CN112510129B - GaN基垂直LED芯片及其制备方法 - Google Patents

GaN基垂直LED芯片及其制备方法 Download PDF

Info

Publication number
CN112510129B
CN112510129B CN202011243560.1A CN202011243560A CN112510129B CN 112510129 B CN112510129 B CN 112510129B CN 202011243560 A CN202011243560 A CN 202011243560A CN 112510129 B CN112510129 B CN 112510129B
Authority
CN
China
Prior art keywords
layer
gan
led chip
vertical led
type current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011243560.1A
Other languages
English (en)
Other versions
CN112510129A (zh
Inventor
付羿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jingneng Optoelectronics Co ltd
Original Assignee
Jingneng Optoelectronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jingneng Optoelectronics Co ltd filed Critical Jingneng Optoelectronics Co ltd
Priority to CN202011243560.1A priority Critical patent/CN112510129B/zh
Publication of CN112510129A publication Critical patent/CN112510129A/zh
Application granted granted Critical
Publication of CN112510129B publication Critical patent/CN112510129B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明提供了一种GaN基垂直LED芯片及其制备方法,从下至上依次包括:支撑衬底、金属反射层、孔洞反射层、P型电流扩展层、有源区发光层、N型电流扩展层及N电极,其中,P型电流扩展层为950~1000℃下生长的P型GaN层;孔洞反射层为500~700℃下生长的P型GaN层,具有V型孔洞。其在P型电流扩展层表面进一步生长具有V型孔洞的空洞反射层,该孔洞反射层和金属反射层的组合形式保证了垂直LED芯片发光效率的同时无需对外延片的上表面进行粗化,以此进一步保证了垂直LED芯片制备过程中的良率和可靠性。

Description

GaN基垂直LED芯片及其制备方法
技术领域
本发明涉及半导体技术领域,尤其是一种GaN基垂直LED芯片及其制备方法。
背景技术
GaN基LED芯片结构包括水平芯片、倒装芯片和垂直芯片,其中,垂直芯片由于具备大电流扩展均匀、出光角度窄、封装可靠性高等优点,在汽车头灯、手机闪光灯、高强度方向光照明、投影光源等高端市场上广泛应用。
垂直芯片的主体结构从下至上依次包括导电支撑衬底、键合金属层(图中未示出)、下电极(反射金属层)、外延层(包括P型电流扩展层、有源区发光层和N型电流扩展层)及上电极/通孔电极(N电极),如图1所示。一般来说,为了增大光线的逃逸角度、提高芯片的出光效率,需要对垂直芯片外延层的上表面进行粗化操作。具体,在外延衬底剥离后,垂直LED芯片的上表面实际上是外延的缓冲层,此处外延材料缺陷密度较高,也是不稳定的氮极性面。在LED表面粗化过程中,可能发生外延层中局部的缺陷集中导致的局部粗化过深(过蚀),甚至外延层局部穿通。这种现象将引起垂直LED芯片漏电和老化失效等良率和可靠性问题。
在大芯片尺寸的垂直LED应用中,由于单个模组的LED使用颗数较少,可以通过点测筛选、老化后修复等方法剔除垂直LED芯片的可靠性风险。但是,在新世代的mini-LED和micro-LED显示技术中,单颗LED芯片尺寸在100μm甚至10μm以下,单个显示模块使用的LED芯片数量达上万颗甚至上千万颗。此时,常规的点测、分选、修复等技术将面临巨大的困难。是以,在这种巨量应用场景中,由表面粗化导致垂直LED芯片可能出现外延过蚀、外延穿通、芯片漏电、亮度退化、芯片失效等风险必须得到彻底解决。
发明内容
为了克服以上不足,本发明提供了一种GaN基垂直LED芯片及其制备方法,有效解决现有垂直LED芯片可能由于外延片表面粗化导致出现的外延过蚀、外延穿通、芯片漏电、亮度退化、芯片失效等风险。
本发明提供的技术方案为:
一种GaN基垂直LED芯片,从下至上依次包括:支撑衬底、金属反射层、孔洞反射层、P型电流扩展层、有源区发光层、N型电流扩展层及N电极,其中,所述P型电流扩展层为950~1000℃下生长的P型GaN层;所述孔洞反射层为500~700℃下生长的P型GaN层,具有V型孔洞。
一种GaN基垂直LED芯片制备方法,包括:
在生长衬底上依次生长缓冲层、N型电流扩展层及有源区发光层;
在950~1000℃的条件下于所述有源区发光层表面生长P型GaN层,作为P型电流扩展层;
在500~700℃的条件下于所述P型电流扩展层表面生长P型GaN层,作为孔洞反射层;
在所述孔洞反射层表面蒸镀金属反射层;
通过共晶的方式将蒸镀有金属反射层的外延片键合至支撑衬底表面;
去除生长衬底,并蚀刻缓冲层;
于所述N型电流扩展层表面蒸镀欧姆接触层并形成N电极。
本发明提供的GaN基垂直LED芯片及其制备方法,在P型电流扩展层表面进一步生长具有V型孔洞的空洞反射层,该孔洞反射层和金属反射层的组合形式保证了垂直LED芯片发光效率的同时无需对外延片的上表面进行粗化,以此进一步保证了垂直LED芯片制备过程中的良率和可靠性,满足新世代垂直mini-LED或者垂直micro-LED的巨量应用要求。
附图说明
图1为现有技术中GaN基垂直LED芯片结构示意图;
图2为本发明中GaN基垂直LED芯片结构示意图;
图3(a)为P型电流扩展层表面AFM形貌,图3(b)为空洞反射层表面AFM形貌;
图4为本发明中外延片结构示意图。
附图标记:
11-支撑衬底,12-金属反射层,13-孔洞反射层,14-P型电流扩展层,15-有源区发光层,16-N型电流扩展层,17-N电极,18-生长衬底,19-缓冲层。
具体实施方式
为了更清楚地说明本发明实施案例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
如图2所示为本发明提供的GaN基垂直LED芯片结构示意图,从图中可以看出,该垂直LED芯片从下至上依次包括:支撑衬底11、金属反射层12、孔洞反射层13、P型电流扩展层14、有源区发光层15、N型电流扩展层16及N电极17,其中,P型电流扩展层为950~1000℃下生长的P型GaN层(掺杂Mg);孔洞反射层为500~700℃下生长的P型GaN层,具有V型孔洞。
在该垂直LED芯片中,支撑衬底和金属反射层之间还包括键合金属层,使用的键合金属可以根据实际情况进行选定,如Au-Sn、Sn等。金属反射层的材料可以为Al、Ti、Ni、Ag等,厚度为50~150nm。支撑衬底可以为硅衬底,也可以为金属Cu、W、Mo或者它们的合金等。
孔洞反射层的厚度为200~400nm。如图3(a)和图3(b)所示为生长完P型电流扩展层和孔洞反射层后表面原子力显微镜(AFM)图像的对比图,其中,图3(a)为P型电流扩展层表面AFM形貌,图3(b)为空洞反射层表面AFM形貌,从图中可以看出,P型电流扩展层表面完全平整,空洞反射层表面产生高密度的V型孔洞,呈现出类似粗化的表面形貌。
对比如图1所示的普通垂直LED芯片,本发明提供的垂直LED芯片通过孔洞反射层和金属反射层的组合形成了高反射率的金属漫反射镜,增大发光逃逸角度,保证了垂直LED芯片的高光效,无需对N型电流扩展层进行粗化,从而有效改善了垂直LED芯片的良率和可靠性。
相对应地,本发明还提供了一种GaN基垂直LED芯片制备方法,包括:在生长衬底18上依次生长缓冲层(对应图4中的buffer层19)、N型电流扩展层16及有源区发光层15;在950~1000℃的条件下于有源区发光层15表面生长P型GaN层,作为P型电流扩展层14;在500~700℃的条件下于P型电流扩展层14表面生长P型GaN层,作为孔洞反射层13;在孔洞反射层13表面蒸镀金属反射层12,得到外延片结构,如图4所示;将蒸镀有金属反射层的外延片键合至支撑衬底11表面;去除生长衬底18,并蚀刻缓冲层;及于N型电流扩展层16表面蒸镀欧姆接触层并形成N电极17。
在由该GaN基垂直LED芯片制备方法制备的垂直LED芯片中,生长衬底可以为硅衬底、蓝宝石衬底、SiC衬底等。支撑衬底可以为硅衬底,也可以为金属Cu、W、Mo或者它们的合金等。金属反射层的材料可以为Al、Ti、Ni、Ag等,厚度为50~150nm。使用的键合金属可以根据实际情况进行选定,如Au-Sn、Sn等。例如,一实例中,键合金属层为Ti/TiW/Ti/Pt/Ni/Sn的多层复合结构,其中Ti为粘结层,TiW/Ti/Pt/Ni为阻挡层,Sn为低熔点金属层。在键合过程中,支撑基板上依次形成粘结层、阻挡层、高熔点金属层及Sn金属层,其中,高熔点金属层的熔点比Sn金属高且能和Sn金属形成合金;在外延片上依次形成粘结层、阻挡层、高熔点金属层及Sn金属层;以此,在键合过程中,设定比Sn金属的熔点高约30℃的键合温度,将沉积有上述晶圆键合金属结构的外延片和支撑硅基板通过加温加压,使得液相的Sn逐步被Ni和部分Au所吸收,形成含有高熔点金属Ni、Au的Sn合金而键合在一起。
孔洞反射层的厚度为200~400nm。如图3(a)和图3(b)所示为生长完P型电流扩展层和孔洞反射层后表面原子力显微镜(AFM)图像的对比图,其中,图3(a)为P型电流扩展层表面AFM形貌,图3(b)为空洞反射层表面AFM形貌,从图中可以看出,P型电流扩展层表面完全平整,空洞反射层表面产生高密度的V型孔洞,呈现出类似粗化的表面形貌。
在一实例中,使用MOCVD生长设备、选用Si(111)衬底为生长衬底层、非掺杂AlN/AlGaN层为缓冲层(应力控制层)、Si掺杂的GaN层作为N型电流扩展层、INaGa1-aN量子阱层和GaN势垒层组成的多量子阱结构作为有源区发光层、Mg掺杂的AlGaN和GaN层作为P型电流扩展层及Mg掺杂的低温GaN层作为V型孔洞反射层。制备于外延层之上的金属Ag作为金属反射层。制备过程如下:
首先,将生长衬底放置到MOCVD反应室中,升温到1100℃,并通入氢气(H2)进行高温表面清洁处理。
随后,在生长衬底上生长缓冲层。外延片表面温度设定在800℃~1200℃,向反应室中通入三甲基铝(TMAl)、氨气(NH3),以H2作为载气,生长一层AlN。然后,在相同生长条件下,在反应室中通入三甲基铝(TMAl)、三甲基镓(TMGa)、氨气(NH3)生长多层AlGaN,和AlN共同形成缓冲层。
随后,向反应室中通入三甲基镓(TMGa)和氨气(NH3),以硅烷(SiH4)作为掺杂剂,掺硅浓度为5×1018cm-3~1×1019cm-3,生长温度在900℃~1100℃之间。在缓冲层上生长N型GaN电流扩展层,厚度2000nm~3000nm。
N型电流扩展层3生长完成之后,以N2作为载气,在750℃生长INGaN量子阱,随后将反应室温度升高到900℃,生长GaN量子垒。重复生长量子阱垒以形成有源区发光层。
随后,以H2或者N2作为载气,通入TMGa、NH3,并且以二茂镁(CP2Mg)作为掺杂剂在950℃~1000℃的温度条件下生长P型电流扩展层,厚度为100nm~150nm。
随后,将温度降至500℃~700℃,通入TMGa、NH3,并且以二茂镁(CP2Mg)作为掺杂剂,生长孔洞反射层,厚度为200nm~400nm。
随后,将外延片从MOCVD反应室中降温取出,在氮气氧气的混合气氛中进行PGaN的Mg激活。然后,清洗外延片,并蒸镀100nm~200nm厚度的Ag作为金属反射镜。把蒸镀了金属反射镜的外延片用Au-Sn共晶键合在另一片硅衬底上。
去除原始的硅生长衬底,并刻蚀掉缓冲层。在N型电流扩展层上蒸镀Ti/Al/Ni/Au形成欧姆接触并制备N电极,得到GaN基垂直LED芯片。
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (8)

1.一种GaN基垂直LED芯片,其特征在于,所述垂直LED芯片从下至上依次包括:支撑衬底、金属反射层、孔洞反射层、P型电流扩展层、有源区发光层、N型电流扩展层及N电极,其中,所述P型电流扩展层为950~1000℃下生长的P型GaN层;所述孔洞反射层为500~700℃下生长的P型GaN层,具有V型孔洞;通过孔洞反射层和金属反射层的组合形成了高反射率的金属漫反射镜。
2.如权利要求1所述的GaN基垂直LED芯片,其特征在于,所述孔洞反射层的厚度为200~400nm。
3.如权利要求1或2所述的GaN基垂直LED芯片,其特征在于,所述金属反射层为Ag反射层,厚度为50~150nm。
4.如权利要求1或2所述的GaN基垂直LED芯片,其特征在于,所述支撑衬底为硅衬底。
5.一种GaN基垂直LED芯片制备方法,其特征在于,包括:
在生长衬底上依次生长缓冲层、N型电流扩展层及有源区发光层;
在950~1000℃的条件下于所述有源区发光层表面生长P型GaN层,作为P型电流扩展层;
在500~700℃的条件下于所述P型电流扩展层表面生长P型GaN层,作为孔洞反射层;
在所述孔洞反射层表面蒸镀金属反射层;通过孔洞反射层和金属反射层的组合形成了高反射率的金属漫反射镜;
将蒸镀有金属反射层的外延片键合至支撑衬底表面;
去除生长衬底,并蚀刻缓冲层;
于所述N型电流扩展层表面蒸镀欧姆接触层并形成N电极。
6.如权利要求5所述的GaN基垂直LED芯片制备方法,其特征在于,所述孔洞反射层的厚度为200~400nm。
7.如权利要求5或6所述的GaN基垂直LED芯片制备方法,其特征在于,所述金属反射层为Ag反射层,厚度为50~150nm。
8.如权利要求5或6所述的GaN基垂直LED芯片制备方法,其特征在于,所述支撑衬底为硅衬底。
CN202011243560.1A 2020-11-10 2020-11-10 GaN基垂直LED芯片及其制备方法 Active CN112510129B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011243560.1A CN112510129B (zh) 2020-11-10 2020-11-10 GaN基垂直LED芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011243560.1A CN112510129B (zh) 2020-11-10 2020-11-10 GaN基垂直LED芯片及其制备方法

Publications (2)

Publication Number Publication Date
CN112510129A CN112510129A (zh) 2021-03-16
CN112510129B true CN112510129B (zh) 2023-08-01

Family

ID=74955738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011243560.1A Active CN112510129B (zh) 2020-11-10 2020-11-10 GaN基垂直LED芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN112510129B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114188453A (zh) * 2021-11-30 2022-03-15 重庆康佳光电技术研究院有限公司 垂直led芯片及其制备方法、led阵列及显示面板
CN116845164B (zh) * 2023-08-31 2023-12-08 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、led

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296160A (zh) * 2012-02-23 2013-09-11 山东华光光电子有限公司 一种降低有源区工作温度的led结构及其制备方法
WO2015102344A1 (ko) * 2013-12-31 2015-07-09 일진엘이디(주) 질화물 반도체 발광소자 및 그 제조 방법
CN106486575A (zh) * 2016-10-31 2017-03-08 厦门市三安光电科技有限公司 一种薄膜发光二极管芯片及其制作方法
CN208014722U (zh) * 2018-03-31 2018-10-26 华南理工大学 一种两步法制备Ag反射镜的垂直结构LED芯片
CN110061109A (zh) * 2019-04-26 2019-07-26 山东大学 一种多孔GaN导电DBR及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130078280A (ko) * 2011-12-30 2013-07-10 삼성전자주식회사 질화물계 반도체 소자 및 그 제조 방법
KR102061563B1 (ko) * 2013-08-06 2020-01-02 삼성전자주식회사 반도체 발광소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103296160A (zh) * 2012-02-23 2013-09-11 山东华光光电子有限公司 一种降低有源区工作温度的led结构及其制备方法
WO2015102344A1 (ko) * 2013-12-31 2015-07-09 일진엘이디(주) 질화물 반도체 발광소자 및 그 제조 방법
CN106486575A (zh) * 2016-10-31 2017-03-08 厦门市三安光电科技有限公司 一种薄膜发光二极管芯片及其制作方法
CN208014722U (zh) * 2018-03-31 2018-10-26 华南理工大学 一种两步法制备Ag反射镜的垂直结构LED芯片
CN110061109A (zh) * 2019-04-26 2019-07-26 山东大学 一种多孔GaN导电DBR及其制备方法

Also Published As

Publication number Publication date
CN112510129A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
US8026117B2 (en) Semiconductor light emitting device with lateral current injection in the light emitting region
JP5191866B2 (ja) 半導体発光素子の製造方法及び半導体発光素子
CN102549779B (zh) 具有经选择的热膨胀及/或表面特性的固态照明装置及相关联方法
US10483481B2 (en) Solid state optoelectronic device with plated support substrate
CN112510129B (zh) GaN基垂直LED芯片及其制备方法
US10886444B2 (en) Solid state optoelectronic device with preformed metal support substrate
KR101782081B1 (ko) 발광 소자
US20100219394A1 (en) Method for fabricating a low-resistivity ohmic contact to a p-type iii-v nitride semiconductor material at low temperature
US20150228848A1 (en) Nitride semiconductor light-emitting element and method for producing same
US8460957B2 (en) Optical semiconductor device, method for manufacturing optical semiconductor device, and method for manufacturing optical semiconductor apparatus
JP2012518916A (ja) 発光素子の製造方法
JPWO2013154181A1 (ja) チップオンボード型のパッケージ基板を有する発光装置の製造方法
KR101742617B1 (ko) 발광소자
KR100925164B1 (ko) p형 질화물 반도체층 형성 방법 및 그것을 갖는 발광 소자
KR20050063493A (ko) 웨이퍼 본딩을 이용한 반도체 발광소자 및 그 제조 방법
JP5207944B2 (ja) 半導体発光素子の製造方法
US20060255348A1 (en) Light emitting diode and manufacturing method thereof
KR100896594B1 (ko) 표면 플라즈몬 공명을 이용한 반도체 발광 소자 제조방법
CN117542936A (zh) 发光二极管和发光装置
KR101210646B1 (ko) 수직형 발광 소자 및 그 제조방법
US20070126008A1 (en) Gallium nitride-based compound semiconductor light-emitting device, positive electrode for the device, light-emitting diode and lamp using the device
KR20080088220A (ko) 수직형 발광 다이오드 제조방법
JP2005142544A (ja) 窒化ガリウム系化合物半導体発光素子、その正極、それを用いた発光ダイオード、およびそれを用いたランプ
KR20110125353A (ko) 반도체 발광소자용 지지 웨이퍼, 그 제조 방법 및 이를 이용한 수직 구조 반도체 발광소자의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 330096 No. 699, Aixi Hubei Road, Nanchang High-tech Development Zone, Jiangxi Province

Applicant after: Jingneng optoelectronics Co.,Ltd.

Address before: 330096 No. 699, Aixi Hubei Road, Nanchang High-tech Development Zone, Jiangxi Province

Applicant before: LATTICE POWER (JIANGXI) Corp.

GR01 Patent grant
GR01 Patent grant