喷射到工件表面;两锻坯之间间隔100mm以上,热处理完成后对锻坯进行硬度测量。
3.根据权利要求2所述的低温用钢制法兰的生产工艺验证方法,其特征是:所述热处理完成后对锻坯进行拉伸、夏比冲击、金相组织及晶粒度、超声波检测等检测手段进行逐项检测,检测时探头的每次扫查覆盖率大于探头尺寸的15%,探头的扫查速度≤150mm/s,扫查灵敏度至少比基准灵敏度高6dB。
4.根据权利要求3所述的低温用钢制法兰的生产工艺验证方法,其特征是:所述质量检测包括力学性能检测、硬度检测、几何尺寸检测和无损检测;所述力学性能检测的试样从同批号单独锻成的检验锻坯上制取,所述硬度检测每批抽检3%且不应少于2件,所述几何尺寸检测逐件进行检验;所述无损检测在其它检测完成后进行,用磁粉检测方法或超声波方法按NB/T47013标准进行检测。
5.根据权利要求1所述的低温用钢制法兰的生产工艺验证方法,其特征是:所述机加工过程对锻件采用立车和镗床按标准及技术规格书要求对锻件进行机加工。
6.根据权利要求1所述的低温用钢制法兰的生产工艺验证方法,其特征是:所述低温用钢制法兰的材料为16MnD、08Ni3D低合金钢,06Cr19Ni10/S30408、06Cr17Ni12Mo2/S31608奥氏体不锈钢,以及LF2 CL1、LF3 CL1、Type.1、F304、F304L、F316和F316L钢材。
7.根据权利要求6所述的低温用钢制法兰的生产工艺验证方法,其特征是:对所述不锈钢材质的法兰进行酸洗和钝化;所述酸洗的酸洗成分为:氢氟酸90~120g/L、硝酸30~40g/L、其余为水,酸洗温度为40~60℃。
8.根据权利要求7所述的低温用钢制法兰的生产工艺验证方法,其特征是:所述钝化在钝化池中进行,钝化的钝化液为10%~20%体积的硝酸水溶液,钝化温度15~40℃,钝化时间为10~30分钟;法兰钝化进行冲洗然后放入热清水池内清洗,清水池内的水温保持在60~80℃;冲洗和清水池的水质氯离子≤25PPm.氟离子≤2PPm。
CN202011233129.9A 2020-11-06 2020-11-06 一种低温用钢制法兰的生产工艺验证方法 Active CN112517818B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011233129.9A CN112517818B (zh) 2020-11-06 2020-11-06 一种低温用钢制法兰的生产工艺验证方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011233129.9A CN112517818B (zh) 2020-11-06 2020-11-06 一种低温用钢制法兰的生产工艺验证方法

Publications (2)

Publication Number Publication Date
CN112517818A true CN112517818A (zh) 2021-03-19
CN112517818B CN112517818B (zh) 2022-09-02

Family

ID=74979791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011233129.9A Active CN112517818B (zh) 2020-11-06 2020-11-06 一种低温用钢制法兰的生产工艺验证方法

Country Status (1)

Country Link
CN (1) CN112517818B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113664133A (zh) * 2021-08-27 2021-11-19 中航上大高温合金材料股份有限公司 一种提高双相不锈钢低温冲击性能的锻造方法
CN113953767A (zh) * 2021-11-05 2022-01-21 江苏浙瓯法兰有限公司 一种适用于低温工况的不锈钢法兰及生产工艺及装置
CN116493886A (zh) * 2023-06-28 2023-07-28 山西新世纪锻造股份有限公司 一种密封法兰的加工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106308A (ja) * 2006-10-25 2008-05-08 Sanyo Special Steel Co Ltd 疲労強度に優れた鋼部品の製造方法および鋼部品
CN106424497A (zh) * 2016-12-27 2017-02-22 攀钢集团江油长城特殊钢有限公司 一种Cr18Mn18N钢质锻件的锻造方法及锻件
CN107760990A (zh) * 2017-10-24 2018-03-06 上海申江锻造有限公司 核电蒸汽发生器用法兰锻件的锻造方法
CN109261869A (zh) * 2018-09-19 2019-01-25 无锡继平锻造有限公司 一种转换法兰锻件的锻造及热处理工艺
CN111151696A (zh) * 2020-02-05 2020-05-15 鞍钢重型机械有限责任公司 一种锥台形法兰锻件的锻造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106308A (ja) * 2006-10-25 2008-05-08 Sanyo Special Steel Co Ltd 疲労強度に優れた鋼部品の製造方法および鋼部品
CN106424497A (zh) * 2016-12-27 2017-02-22 攀钢集团江油长城特殊钢有限公司 一种Cr18Mn18N钢质锻件的锻造方法及锻件
CN107760990A (zh) * 2017-10-24 2018-03-06 上海申江锻造有限公司 核电蒸汽发生器用法兰锻件的锻造方法
CN109261869A (zh) * 2018-09-19 2019-01-25 无锡继平锻造有限公司 一种转换法兰锻件的锻造及热处理工艺
CN111151696A (zh) * 2020-02-05 2020-05-15 鞍钢重型机械有限责任公司 一种锥台形法兰锻件的锻造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卢曰杨: "奥氏体不锈钢管坯镦挤法兰工艺", 《锻压技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113664133A (zh) * 2021-08-27 2021-11-19 中航上大高温合金材料股份有限公司 一种提高双相不锈钢低温冲击性能的锻造方法
CN113664133B (zh) * 2021-08-27 2023-10-27 中航上大高温合金材料股份有限公司 一种提高双相不锈钢低温冲击性能的锻造方法
CN113953767A (zh) * 2021-11-05 2022-01-21 江苏浙瓯法兰有限公司 一种适用于低温工况的不锈钢法兰及生产工艺及装置
CN113953767B (zh) * 2021-11-05 2022-11-01 江苏浙瓯法兰有限公司 一种适用于低温工况的不锈钢法兰及生产工艺及装置
CN116493886A (zh) * 2023-06-28 2023-07-28 山西新世纪锻造股份有限公司 一种密封法兰的加工工艺
CN116493886B (zh) * 2023-06-28 2023-09-08 山西新世纪锻造股份有限公司 一种密封法兰的加工工艺

Also Published As

Publication number Publication date
CN112517818B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN112517818B (zh) 一种低温用钢制法兰的生产工艺验证方法
CN101623719B (zh) 核电热交换器用不锈钢传热管的制造方法
CN101440428B (zh) 高压锅炉用无缝不锈钢管的生产方法
US6210806B1 (en) Martensitic stainless steel having oxide scale layers
CN104894485A (zh) 耐高温抗脆断Φ508mm以上核电站用无缝钢管的生产方法
CN109500130B (zh) 一种直径920㎜的长管拖车气瓶用无缝钢管的制造方法
CN111054881A (zh) 深海采油设备用采油树本体锻件制造工艺
CN107803411A (zh) 一种超级奥氏体不锈钢大直径无缝钢管的制造方法
CN110205553A (zh) 低温dwtt性能优异的厚规格x70级管线钢生产方法
CN112756909A (zh) 一种大口径Ti35钛合金管材的制备方法
CN110404972B (zh) 一种直径为1422mm的无缝钢管的生产方法
CN107012363A (zh) 一种tc4钛合金油井管的制造工艺
CN115161515B (zh) 一种耐腐蚀装置用Ni-Mo耐蚀合金无缝管及制造方法
CN101691629B (zh) 无缝钢管的制造方法
CN103331326A (zh) 一种高钼合金的制管工艺以及高钼合金无缝钢管
KR20210007628A (ko) 조선해양플랜트용 극저온용 고망간 인발강관의 제조방법 및 그에 따른 조선해양플랜트용 극저온용 고망간 인발강관
CN101691628A (zh) 无缝钢管的制造方法
CN111663079B (zh) 一种耐高压无缝钢管的加工工艺
CN113528965A (zh) 加氢站加氢站特大型压缩机用高强度耐腐叶轮17-4ph锻件的生产工艺
CN106591720A (zh) 大型水轮发电机组主轴锻件
CN110940545A (zh) 一种贯穿件封头质量检验用的取样方法
CN106676391A (zh) 一种大型水轮发电机组主轴锻件
CN215918662U (zh) 一种加固的高压分水管
CN111876571B (zh) 一种改善t91无缝钢管综合力学性能的生产方法
CN110303067A (zh) 一种高强韧性钛合金油井管及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A Production Process Verification Method for Low Temperature Steel Flanges

Effective date of registration: 20231110

Granted publication date: 20220902

Pledgee: China Construction Bank Corporation Yanshan sub branch

Pledgor: HEBEI CANG HAI NUCLEAR EQUIPMENT TECHNOLOGY Co.,Ltd.

Registration number: Y2023980065156