CN112500463B - Gene ZmCOL14 for controlling plant height and ear position height of corn and application thereof - Google Patents

Gene ZmCOL14 for controlling plant height and ear position height of corn and application thereof Download PDF

Info

Publication number
CN112500463B
CN112500463B CN202011480563.7A CN202011480563A CN112500463B CN 112500463 B CN112500463 B CN 112500463B CN 202011480563 A CN202011480563 A CN 202011480563A CN 112500463 B CN112500463 B CN 112500463B
Authority
CN
China
Prior art keywords
height
corn
gene
plant
ear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011480563.7A
Other languages
Chinese (zh)
Other versions
CN112500463A (en
Inventor
刘相国
柳青
金敏亮
许洁婷
刘海军
尹悦佳
郭嘉
李毅丹
黄磊
韩宝柱
刘洋
严建兵
郝东云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weimi Biotechnology Jiangsu Co ltd
Jilin Academy of Agricultural Sciences
Huazhong Agricultural University
Original Assignee
Weimi Biotechnology Jiangsu Co ltd
Jilin Academy of Agricultural Sciences
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weimi Biotechnology Jiangsu Co ltd, Jilin Academy of Agricultural Sciences, Huazhong Agricultural University filed Critical Weimi Biotechnology Jiangsu Co ltd
Priority to CN202011480563.7A priority Critical patent/CN112500463B/en
Publication of CN112500463A publication Critical patent/CN112500463A/en
Application granted granted Critical
Publication of CN112500463B publication Critical patent/CN112500463B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention is in the field of molecular genetics. In particular to a gene ZmCOL14 for controlling the height of a corn plant and the height of a ear and application thereof in the aspect of regulating the characters of the height of the corn plant and the height of the ear. The invention provides a gene ZmCOL14 for controlling the height of a corn plant and the height of a ear position, discloses a method for delaying the flowering phase of corn and reducing the height of the corn plant and the height of the ear position by operating the gene ZmCOL14 by using a genetic engineering means, and provides a mutant gene for advancing the flowering phase of corn and improving the height of the corn plant and the height of the ear position under the long-day condition.

Description

Gene ZmCOL14 for controlling plant height and ear position height of corn and application thereof
Technical Field
The present invention is in the field of molecular genetics. In particular to a gene ZmCOL14 for controlling the height of a corn plant and the height of a ear and application thereof in the aspect of regulating the characters of the height of the corn plant and the height of the ear. The invention provides a gene ZmCOL14 for controlling the height of a corn plant and the height of a ear position, discloses a method for delaying the flowering phase of corn and reducing the height of the corn plant and the height of the ear position by operating the gene ZmCOL14 by using a genetic engineering means, and provides a mutant gene for advancing the flowering phase of corn and improving the height of the corn plant and the height of the ear position under the long-day condition.
Background
In the main agronomic characters of corn, the plant height and the ear height influence the lodging resistance, the photosynthetic efficiency and the harvest index of the corn and are closely related to the corn yield. Therefore, the characters of plant height and ear height have important value in corn breeding practice and germplasm resource improvement work. In addition, the plant height and ear height of the corn are closely related to the mechanized harvesting efficiency. The regulation and control mechanism of the plant height and the ear height is understood, and the plant height and the ear height of the corn variety can be flexibly regulated and controlled, so that the method has an important effect on corn planting and harvesting.
The plant height and the ear position are jointly controlled by major genes and micro-effective polygenes, so that the genetic expression is typical quantitative trait inheritance. Although some genes for regulating and controlling the plant height and the ear height of the corn are positioned and cloned (China southern agricultural university, maize ZmPIF3s mutant protein, a coding gene thereof and application thereof in breeding: CN201910273522.1[ P ] 2019-08-02 ], application of CYP78A gene in increasing the plant height and enhancing the plant growth: CN201510230547.5[ P ] 2016-12-07, China agricultural university, a gene related to the plant height of the corn and a coding protein and application thereof: CN200410037404.4[ P ] 2005-01-26, a crop scientific institute of Chinese agricultural academy, a method for creating a maize dwarfing material by using a gene editing technology: CN201910371358.8[ P ] 2019-08-16.), more genes related to the plant height and the ear height are to be further cloned.
The flowering phase is an important character in the crop evolution and adaptation process, the understanding of the genetic basis of the character of the crop flowering phase and the cloning of candidate genes can improve the environmental adaptability and plasticity of the crop, which has important significance for cultivating good crop varieties adapting to different ecological regions, and simultaneously, the genetic improvement process of important production characters such as yield and the like closely related to the flowering phase can be promoted.
Can simultaneously regulate and control the plant height and the flowering phase characters, and is beneficial to the corn to adapt to a specific ecological environment and a specific harvesting mode.
Disclosure of Invention
The invention aims to provide a gene ZmCOL14 for controlling the height and/or the ear height of a corn plant and application thereof in regulating the characters of the height and the ear height of the corn plant.
The second purpose of the invention is to disclose a method for advancing the flowering period of corn and reducing the plant height and the ear height of the corn.
The second purpose of the invention is to disclose application of the maize mutant gene in delaying the maize flowering period under the long-day condition and improving the maize plant height and ear position height.
In order to achieve the purpose, the invention adopts the following technical scheme:
the invention provides a gene ZmCOL14 for controlling the height and/or the ear height of a corn plant and application thereof in regulating the height and/or the ear height of the corn plant, which is characterized in that the nucleic acid sequence of the gene is shown as SEQ ID No. 1.
The invention also provides a protein capable of reducing the plant height and/or the ear height of the corn, which is characterized in that the amino acid sequence of the protein is shown as SEQ ID NO. 3.
The invention also provides a nucleic acid for reducing the plant height and/or ear height of corn, which is characterized in that the nucleic acid encodes the protein; in some embodiments, the nucleic acid sequence is set forth in SEQ ID NO. 2.
The invention also provides a gene expression cassette capable of reducing the plant height and/or the ear height of the corn, which is characterized in that the expression cassette contains the nucleic acid sequence.
In some embodiments, the above nucleic acid is operably linked to a pZmUBI promoter, a3 XFlag tag, and a nos terminator.
In some embodiments, the sequence of the gene expression cassette is as set forth in SEQ ID NO. 4.
The invention also provides an expression vector capable of reducing the plant height and/or the ear height of the corn, which is characterized by comprising the expression cassette.
The invention also provides a host cell capable of reducing the plant height and/or the ear height of the corn, which is characterized by comprising the expression vector.
In some embodiments, the host cell is an agrobacterium cell.
The invention also provides a method for delaying the flowering phase of corn and reducing the plant height and ear height of corn, which is characterized in that the expression vector or the host cell is used for transforming corn to obtain transgenic corn; screening materials with delayed tasseling period, spinning period and pollen scattering period and reduced plant height and ear height.
The invention also provides application of the maize mutant gene in advancing maize flowering period and improving maize plant height and ear position height under long-day conditions, which is characterized in that: the sequence of the mutant gene is shown in any one of SEQ ID NO.5 or SEQ ID NO. 6.
The invention has the following advantages and beneficial effects: the ZmCOL14 gene is not reported before to control the plant height and ear height of corn. According to the invention, the ZmCOL14 gene is overexpressed and edited, the regulation function of the gene on the flowering period of the corn is confirmed, the specific regulation mode (inhibiting tasseling, spinning and powder scattering) is determined, and meanwhile, the ZmCOL14 gene is unexpectedly found to control the properties of the plant height and the ear height of the corn in a mode of inhibiting the properties of the plant height and the ear height. In general, late flowering of corn results in prolonged vegetative growth with a corresponding increase in plant and ear height. However, due to the special function of the ZmCOL14 gene, the expression cassette constructed by connecting the pZmUBI promoter and nos terminator with the ZmCOL14 gene coding sequence can reduce the height of the maize plant and the height of the ear while delaying the flowering period of the maize, thereby being used for cultivating the late-flowering half-dwarf maize variety. In addition, two optimized mutant genes edited by the CRISPR/Cas9 gene can effectively advance the flowering period of the corn and improve the plant height and the ear position height of the corn under the long-day condition, so that the method is used for cultivating early-flowering high-stalk corn varieties.
Drawings
FIG. 1 shows a ZmCOL14 gene overexpression vector. The English and abbreviated meanings of each element are listed as follows:
Figure GDA0003349413480000031
Figure GDA0003349413480000041
FIG. 2 shows the plant height and flowering phase of over-expressed maize ZmCOL14 gene. The overexpression plants are on the left and the control plants are on the right.
Detailed Description
The following definitions and methods are provided to better define the present application and to guide those of ordinary skill in the art in the practice of the present application. Unless otherwise indicated, terms are to be understood in accordance with their ordinary usage by those of ordinary skill in the relevant art. All patent documents, academic papers, industry standards and other publications, etc., cited herein are incorporated by reference in their entirety.
As used herein, "maize" is any maize plant and includes all plant varieties that can be bred with maize, including whole plants, plant cells, plant organs, plant protoplasts, plant cell tissue cultures from which plants can be regenerated, plant calli, intact plant cells in plants or plant parts, such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruits, stems, roots, root tips, anthers, and the like. Unless otherwise indicated, nucleic acids are written from left to right in the 5 'to 3' direction; amino acid sequences are written from left to right in the amino to carboxy direction. Amino acids may be referred to herein by their commonly known three letter symbols or by the one letter symbols recommended by the IUPAC-IUB Biochemical nomenclature Commission. Similarly, nucleotides may be represented by commonly accepted single-letter codes. Numerical ranges include the numbers defining the range. As used herein, "nucleic acid" includes reference to deoxyribonucleotide or ribonucleotide polymers in either single-or double-stranded form, and unless otherwise limited, includes known analogs (e.g., peptide nucleic acids) having the basic properties of natural nucleotides that hybridize to single-stranded nucleic acids in a manner similar to naturally occurring nucleotides. As used herein, the term "encode" or "encoded" when used in the context of a particular nucleic acid means that the nucleic acid contains the necessary information to direct translation of the nucleotide sequence into a particular protein. The information encoding the protein is represented using a codon. As used herein, "full-length sequence" in reference to a particular polynucleotide or protein encoded thereby refers to the entire nucleic acid sequence or the entire amino acid sequence having a native (non-synthetic) endogenous sequence. The full-length polynucleotide encodes the full-length, catalytically active form of the particular protein. The terms "polypeptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The term is used for amino acid polymers in which one or more amino acid residues are artificial chemical analogues of the corresponding naturally occurring amino acids. The term is also used for naturally occurring amino acid polymers. The terms "residue" or "amino acid" are used interchangeably herein to refer to an amino acid that is incorporated into a protein, polypeptide, or peptide (collectively, "protein"). The amino acid can be a naturally occurring amino acid, and unless otherwise limited, can include known analogs of natural amino acids that can function in a similar manner as naturally occurring amino acids.
As used herein, the terms "isolated" and "purified" may be used interchangeably to refer to a nucleic acid or polypeptide, or biologically active portion thereof, that is substantially or essentially free of components that normally accompany or react with the nucleic acid or polypeptide as found in its naturally occurring environment. Thus, an isolated or purified nucleic acid or polypeptide produced by recombinant techniques is substantially free of other cellular material or culture medium, or is substantially free of chemical precursors or other chemicals when chemically synthesized. An "isolated" nucleic acid is typically free of sequences (such as sequences encoding proteins) that naturally flank the nucleic acid (i.e., sequences located at the 5 'and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, an isolated nucleic acid may comprise less than about 0.5kb of nucleotide sequences that naturally flank the nucleic acid in the genomic DNA of the cell from which the nucleic acid is derived.
In this application, the words "comprise", "comprising" or variations thereof are to be understood as embracing elements, numbers or steps in addition to those described. By "subject plant" or "subject plant cell" is meant a plant or plant cell in which the genetic modification has been effected, or a progeny cell of the plant or cell so modified, which progeny cell comprises the modification. The "control" or "control plant cell" provides a reference point for measuring the phenotypic change of the test plant or plant cell. The control plant or plant cell may include, for example: (a) a wild-type plant or cell, i.e., a plant or cell having the same genotype as the starting material for the genetic alteration that produced the test plant or cell; (b) plants or plant cells having the same genotype as the starting material but which have been transformed with an empty construct (i.e., a construct that has no known effect on the trait of interest, such as a construct comprising a target gene); (c) a plant or plant cell that is a non-transformed isolate of a subject plant or plant cell; (d) a plant or plant cell that is genetically identical to the subject plant or plant cell but that has not been exposed to conditions or stimuli that induce expression of the gene of interest; or (e) the subject plant or plant cell itself, under conditions in which the gene of interest is not expressed.
Those skilled in the art will readily recognize that advances in the field of molecular biology, such as site-specific and random mutagenesis, polymerase chain reaction methods, and protein engineering techniques, provide a wide range of suitable tools and procedures for engineering or engineering amino acid sequences and potential gene sequences of proteins of agricultural interest.
In some embodiments, changes may be made to the nucleotide sequences of the present application to make conservative amino acid substitutions. The principles and examples of conservative amino acid substitutions are further described below. In certain embodiments, substitutions that do not alter the amino acid sequence of the nucleotide sequences of the present application can be made in accordance with the codon preferences disclosed for monocots, e.g., codons encoding the same amino acid sequence can be substituted with monocot preferred codons without altering the amino acid sequence encoded by the nucleotide sequence. In some embodiments, a portion of the nucleotide sequence in this application is replaced with a different codon that encodes the same amino acid sequence, such that the nucleotide sequence is not altered while the amino acid sequence encoded thereby is not altered. Conservative variants include those sequences that, due to the degeneracy of the genetic code, encode the amino acid sequence of one of the proteins of the embodiments. In some embodiments, a partial nucleotide sequence herein is replaced according to monocot preferred codons. One skilled in the art will recognize that amino acid additions and/or substitutions are generally based on the relative similarity of the amino acid side-chain substituents, e.g., hydrophobicity, charge, size, etc., of the substituents. Exemplary amino acid substituent groups having various of the foregoing properties are known to those skilled in the art and include arginine and lysine; glutamic acid and aspartic acid; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine. Guidance regarding suitable amino acid substitutions that do not affect the biological activity of the Protein of interest can be found in the model of the Atlas of Protein sequences and structures (Protein Sequence and Structure Atlas) (Natl. biomed. Res. Foundation, Washington, D.C.) (incorporated herein by reference). Conservative substitutions such as exchanging one amino acid for another with similar properties may be made. Identification of sequence identity includes hybridization techniques. For example, all or part of a known nucleotide sequence is used as a probe for selective hybridization to other corresponding nucleotide sequences present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., a genomic library or cDNA library) from a selected organism.
In some embodiments, fragments of the nucleotide sequences and the amino acid sequences encoded thereby are also included. As used herein, the term "fragment" refers to a portion of the nucleotide sequence of a polynucleotide or a portion of the amino acid sequence of a polypeptide of an embodiment. Fragments of the nucleotide sequences may encode protein fragments that retain the biological activity of the native or corresponding full-length protein, and thus have protein activity. Mutant proteins include biologically active fragments of the native protein that comprise contiguous amino acid residues that retain the biological activity of the native protein. Some embodiments also include a transformed plant cell or transgenic plant comprising the nucleotide sequence of at least one embodiment. In some embodiments, plants are transformed with an expression vector comprising at least one embodiment of the nucleotide sequence and operably linked thereto a promoter that drives expression in plant cells. Transformed plant cells and transgenic plants refer to plant cells or plants that comprise a heterologous polynucleotide within their genome. Generally, the heterologous polynucleotide is stably integrated within the genome of the transformed plant cell or transgenic plant such that the polynucleotide is transmitted to progeny. The heterologous polynucleotide may be integrated into the genome alone or as part of an expression vector. In some embodiments, the plants to which the present application relates include plant cells, plant protoplasts, plant cell tissue cultures from which plants can be regenerated, plant calli, plant clumps, and plant cells, which are whole plants or parts of plants, such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruits, nuts, ears, cobs, husks, stalks, roots, root tips, anthers, and the like. The present application also includes plant cells, protoplasts, tissues, calli, embryos, and flowers, stems, fruits, leaves, and roots derived from the transgenic plants of the present application or progeny thereof, and thus comprising at least in part the nucleotide sequences of the present application.
The following examples are intended to illustrate the invention but are not intended to limit the scope of the invention. Modifications or substitutions to methods, steps or conditions of the present invention may be made without departing from the spirit and substance of the invention and are intended to be included within the scope of the present application. Unless otherwise indicated, the examples follow conventional experimental conditions, such as the Molecular cloning laboratory Manual of Sambrook et al (Sambrook J & Russell D W, Molecular cloning: a laboratory Manual,2001), or the conditions as recommended by the manufacturer's instructions. Unless otherwise specified, the chemical reagents used in the examples are all conventional commercially available reagents, and the technical means used in the examples are conventional means well known to those skilled in the art.
Examples
Example 1 overexpression of the maize ZmCOL14 Gene
The ZmCOL14 gene (GRMZM2G042198) was located in maize chromosome 4 162885359 and 162891594, and the gene function was annotated as Zinc-finger protein CONSTANS-Like 11, by query of the MaizeGDB database (https:// www.maizegdb.org /). The genome sequence is shown as SEQ ID NO.1, the CDS sequence is shown as SEQ ID NO.2, and the coded amino acid sequence is shown as SEQ ID NO. 3. Normally, the CONSTANS-Like protein is associated with photoperiod and flowering stage traits in plants, however, as the research on the flowering gene in maize is shallow, the number of genes with CONSTANS-Like functional annotations is also large, and therefore the specific function of ZmCOL14 gene (whether it affects flowering traits) and the specific manner of affecting flowering in maize (whether it promotes or inhibits) cannot be completely determined. In order to determine the specific functions of the ZmCOL14 gene, the invention utilizes an overexpression technology to carry out manual operation on the expression of the ZmCOL14 gene, and investigates the phenotype of a corn plant with changed expression. The specific process is as follows:
1. and constructing a overexpression vector.
The invention uses pCAMBIA3301-pZmUBI-FLAG-nGFP as a skeleton vector to construct ZmCOL14 gene over-expression vector pCAMBIA3301-pZmUBI-FLAG-ZmCOL 14. The method comprises the following specific steps: taking leaves at the 4-leaf stage of the corn, extracting mRNA, carrying out reverse transcription to obtain cDNA, and cloning a ZmCOL14 gene CDS sequence (SEQ ID NO.2) by PCR. BamHI and BstEII are subjected to double enzyme digestion to remove a framework vector GFP sequence, and are connected with a ZmCOL14 cDNA sequence to obtain an over-expression vector pCAMBIA3301-pZmUBI-FLAG-ZmCOL 14. The vector takes pZmUBI as a promoter to drive the overexpression of the ZmCOL14 gene. Meanwhile, the N end of the gene is fused with a3 XFlag protein tag so as to facilitate the protein function research. In addition, the vector carries the Ltp-DsRed expression cassette to facilitate color screening of transformed maize, and the CAMV35S-bar expression cassette is carried for a screening marker in genetic transformation. The figure of the overexpression vector is shown in FIG. 1. The sequence of the expression cassette pZmUBI-3 Xflag-ZmCOL 14-nos is shown in SEQ ID NO. 4.
2. And (4) genetically transforming the corn.
Transferring the vector into agrobacterium strain EHA105 by an electric shock method, and identifying and screening positive clones by PCR. Taking freshly peeled young embryos of a maize inbred line KN5585 with the diameter of about 1mm as a material, putting the peeled maize embryos into a 2mL plastic centrifuge tube containing 1.8mL of suspension, and treating about 150 immature young embryos within 30 min; the suspension was aspirated, the remaining corn embryos placed in a tube and then 1.0mL of Agrobacterium suspension was added and left for 5 min. The young embryos in the centrifuge tube are suspended and poured onto a co-culture medium, and the surplus agrobacterium liquid on the surface is sucked by a liquid transfer device and is cultured for 3 days in the dark at the temperature of 23 ℃. After co-cultivation, the young embryos were transferred to a resting medium, cultured in the dark at 28 ℃ for 6 days, placed on a screening medium containing 5mg/L of Bialaphos, and screened for 2 weeks, and then transferred to a screening medium containing 8mg/L of Bialaphos for 2 weeks. The resistant calli were transferred to differentiation medium 1 and cultured at 25 ℃ under 5000lx light for 1 week. Transferring the callus to a differentiation culture medium 2, and culturing for 2 weeks by illumination; transferring the differentiated plantlets to a rooting culture medium, and culturing at 25 ℃ and 5000lx by illumination until the plantlets are rooted; transferring the plantlets into small pots for growth, transplanting the plantlets into a greenhouse after a certain growth stage, and harvesting progeny seeds after 3-4 months.
3. Character identification of over-expression plant
The 3T 2-generation overexpression transformants 1_6#, 7_3# and 7_6# were phenotypically identified in a summer Jilin (long day environment) and a winter Hainan (short day environment) trial, respectively. The results are shown in tables 1 and 2. Under both long-day and short-day conditions, overexpression of the ZmCOL14 gene resulted in a change in maize flowering phase. Wherein, under the condition of short sunshine, the heading stage, the silking stage and the pollen scattering stage of the positive plants of the 1_6# and 7_3# transformants are obviously delayed compared with the negative control plants; the heading stage and the silking stage of the 7_6# transformant positive plants are obviously delayed compared with those of the negative control plants, and the pollen scattering stage is unchanged, which is probably caused by different insertion positions of the exogenous genes. Under long-day conditions, the heading, spinning and pollen scattering periods of 3 transformant positive plants were significantly delayed from those of the negative control plants, and were more days delayed than those under short-day conditions.
TABLE 1 flowering time trait data for each over-expressed maize material under short-day conditions
Figure GDA0003349413480000101
Data are expressed as "mean ± standard deviation"; "+" indicates a positive sample, "-" indicates a negative sample; different letters indicate significant differences at the level of p 0.05 between the positive and negative samples of each group of materials.
TABLE 2 flowering time trait data for each over-expressed corn material under long-day conditions
Figure GDA0003349413480000102
Data are expressed as "mean ± standard deviation"; "+" indicates a positive sample, "-" indicates a negative sample; different letters indicate significant differences at the level of p 0.05 between the positive and negative samples of each group of materials.
The results show that the ZmCOL14 gene overexpression can cause the delay of the heading stage, the silking stage and the flour loosening stage of the corn.
In addition, the inventors surprisingly found that the plant height and the ear height of the over-expression material planted in Jilin and Hainan test fields are significantly changed, and the plant height and the ear height of 3 positive transformants 1_6#, 7_3# and 7_6# are reduced compared with those of the negative control plants (Table 3 and Table 4). Therefore, the ZmCOL14 gene also has the function of regulating and controlling the plant height and the ear height of the corn in a mode of inhibiting the characters of the plant height and the ear height. This function was not previously anticipated. In general, late flowering of corn results in prolonged vegetative growth with a corresponding increase in plant and ear height. The ZmCOL14 gene is overexpressed, so that the flowering of the corn can be delayed, the plant height and the ear position height of the corn can be reduced (figure 2), and the ZmCOL14 gene can be used for cultivating a new corn variety with late flowers and semi-short stalks.
TABLE 3 plant height and ear height data for each over-expressed corn material (Jilin)
Figure GDA0003349413480000103
Data are expressed as "mean ± standard deviation"; "+" indicates a positive sample, "-" indicates a negative sample; different letters indicate significant differences at the level of p 0.05 between the positive and negative samples of each group of materials.
TABLE 4 plant height and ear height data for each over-expressed corn material (Hainan)
Figure GDA0003349413480000111
Data are expressed as "mean ± standard deviation"; "+" indicates a positive sample, "-" indicates a negative sample; different letters indicate significant differences at the level of p 0.05 between the positive and negative samples of each group of materials.
Under the conditions of long sunlight and short sunlight, the heading period, the silking period and the pollen scattering period of the two transformants No. 1_6 and No. 7_3 are all obviously delayed, and the plant height and the ear position height are both reduced. Can be screened out as a new late-flowering semi-short-stalk corn germplasm.
Example 2 inhibition of maize ZmCOL14 gene expression
The invention further inhibits the expression of ZmCOL14 gene in a gene editing mode so as to further verify the function of the gene and establish a proper technical scheme. The inhibition of expression is realized by adopting a mode of carrying out site-directed mutation on ZmCOL14 gene by using a CRISPR-Cas9 tool. The implementation process comprises the construction of a gene editing vector, the genetic transformation of corn and the functional verification of editing effect.
The method comprises the following specific steps:
1. and (3) constructing a gene editing vector.
According to the invention, a ccdB sequence in a skeleton vector pCXB053 (constructed by Rice biotechnologies (Jiangsu) Co., Ltd.) is cut out through BsaI enzyme digestion, and a target sequence (totally designing 2 target points, specifically shown in Table 5) is connected between U6 and gRNA through T4 ligase. The specific construction process is as follows:
1) synthesis of primers
Primer TF: ATTGGGGCTCAGAGTGAACCTCC, respectively; primer TR: AAACGGAGGTTCACTCTGAGCCC. Synthesized in Shanghai, dissolved in ultrapure water and mixed uniformly.
2) Allocating an annexing Buffer TE
Tris-Cl PH8.0 10mM
EDTA 0.1mM
NaCl: 50mM
3) Annealing of connections
A connection system:
Annealing Buffer 50μL
Mix Primer 5μL
and (3) connecting procedures:
95℃ 3min
0.1 ℃/s constant speed drop
20℃ 1min
Storing at-20 deg.C
4) The backbone vector was digested with BsaI restriction enzyme
Enzyme digestion system:
Figure GDA0003349413480000121
after digestion at 37 ℃ for 5h, the product was recovered directly (using the quangen recovery kit).
The recovered product was diluted to 50 ng/. mu.L with water, diluted with an equal amount of T4 Buffer and stored at-20 ℃.
5) T4 enzyme linked
Enzyme linked systems:
Figure GDA0003349413480000122
enzyme linked procedure:
25 ℃ for 2h (in PCR instrument)
6) Transformation of Escherichia coli
10 mu L of enzyme-linked reaction solution and 100 mu L of escherichia coli 5a are subjected to competence mixing, strictly standing and ice-bath is carried out for 30min, heat shock is carried out for 35s at 42 ℃, ice-bath is carried out for 2min, 500L of antibiotic-free LB is added, and shaking recovery is carried out for 1h at 37 ℃. After centrifugation at 3000g for 1 minute and aspiration of the supernatant, 100. mu.L of the liquid was left to blow-beat the bacterial cells and plated (solid medium containing 50mg/L kanamycin) and cultured in an inverted state at 37 ℃ for 12 hours.
And (4) selecting positive clone sequencing and extracting plasmids. Sequencing verification primer is PUV 3-R: CTGGCGAAAGGGGGATGTGCTGCAA are provided.
2. Genetic transformation of maize
The transformation receptor was KN5585 (inbred line bred by Mimi Biotechnology (Jiangsu) Ltd.), and the detailed procedure was as in example 2.
3. Trait evaluation of Gene-edited plants
Extracting DNA detection gene editing conditions of all T1 generation materials in the seedling stage, and designing a primer amplification target editing section, wherein an amplification system is as follows: DNA: 3 μ L, 1 μ L each of the bidirectional primers, 2 × TaqMix: 7.5 μ L, ddH 2O: 2.5. mu.L, total volume 10. mu.L. The PCR reaction conditions were as follows: (1)94 ℃ for 5 minutes, (2)94 ℃ for 40 seconds, (3)57 ℃ for 30 seconds, (4)72 ℃ for 60 seconds, (5) cycle 35 times from (2) step (4), (6)72 ℃ for 7 minutes, and (7) storage at 4 ℃. PCR product sequencing analysis edit type. Genotype analysis on the target points of the gene editing materials shows that the target points of the ZmCOL14-1, ZmCOL14-2 and ZmCOL14-3 materials are changed, and the frame shift mutation can be caused (Table 5).
TABLE 5 target information for Gene editing and editing genotype of editing Material
Figure GDA0003349413480000131
Target sequences are underlined, and PAM sequences are in boxes; "-" indicates a base deletion, and bold indicates a base insertion.
The flowering phase traits of the gene editing material were investigated at the Hainan test site. The results show that there were no significant differences in the androgenesis, pollen dispersal and silking periods of the 3 gene-edited materials compared to the unedited control material (table 6), indicating that the flowering phase of maize was not affected after gene knockout under short-day conditions.
TABLE 6 flowering time trait data under short-day conditions for maize gene editing materials
Figure GDA0003349413480000141
Data are expressed as "mean ± standard deviation"; "+" indicates an edited sample, "-" indicates an unedited sample; different letters indicate significant differences at the level of p 0.05 between each set of material edited samples and unedited samples.
The flowering phase traits of the gene editing material were further investigated at the Jilin test site. The tasseling period and the pollen scattering period of the ZmCOL14-1 gene editing material are earlier than those of an unedited control material, and the spinning period change is not obvious; the tasseling period of the ZmCOL14-2 gene editing material is earlier than that of the unedited control material, and the changes of the spinning period and the pollen scattering period are not obvious; the shattering period of the ZmCOL14-3 gene edited material was earlier than its unedited control material, and neither the silking nor the androgenetic change was significant (Table 7). This demonstrates to some extent the inhibitory effect of ZmCOL14 gene on maize flowering. Due to different target point editing types, different mutant genes have different influence degrees on the flowering phase. The mutant gene of ZmCOL14-1 material had the greatest effect on flowering stage, followed by ZmCOL 14-2.
TABLE 7 flowering phase trait data under long-day conditions for maize gene editing materials
Figure GDA0003349413480000142
Data are expressed as "mean ± standard deviation"; "+" indicates an edited sample, "-" indicates an unedited sample; different letters indicate significant differences at the level of p 0.05 between each set of material edited samples and unedited samples.
The plant height trait of gene editing was further investigated. The plant height and the ear position height of ZmCOL14-1 and ZmCOL14-2 positive gene editing materials are higher than those of negative control materials; the plant height of the ZmCOL14-3 positive gene editing material was higher than that of the negative control material, and the ear height change was insignificant (table 8). This demonstrates the inhibitory effect of ZmCOL14 gene on maize plant height and ear height. Due to different target point editing types, different mutant genes have different influence degrees on plant height and panicle height. Mutant genes of ZmCOL14-1 and ZmCOL14-2 materials have great influence on plant height and ear height.
TABLE 8 plant height and ear height data of maize Gene editing Material (Jilin)
Figure GDA0003349413480000151
Data are expressed as "mean ± standard deviation"; "+" indicates an edited sample, "-" indicates an unedited sample; different letters indicate significant differences at the level of p 0.05 between each set of material edited samples and unedited samples.
By integrating the data of plant height, ear position height and flowering period characters, ZmCOL14-1 and ZmCOL14-2 gene editing materials show early flowering high stems under long-day conditions, and the mutant gene sequences of the two materials are shown as SEQ ID NO.5-SEQ ID NO. 6. Any one of the two mutant genes is introduced into other corn materials, so that the early flowering phase and the increase of the plant height spike position can be realized under the long-day condition, and the early flowering high-stalk corn variety suitable for being planted under the long-day condition can be cultivated.
Although the invention has been described in detail hereinabove with respect to a general description and specific embodiments thereof, it will be apparent to those skilled in the art that modifications or improvements may be made thereto based on the invention. Accordingly, such modifications and improvements are intended to be within the scope of the invention as claimed.
Sequence listing
<110> Jilin province academy of agricultural sciences, Huazhong university of agriculture, Miami Biotechnology (Jiangsu) Ltd
<120> gene ZmCOL14 for controlling plant height and ear height of corn and application thereof
<130> 1
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 6236
<212> DNA
<213> Zea mays
<400> 1
cacgtcctct tccagtctcc actctccacg tgttccatcc cattctcctc cccgcgcccc 60
gtccccctcg cctcgcttat cccccggacc cggccgaccc ctgctctgct cgacgtgttg 120
gcaaaacctc ctcctagtcc tctcgcagaa ggagcttgtt ttctttaccg gcgcggcaac 180
agcgaaagct tctcgatctc tctccccgct gctccgccgc tgggtacggt ggttccgcgc 240
ctcggacgcg cccgtgcggg ttggttggat ccgagctctg tgcagaagcg ccgccgcgac 300
acggtcggtg agcgctcttt ctggctgctg ttttcatcgc gagcttggat tcagacattc 360
ggtgccgtcc atgcaagggg tagacggatt tgggtgagga gtctattgct tcttcgatcg 420
gggattgagt gtttggtcta ccgtccttgt ttatttagct cgtcggtgtt ccagggagtt 480
cgacgtgtat gggtgtagtg tgttgggctg acaagtctga actctatttt ttttcctttc 540
tttcctcttt gcggacactt cacgttttta ttccgtgtcg cgtagaccgt acgcgagtgg 600
ttcggtttgt ttgatttcgc ccttgcgcag gcggcctcag ctgctaaagt cttgattaac 660
cccgtctaat tgcttgtatc tgcagccagt tcatctggaa agggttttat ctgttctttt 720
acaaaggttg cttttgccta ctgacgcgtg aatatcgaat agtgatgata gtatattcgc 780
gctttgcttg tacgtgtctg tactctgttg tcccttctgt tcaaagcggc aactattcat 840
ctgcgtcgaa agggaatcct tttgcagcgt gaatttgact gttcttgagc gaaatttgcc 900
gcgtttattt gagtggcgca gagagtccgc tggcttccag ccttccacga gtagccggca 960
agcgaccaga tagagggaaa aaagagaggg ttagtggtgc actggtgctt aacacctgta 1020
tttgttgtac ctgaagtttg gcatatggcc acttattctg tgccacactt accggtcatg 1080
tgcatggaaa gcgtccattc gatatgccaa gatatgaaca tgccacttaa aatgataact 1140
tgggaccagg gagccatttg caatagaggt cgcaaaaagt ttggttgcac ttcgtcctat 1200
ttgtctctca ctcactcagt cactcctatg tgctgatatg ctgtgctaag ctggcatgaa 1260
agactcttga cttcttcaga gcattgatgc caattgcaat aaaagcgttt gtttgtctcc 1320
aagatgacta ttcatcactc tatctttcgg tggtaccaaa tgcattatgg tcactctatt 1380
tgaaggtctt ttgaatttac tctgcttacc tcccccttat gctttacaga gattatatgc 1440
tttgccaata gcgtagtccc aaattatgga agccccctta gattacatgt ctgtacttct 1500
attctgaaac ttcttgtagt tatctaatgc gctggctgac agatatagga agaatatcta 1560
aatctcaaat tttctgtgag ggcctcaggg gaagcgtcct atgtagctaa atgagggagc 1620
ggttctgtgt tatctatggg tgacaatgag ctctaaattt tacactataa gatttaatga 1680
tcggatcata ttaggatcag gccctaccat tttgtgaaga agcatttgga ttgtaatcca 1740
ttaccatccc tagtgttatc ataagactgt cactagctcg tggcagagtg tatgtagatg 1800
catatttttg ctgatgtgga acagaatagg tatctgtttg catggcctgg ggaaaagttg 1860
ccaatttttc tcaatactca aattttgtct ctatgcgaaa cagtcagaag taactatagg 1920
tttgctgtat tgttactcat tgtttacttc ttaatgcttg tatcacatag aattccactg 1980
gatccagctg ctgaacgggg taccagaagg tggatttggt agtagcactg aacagcgagt 2040
ggaatttctc taatactgtc caggatcatg gttcctctct gtggtttctg tgggaaacaa 2100
aggtcaatga tctactgcag atcggatgcg gcatcattgt gcttatcatg cgaccgtagc 2160
gttcattcag ctaatgcact gtctcggcgt catagaagga cccttctttg tgatcgttgt 2220
ggtttacagc ctgcatcagt ccgatgtctt gaggacaaca catcactttg ccaaaactgt 2280
gattggaatg ggcatgatgc agcatcaggg gcttctgggc ataaaaggca ggccataaac 2340
tgttactcag ggtgcccatc atcagcagag ctttcgagaa tctggtcatt tattatcgat 2400
atcccgactg tagctgctga gcccaactgt gaggatgggc taagcatgat gacaattgat 2460
gacagtgatg tgactaatca tcacggtgct tcagatgata aacgattgtt ggaaatagct 2520
aacacagcac tcatgagtga tccaccttca cctgacaagc ttaaacctct gataggctct 2580
tcttctggag atgggtttga tgttctgcct ctagccacag atcagcctgc tggaccagtt 2640
tcagcgacac ctaaggtgcg atgtgccttt tcattttttc ctccaagaat gtttctgaac 2700
gttgtgcttt gttttttgca tgtcaaaaga cttgttgctt atggcatgca agttacgtac 2760
acatataaaa taaagaatgt tttcatatga atatagcata aacatgtagc ttggttactg 2820
tttcagtctt gcatcagcac agaaagtagt acgtggaaat tattccttag tgatgattcc 2880
cttttctcta tttaacactg cctgtctgtt ttttcctgct gagctctcaa tgcccaagta 2940
tgttcttttt acaatgaaaa ttccattttt gtaacaagtt attagataca tttgcgtcaa 3000
tggacagttg caagttgcat tggttcgtat tgtttcagat cttgtttatc accagtccct 3060
ttttaaagaa aaatatgatc tattgtcgtt gtattcttat cagatgcttg ttacatctct 3120
caggtacctt atgccagaga tgacaataag ttcaatgatg gcatgtatga agacttatgt 3180
gtggatgatg ctgacctgac attcgagaat tatgaagagc tattcggtac ctctcacatt 3240
cgaatagagg aactctttga tgacgccgga attgacagtt actttgaaat gaaggaaaca 3300
ccgccttttg atttcaatga ggtatgtact attcttctat actctttgtg attctaaatt 3360
agtgacattt taggatatca acatagtcta gaaggtgtca attcggctag ggatttctat 3420
gaaaatatgg cagttcatac aaagctaact aagtgctata aaattacttc atgtaacatg 3480
tatcttacac tgtcaaagca cacaactatc atatctgatg gccgaagtat atattttcat 3540
ttgaaatttt cctcaagctc atgcatcgtc tacaccaact tgccgagcca tcctgggacc 3600
tgggtagctt gggcccaatc cgatgacagg aacaaacctg caggggatca ctggaatcac 3660
ctccagaccc ttctccccct ctaccgggcc atcacttcgg tctgtgttgg aaatggcacg 3720
accacatcgt tctggttgga cgactggctc ccctttgacc cgatcgtgga acacctgcca 3780
gatctcgatc cgcagccatg tgacatgttg aaccaactgt tagccaggtt atgcaaactg 3840
gtgtgatcaa caacctgaga actcgcctca gtcgaactgc ccaacgggag aggccattct 3900
ccaacttgct ctgaacaacg tggatatcac tgatctgcca gatcagcgcc ggaggtcccc 3960
tcattgacag cactggcaag ttgcactccg gagcccttta cacaatgatc caatctctgt 4020
cagcccccaa cctagaggag cctgactttg tgtggaacgg ttgaagctct ttatgtggct 4080
cctcaatcaa agcaaaatca accacaaagt aagcttggtc gagaaaggtg tgattgccaa 4140
ccccatctgt gacctctgcc ttcaagcaga cgaagactgc caccacatct tcctctgacc 4200
tctggtgcca ctatgcagct tccttctggc acagcgtcgg gggtccaaat cccccctgga 4260
cctgacaacg tccaagctct gggatatcac cctcccacct gcacctgctg ccccacgaca 4320
ccagagcgct ctcgtccatc tttgctgctg ggccatttgg aaacaccgga acaacgtcgt 4380
cttcaaccaa acgcttcctt cagttcagag aatccgaaga cagtgccttg aagaagctag 4440
attctggaga tgtagaatta gaggcgactc tagcgaaata gacgcatggt gtaatctctt 4500
cattagcatg taccttgaaa caccccctcc ccccctgtgt tgtaaccccg gctaccttgc 4560
tgctcctatc aatcaatata ttaaaatcag gtggggacaa tcgtcccccc tataaaaaaa 4620
actgtgggaa agagagctcc tgtgcttagt tccccaacct acttgtagtt ggccagggtt 4680
agtttatttt cttacctcag ttgttattta tggtttctgt taatttcact catcaagcct 4740
gagttcagga cattttggca cttgaagtat tataagttta ttttccatcc atagaatacc 4800
ctattttttt aacaaaactc aataaatatt attatataca caaaaagatc aaatgttgtt 4860
gctttactaa aattcttggt cattttttat gttttcagca gcccaaaatt gtgcagctac 4920
aatgtagcga tgtggtacca gctgattgtg cgatgtcaaa cacaggggaa agggctgatt 4980
ccagcctttg tattcctgtt aggcaggtca gatctagtat atcccatccc ttatctggtt 5040
tgactggtga gagcagcgct ggagatcacc aagactgtgg ggtgtcacca attctcctca 5100
tgggcgagcc accctggtat tctcctggtc cagaaggctc attagctgga ggaagcagag 5160
atagtgctct cacacgatac aaggagaaga agaagaaaag aatgtaagca cgtttaaatg 5220
tctgcttgag gttgttctgc gcttaacatt catagatcgt ggctatcttt ttaaggcaaa 5280
aaaatgtctc caaccttctg tgtctcttgt ttctagtttc gataatgcat tttccttgca 5340
gaagtcgctg attcaccttt ccttttcacg aatttggtcg acaggtttga caagaagatc 5400
agatatgctt ctcgcaaggc tagggcagac gtgaggaaga gggtcaaggg acggtttata 5460
aaggctggcg aagcgtatga ctatgatcca ctaagtcaaa ctagaagcta ctgagactgc 5520
tgagccttga atgcggctgc ttgttgatcg tccagtgtca gcctagcaaa tcttcaacgg 5580
ctcgtctgtt gtaggtcgtt gcgctacagg caagattact ggagagcaca gcgattgcaa 5640
atttgcaatg cacgcatcag agcctgcagt tgaaatacga aaaaaaaagg ttaagaagag 5700
gtaccaaggg ttgggatgaa tgaaaaaaaa ggaaatacga cgcgaacttg ccggacgcct 5760
tgtggtttgg atggagcata catattcatt cttcagttca tctgcagatg agagtgattt 5820
ggatcagctc tgccgtctgt gcgttgaaca gatgcagtta tgggcgctcg tcctccggct 5880
gtgtctaccg ctgcgtgcaa ggacctgcgt cggccacggt gttcggcagt gagctgccag 5940
gattttacag tctgggtaac agcctaacag gatcccctta tttattacct cccagcttgc 6000
gctctgtaac aatattattt gtgaagcaca acattctctt gtcaggagat tgttttcgat 6060
cgtgtgttta tgtttgtaga tggacgcaat attggtaaaa agaagtagcc gtcatgaagt 6120
gtgttcttgt cggatcgcat atagcactgg ggatgagcag gagaatcaca catatttcat 6180
ctggacgtcg aacctctaac tattctatgc cagagtaacc ttcttgtgct ttgtca 6236
<210> 2
<211> 1943
<212> DNA
<213> Artificial Synthesis (unknown)
<400> 2
atggttcctc tctgtggttt ctgtgggaaa caaaggtcaa tgatctactg cagatcggat 60
gcggcatcat tgtgcttatc atgcgaccgt agcgttcatt cagctaatgc actgtctcgg 120
cgtcatagaa ggacccttct ttgtgatcgt tgtggtttac agcctgcatc agtccgatgt 180
cttgaggaca acacatcact ttgccaaaac tgtgattgga atgggcatga tgcagcatca 240
ggggcttctg ggcataaaag gcaggccata aactgttact cagggtgccc atcatcagca 300
gagctttcga gaatctggtc atttattatc gatatcccga ctgtagctgc tgagcccaac 360
tgtgaggatg ggctaagcat gatgacaatt gatgacagtg atgtgactaa tcatcacggt 420
gcttcagatg ataaacgatt gttggaaata gctaacacag cactcatgag tgatccacct 480
tcacctgaca agcttaaacc tctgataggc tcttcttctg gagatgggtt tgatgttctg 540
cctctagcca cagatcagcc tgctggacca gtttcagcga cacctaaggt accttatgcc 600
agagatgaca ataagttcaa tgatggcatg tatgaagact tatgtgtgga tgatgctgac 660
ctgacattcg agaattatga agagctattc ggtacctctc acattcgaat agaggaactc 720
tttgatgacg ccggaattga cagttacttt gaaatgaagg aaacaccgcc ttttgatttc 780
aatgagcagc ccaaaattgt gcagctacaa tgtagcgatg tggtaccagc tgattgtgcg 840
atgtcaaaca caggggaaag ggctgattcc agcctttgta ttcctgttag gcaggtcaga 900
tctagtatat cccatccctt atctggtttg actggtgaga gcagcgctgg agatcaccaa 960
gactgtgggg tgtcaccaat tctcctcatg ggcgagccac cctggtattc tcctggtcca 1020
gaaggctcat tagctggagg aagcagagat agtgctctca cacgatacaa ggagaagaag 1080
aagaaaagaa tgtttgacaa gaagatcaga tatgcttctc gcaaggctag ggcagacgtg 1140
aggaagaggg tcaagggacg gtttataaag gctggcgaag cgtatgacta tgatccacta 1200
agtcaaacta gaagctactg agactgctga gccttgaatg cggctgcttg ttgatcgtcc 1260
agtgtcagcc tagcaaatct tcaacggctc gtctgttgta ggtcgttgcg ctacaggcaa 1320
gattactgga gagcacagcg attgcaaatt tgcaatgcac gcatcagagc ctgcagttga 1380
aatacgaaaa aaaaaggtta agaagaggta ccaagggttg ggatgaatga aaaaaaagga 1440
aatacgacgc gaacttgccg gacgccttgt ggtttggatg gagcatacat attcattctt 1500
cagttcatct gcagatgaga gtgatttgga tcagctctgc cgtctgtgcg ttgaacagat 1560
gcagttatgg gcgctcgtcc tccggctgtg tctaccgctg cgtgcaagga cctgcgtcgg 1620
ccacggtgtt cggcagtgag ctgccaggat tttacagtct gggtaacagc ctaacaggat 1680
ccccttattt attacctccc agcttgcgct ctgtaacaat attatttgtg aagcacaaca 1740
ttctcttgtc aggagattgt tttcgatcgt gtgtttatgt ttgtagatgg acgcaatatt 1800
ggtaaaaaga agtagccgtc atgaagtgtg ttcttgtcgg atcgcatata gcactgggga 1860
tgagcaggag aatcacacat atttcatctg gacgtcgaac ctctaactat tctatgccag 1920
agtaaccttc ttgtgctttg tca 1943
<210> 3
<211> 406
<212> PRT
<213> Zea mays
<400> 3
Met Val Pro Leu Cys Gly Phe Cys Gly Lys Gln Arg Ser Met Ile Tyr
1 5 10 15
Cys Arg Ser Asp Ala Ala Ser Leu Cys Leu Ser Cys Asp Arg Ser Val
20 25 30
His Ser Ala Asn Ala Leu Ser Arg Arg His Arg Arg Thr Leu Leu Cys
35 40 45
Asp Arg Cys Gly Leu Gln Pro Ala Ser Val Arg Cys Leu Glu Asp Asn
50 55 60
Thr Ser Leu Cys Gln Asn Cys Asp Trp Asn Gly His Asp Ala Ala Ser
65 70 75 80
Gly Ala Ser Gly His Lys Arg Gln Ala Ile Asn Cys Tyr Ser Gly Cys
85 90 95
Pro Ser Ser Ala Glu Leu Ser Arg Ile Trp Ser Phe Ile Ile Asp Ile
100 105 110
Pro Thr Val Ala Ala Glu Pro Asn Cys Glu Asp Gly Leu Ser Met Met
115 120 125
Thr Ile Asp Asp Ser Asp Val Thr Asn His His Gly Ala Ser Asp Asp
130 135 140
Lys Arg Leu Leu Glu Ile Ala Asn Thr Ala Leu Met Ser Asp Pro Pro
145 150 155 160
Ser Pro Asp Lys Leu Lys Pro Leu Ile Gly Ser Ser Ser Gly Asp Gly
165 170 175
Phe Asp Val Leu Pro Leu Ala Thr Asp Gln Pro Ala Gly Pro Val Ser
180 185 190
Ala Thr Pro Lys Val Pro Tyr Ala Arg Asp Asp Asn Lys Phe Asn Asp
195 200 205
Gly Met Tyr Glu Asp Leu Cys Val Asp Asp Ala Asp Leu Thr Phe Glu
210 215 220
Asn Tyr Glu Glu Leu Phe Gly Thr Ser His Ile Arg Ile Glu Glu Leu
225 230 235 240
Phe Asp Asp Ala Gly Ile Asp Ser Tyr Phe Glu Met Lys Glu Thr Pro
245 250 255
Pro Phe Asp Phe Asn Glu Gln Pro Lys Ile Val Gln Leu Gln Cys Ser
260 265 270
Asp Val Val Pro Ala Asp Cys Ala Met Ser Asn Thr Gly Glu Arg Ala
275 280 285
Asp Ser Ser Leu Cys Ile Pro Val Arg Gln Val Arg Ser Ser Ile Ser
290 295 300
His Pro Leu Ser Gly Leu Thr Gly Glu Ser Ser Ala Gly Asp His Gln
305 310 315 320
Asp Cys Gly Val Ser Pro Ile Leu Leu Met Gly Glu Pro Pro Trp Tyr
325 330 335
Ser Pro Gly Pro Glu Gly Ser Leu Ala Gly Gly Ser Arg Asp Ser Ala
340 345 350
Leu Thr Arg Tyr Lys Glu Lys Lys Lys Lys Arg Met Phe Asp Lys Lys
355 360 365
Ile Arg Tyr Ala Ser Arg Lys Ala Arg Ala Asp Val Arg Lys Arg Val
370 375 380
Lys Gly Arg Phe Ile Lys Ala Gly Glu Ala Tyr Asp Tyr Asp Pro Leu
385 390 395 400
Ser Gln Thr Arg Ser Tyr
405
<210> 4
<211> 3334
<212> DNA
<213> Artificial Synthesis (unknown)
<400> 4
agtattttga caacaggact ctacagtttt atctttttag tgtgcatgtg ttctcctttt 60
tttttgcaaa tagcttcacc tatataatac ttcatccatt ttattagtac atccatttag 120
ggtttagggt taatggtttt tatagactaa tttttttagt acatctattt tattctattt 180
tagcctctaa attaagaaaa ctaaaactct attttagttt ttttatttaa taatttagat 240
ataaaataga ataaaataaa gtgactaaaa attaaacaaa taccctttaa gaaattaaaa 300
aaactaagga aacatttttc ttgtttcgag tagataatgc cagcctgtta aacgccgtcg 360
acgagtctaa cggacaccaa ccagcgaacc agcagcgtcg cgtcgggcca agcgaagcag 420
acggcacggc atctctgtcg ctgcctctgg acccctctcg agagttccgc tccaccgttg 480
gacttgctcc gctgtcggca tccagaaatt gcgtggcgga gcggcagacg tgagccggca 540
cggcaggcgg cctcctcctc ctctcacggc accggcagct acgggggatt cctttcccac 600
cgctccttcg ctttcccttc ctcgcccgcc gtaataaata gacaccccct ccacaccctc 660
tttccccaac ctcgtgttgt tcggagcgca cacacacaca accagatctc ccccaaatcc 720
acccgtcggc acctccgctt caaggtacgc cgctcgtcct cccccccccc ccctctctac 780
cttctctaga tcggcgttcc ggtccatggt tagggcccgg tagttctact tctgttcatg 840
tttgtgttag atccgtgttt gtgttagatc cgtgctgcta gcgttcgtac acggatgcga 900
cctgtacgtc agacacgttc tgattgctaa cttgccagtg tttctctttg gggaatcctg 960
ggatggctct agccgttccg cagacgggat cgatttcatg attttttttg tttcgttgca 1020
tagggtttgg tttgcccttt tcctttattt caatatatgc cgtgcacttg tttgtcgggt 1080
catcttttca tgcttttttt tgtcttggtt gtgatgatgt ggtctggttg ggcggtcgtt 1140
ctagatcgga gtagaattct gtttcaaact acctggtgga tttattaatt ttggatctgt 1200
atgtgtgtgc catacatatt catagttacg aattgaagat gatggatgga aatatcgatc 1260
taggataggt atacatgttg atgcgggttt tactgatgca tatacagaga tgctttttgt 1320
tcgcttggtt gtgatgatgt ggtgtggttg ggcggtcgtt cattcgttct agatcggagt 1380
agaatactgt ttcaaactac ctggtgtatt tattaatttt ggaactgtat gtgtgtgtca 1440
tacatcttca tagttacgag tttaagatgg atggaaatat cgatctagga taggtataca 1500
tgttgatgtg ggttttactg atgcatatac atgatggcat atgcagcatc tattcatatg 1560
ctctaacctt gagtacctat ctattataat aaacaagtat gttttataat tattttgatc 1620
ttgatatact tggatgatgg catatgcagc agctatatgt ggattttttt agccctgcct 1680
tcatacgcta tttatttgct tggtactgtt tcttttgtcg atgctcaccc tgttgtttgg 1740
tgttacttct gcagggatct atggattaca aagatcacga tggagattac aaagatcacg 1800
atatagatta caaggatgat gatgataaag gatccatggt tcctctctgt ggtttctgtg 1860
ggaaacaaag gtcaatgatc tactgcagat cggatgcggc atcattgtgc ttatcatgcg 1920
accgtagcgt tcattcagct aatgcactgt ctcggcgtca tagaaggacc cttctttgtg 1980
atcgttgtgg tttacagcct gcatcagtcc gatgtcttga ggacaacaca tcactttgcc 2040
aaaactgtga ttggaatggg catgatgcag catcaggggc ttctgggcat aaaaggcagg 2100
ccataaactg ttactcaggg tgcccatcat cagcagagct ttcgagaatc tggtcattta 2160
ttatcgatat cccgactgta gctgctgagc ccaactgtga ggatgggcta agcatgatga 2220
caattgatga cagtgatgtg actaatcatc acggtgcttc agatgataaa cgattgttgg 2280
aaatagctaa cacagcactc atgagtgatc caccttcacc tgacaagctt aaacctctga 2340
taggctcttc ttctggagat gggtttgatg ttctgcctct agccacagat cagcctgctg 2400
gaccagtttc agcgacacct aaggtacctt atgccagaga tgacaataag ttcaatgatg 2460
gcatgtatga agacttatgt gtggatgatg ctgacctgac attcgagaat tatgaagagc 2520
tattcggtac ctctcacatt cgaatagagg aactctttga tgacgccgga attgacagtt 2580
actttgaaat gaaggaaaca ccgccttttg atttcaatga gcagcccaaa attgtgcagc 2640
tacaatgtag cgatgtggta ccagctgatt gtgcgatgtc aaacacaggg gaaagggctg 2700
attccagcct ttgtattcct gttaggcagg tcagatctag tatatcccat cccttatctg 2760
gtttgactgg tgagagcagc gctggagatc accaagactg tggggtgtca ccaattctcc 2820
tcatgggcga gccaccctgg tattctcctg gtccagaagg ctcattagct ggaggaagca 2880
gagatagtgc tctcacacga tacaaggaga agaagaagaa aagaatgttt gacaagaaga 2940
tcagatatgc ttctcgcaag gctagggcag acgtgaggaa gagggtcaag ggacggttta 3000
taaaggctgg cgaagcgtat gactatgatc cactaagtca aactagaagc tactgaggtg 3060
accagctcga atttccccga tcgttcaaac atttggcaat aaagtttctt aagattgaat 3120
cctgttgccg gtcttgcgat gattatcata taatttctgt tgaattacgt taagcatgta 3180
ataattaaca tgtaatgcat gacgttattt atgagatggg tttttatgat tagagtcccg 3240
caattataca tttaatacgc gatagaaaac aaaatatagc gcgcaaacta ggataaatta 3300
tcgcgcgcgg tgtcatctat gttactagat cggg 3334
<210> 5
<211> 6219
<212> DNA
<213> Zea mays
<400> 5
cacgtcctct tccagtctcc actctccacg tgttccatcc cattctcctc cccgcgcccc 60
gtccccctcg cctcgcttat cccccggacc cggccgaccc ctgctctgct cgacgtgttg 120
gcaaaacctc ctcctagtcc tctcgcagaa ggagcttgtt ttctttaccg gcgcggcaac 180
agcgaaagct tctcgatctc tctccccgct gctccgccgc tgggtacggt ggttccgcgc 240
ctcggacgcg cccgtgcggg ttggttggat ccgagctctg tgcagaagcg ccgccgcgac 300
acggtcggtg agcgctcttt ctggctgctg ttttcatcgc gagcttggat tcagacattc 360
ggtgccgtcc atgcaagggg tagacggatt tgggtgagga gtctattgct tcttcgatcg 420
gggattgagt gtttggtcta ccgtccttgt ttatttagct cgtcggtgtt ccagggagtt 480
cgacgtgtat gggtgtagtg tgttgggctg acaagtctga actctatttt ttttcctttc 540
tttcctcttt gcggacactt cacgttttta ttccgtgtcg cgtagaccgt acgcgagtgg 600
ttcggtttgt ttgatttcgc ccttgcgcag gcggcctcag ctgctaaagt cttgattaac 660
cccgtctaat tgcttgtatc tgcagccagt tcatctggaa agggttttat ctgttctttt 720
acaaaggttg cttttgccta ctgacgcgtg aatatcgaat agtgatgata gtatattcgc 780
gctttgcttg tacgtgtctg tactctgttg tcccttctgt tcaaagcggc aactattcat 840
ctgcgtcgaa agggaatcct tttgcagcgt gaatttgact gttcttgagc gaaatttgcc 900
gcgtttattt gagtggcgca gagagtccgc tggcttccag ccttccacga gtagccggca 960
agcgaccaga tagagggaaa aaagagaggg ttagtggtgc actggtgctt aacacctgta 1020
tttgttgtac ctgaagtttg gcatatggcc acttattctg tgccacactt accggtcatg 1080
tgcatggaaa gcgtccattc gatatgccaa gatatgaaca tgccacttaa aatgataact 1140
tgggaccagg gagccatttg caatagaggt cgcaaaaagt ttggttgcac ttcgtcctat 1200
ttgtctctca ctcactcagt cactcctatg tgctgatatg ctgtgctaag ctggcatgaa 1260
agactcttga cttcttcaga gcattgatgc caattgcaat aaaagcgttt gtttgtctcc 1320
aagatgacta ttcatcactc tatctttcgg tggtaccaaa tgcattatgg tcactctatt 1380
tgaaggtctt ttgaatttac tctgcttacc tcccccttat gctttacaga gattatatgc 1440
tttgccaata gcgtagtccc aaattatgga agccccctta gattacatgt ctgtacttct 1500
attctgaaac ttcttgtagt tatctaatgc gctggctgac agatatagga agaatatcta 1560
aatctcaaat tttctgtgag ggcctcaggg gaagcgtcct atgtagctaa atgagggagc 1620
ggttctgtgt tatctatggg tgacaatgag ctctaaattt tacactataa gatttaatga 1680
tcggatcata ttaggatcag gccctaccat tttgtgaaga agcatttgga ttgtaatcca 1740
ttaccatccc tagtgttatc ataagactgt cactagctcg tggcagagtg tatgtagatg 1800
catatttttg ctgatgtgga acagaatagg tatctgtttg catggcctgg ggaaaagttg 1860
ccaatttttc tcaatactca aattttgtct ctatgcgaaa cagtcagaag taactatagg 1920
tttgctgtat tgttactcat tgtttacttc ttaatgcttg tatcacatag aattccactg 1980
gatccagctg ctgaacgggg taccagaagg tggatttggt agtagcactg aacagcgagt 2040
ggaatttctc taatactgtc caggatcatg gttcctctct gtggtttctg tgggaaacaa 2100
aggtcaatga tctactgcag atcggatgcg gcatcattgt gcttatcatg cgaccgtagc 2160
gttcattcag ctaatgcact gtctcggcgt catagaagga cccttctttg tgatcgttgt 2220
ggtttacagc ctgcatcagt ccgatgtctt gaggacaaca catcactttg ccaaaactgt 2280
gattggaatg ggcatgatgc agcatcaggg gcttctgggc ataaaaggca ggccataaac 2340
tgttactcag ggtgcccatc atcagcagag ctttcgagaa tctggtcatt tattatcgat 2400
atcccgactg tagctgctga gcccaactgt gaggatgggc taagcatgat gacaattgat 2460
gacagtgatg tgactaatca tcacggtgct tcagatgata aacgattgtt ggaaatagct 2520
aacacagcac tcatgagtga tccaccttca cctgacaagc ttaaacctct gataggctct 2580
tcttctggag atgggtttga tgttctgcct ctagccacag atcagcctgc tggaccagtt 2640
tcagcgacac ctaaggtgcg atgtgccttt tcattttttc ctccaagaat gtttctgaac 2700
gttgtgcttt gttttttgca tgtcaaaaga cttgttgctt atggcatgca agttacgtac 2760
acatataaaa taaagaatgt tttcatatga atatagcata aacatgtagc ttggttactg 2820
tttcagtctt gcatcagcac agaaagtagt acgtggaaat tattccttag tgatgattcc 2880
cttttctcta tttaacactg cctgtctgtt ttttcctgct gagctctcaa tgcccaagta 2940
tgttcttttt acaatgaaaa ttccattttt gtaacaagtt attagataca tttgcgtcaa 3000
tggacagttg caagttgcat tggttcgtat tgtttcagat cttgtttatc accagtccct 3060
ttttaaagaa aaatatgatc tattgtcgtt gtattcttat cagatgcttg ttacatctct 3120
caggtacctt atgccagaga tgacaataag ttcaatgatg gcatgtatga agacttatgt 3180
gtggatgatg ctgacctgac attcgagaat tatgaagagc tattcggtac ctctcacatt 3240
cgaatagagg aactctttga tgacgccgga attgacagtt actttgaaat gaaggaaaca 3300
ccgccttttg atttcaatga ggtatgtact attcttctat actctttgtg attctaaatt 3360
agtgacattt taggatatca acatagtcta gaaggtgtca attcggctag ggatttctat 3420
gaaaatatgg cagttcatac aaagctaact aagtgctata aaattacttc atgtaacatg 3480
tatcttacac tgtcaaagca cacaactatc atatctgatg gccgaagtat atattttcat 3540
ttgaaatttt cctcaagctc atgcatcgtc tacaccaact tgccgagcca tcctgggacc 3600
tgggtagctt gggcccaatc cgatgacagg aacaaacctg caggggatca ctggaatcac 3660
ctccagaccc ttctccccct ctaccgggcc atcacttcgg tctgtgttgg aaatggcacg 3720
accacatcgt tctggttgga cgactggctc ccctttgacc cgatcgtgga acacctgcca 3780
gatctcgatc cgcagccatg tgacatgttg aaccaactgt tagccaggtt atgcaaactg 3840
gtgtgatcaa caacctgaga actcgcctca gtcgaactgc ccaacgggag aggccattct 3900
ccaacttgct ctgaacaacg tggatatcac tgatctgcca gatcagcgcc ggaggtcccc 3960
tcattgacag cactggcaag ttgcactccg gagcccttta cacaatgatc caatctctgt 4020
cagcccccaa cctagaggag cctgactttg tgtggaacgg ttgaagctct ttatgtggct 4080
cctcaatcaa agcaaaatca accacaaagt aagcttggtc gagaaaggtg tgattgccaa 4140
ccccatctgt gacctctgcc ttcaagcaga cgaagactgc caccacatct tcctctgacc 4200
tctggtgcca ctatgcagct tccttctggc acagcgtcgg gggtccaaat cccccctgga 4260
cctgacaacg tccaagctct gggatatcac cctcccacct gcacctgctg ccccacgaca 4320
ccagagcgct ctcgtccatc tttgctgctg ggccatttgg aaacaccgga acaacgtcgt 4380
cttcaaccaa acgcttcctt cagttcagag aatccgaaga cagtgccttg aagaagctag 4440
aattagaggc gactctagcg aaatagacgc atggtgtaat ctcttcatta gcatgtacct 4500
tgaaacaccc cctccccccc tgtgttgtaa ccccggctac cttgctgctc ctatcaatca 4560
atatattaaa atcaggtggg gacaatcgtc ccccctataa aaaaaactgt gggaaagaga 4620
gctcctgtgc ttagttcccc aacctacttg tagttggcca gggttagttt attttcttac 4680
ctcagttgtt atttatggtt tctgttaatt tcactcatca agcctgagtt caggacattt 4740
tggcacttga agtattataa gtttattttc catccataga ataccctatt tttttaacaa 4800
aactcaataa atattattat atacacaaaa agatcaaatg ttgttgcttt actaaaattc 4860
ttggtcattt tttatgtttt cagcagccca aaattgtgca gctacaatgt agatgtggta 4920
ccagctgatt gtgcgatgtc aaacacaggg gaaagggctg attccagcct ttgtattcct 4980
gttaggcagg tcagatctag tatatcccat cccttatctg gtttgactgg tgagagcagc 5040
gctggagatc accaagactg tggggtgtca ccaattctcc tcatgggcga gccaccctgg 5100
tattctcctg gtccagaagg ctcattagct ggaggaagca gagatagtgc tctcacacga 5160
tacaaggaga agaagaagaa aagaatgtaa gcacgtttaa atgtctgctt gaggttgttc 5220
tgcgcttaac attcatagat cgtggctatc tttttaaggc aaaaaaatgt ctccaacctt 5280
ctgtgtctct tgtttctagt ttcgataatg cattttcctt gcagaagtcg ctgattcacc 5340
tttccttttc acgaatttgg tcgacaggtt tgacaagaag atcagatatg cttctcgcaa 5400
ggctagggca gacgtgagga agagggtcaa gggacggttt ataaaggctg gcgaagcgta 5460
tgactatgat ccactaagtc aaactagaag ctactgagac tgctgagcct tgaatgcggc 5520
tgcttgttga tcgtccagtg tcagcctagc aaatcttcaa cggctcgtct gttgtaggtc 5580
gttgcgctac aggcaagatt actggagagc acagcgattg caaatttgca atgcacgcat 5640
cagagcctgc agttgaaata cgaaaaaaaa aggttaagaa gaggtaccaa gggttgggat 5700
gaatgaaaaa aaaggaaata cgacgcgaac ttgccggacg ccttgtggtt tggatggagc 5760
atacatattc attcttcagt tcatctgcag atgagagtga tttggatcag ctctgccgtc 5820
tgtgcgttga acagatgcag ttatgggcgc tcgtcctccg gctgtgtcta ccgctgcgtg 5880
caaggacctg cgtcggccac ggtgttcggc agtgagctgc caggatttta cagtctgggt 5940
aacagcctaa caggatcccc ttatttatta cctcccagct tgcgctctgt aacaatatta 6000
tttgtgaagc acaacattct cttgtcagga gattgttttc gatcgtgtgt ttatgtttgt 6060
agatggacgc aatattggta aaaagaagta gccgtcatga agtgtgttct tgtcggatcg 6120
catatagcac tggggatgag caggagaatc acacatattt catctggacg tcgaacctct 6180
aactattcta tgccagagta accttcttgt gctttgtca 6219
<210> 6
<211> 6229
<212> DNA
<213> Zea mays
<400> 6
cacgtcctct tccagtctcc actctccacg tgttccatcc cattctcctc cccgcgcccc 60
gtccccctcg cctcgcttat cccccggacc cggccgaccc ctgctctgct cgacgtgttg 120
gcaaaacctc ctcctagtcc tctcgcagaa ggagcttgtt ttctttaccg gcgcggcaac 180
agcgaaagct tctcgatctc tctccccgct gctccgccgc tgggtacggt ggttccgcgc 240
ctcggacgcg cccgtgcggg ttggttggat ccgagctctg tgcagaagcg ccgccgcgac 300
acggtcggtg agcgctcttt ctggctgctg ttttcatcgc gagcttggat tcagacattc 360
ggtgccgtcc atgcaagggg tagacggatt tgggtgagga gtctattgct tcttcgatcg 420
gggattgagt gtttggtcta ccgtccttgt ttatttagct cgtcggtgtt ccagggagtt 480
cgacgtgtat gggtgtagtg tgttgggctg acaagtctga actctatttt ttttcctttc 540
tttcctcttt gcggacactt cacgttttta ttccgtgtcg cgtagaccgt acgcgagtgg 600
ttcggtttgt ttgatttcgc ccttgcgcag gcggcctcag ctgctaaagt cttgattaac 660
cccgtctaat tgcttgtatc tgcagccagt tcatctggaa agggttttat ctgttctttt 720
acaaaggttg cttttgccta ctgacgcgtg aatatcgaat agtgatgata gtatattcgc 780
gctttgcttg tacgtgtctg tactctgttg tcccttctgt tcaaagcggc aactattcat 840
ctgcgtcgaa agggaatcct tttgcagcgt gaatttgact gttcttgagc gaaatttgcc 900
gcgtttattt gagtggcgca gagagtccgc tggcttccag ccttccacga gtagccggca 960
agcgaccaga tagagggaaa aaagagaggg ttagtggtgc actggtgctt aacacctgta 1020
tttgttgtac ctgaagtttg gcatatggcc acttattctg tgccacactt accggtcatg 1080
tgcatggaaa gcgtccattc gatatgccaa gatatgaaca tgccacttaa aatgataact 1140
tgggaccagg gagccatttg caatagaggt cgcaaaaagt ttggttgcac ttcgtcctat 1200
ttgtctctca ctcactcagt cactcctatg tgctgatatg ctgtgctaag ctggcatgaa 1260
agactcttga cttcttcaga gcattgatgc caattgcaat aaaagcgttt gtttgtctcc 1320
aagatgacta ttcatcactc tatctttcgg tggtaccaaa tgcattatgg tcactctatt 1380
tgaaggtctt ttgaatttac tctgcttacc tcccccttat gctttacaga gattatatgc 1440
tttgccaata gcgtagtccc aaattatgga agccccctta gattacatgt ctgtacttct 1500
attctgaaac ttcttgtagt tatctaatgc gctggctgac agatatagga agaatatcta 1560
aatctcaaat tttctgtgag ggcctcaggg gaagcgtcct atgtagctaa atgagggagc 1620
ggttctgtgt tatctatggg tgacaatgag ctctaaattt tacactataa gatttaatga 1680
tcggatcata ttaggatcag gccctaccat tttgtgaaga agcatttgga ttgtaatcca 1740
ttaccatccc tagtgttatc ataagactgt cactagctcg tggcagagtg tatgtagatg 1800
catatttttg ctgatgtgga acagaatagg tatctgtttg catggcctgg ggaaaagttg 1860
ccaatttttc tcaatactca aattttgtct ctatgcgaaa cagtcagaag taactatagg 1920
tttgctgtat tgttactcat tgtttacttc ttaatgcttg tatcacatag aattccactg 1980
gatccagctg ctgaacgggg taccagaagg tggatttggt agtagcactg aacagcgagt 2040
ggaatttctc taatactgtc caggatcatg gttcctctct gtggtttctg tgggaaacaa 2100
aggtcaatga tctactgcag atcggatgcg gcatcattgt gcttatcatg cgaccgtagc 2160
gttcattcag ctaatgcact gtctcggcgt catagaagga cccttctttg tgatcgttgt 2220
ggtttacagc ctgcatcagt ccgatgtctt gaggacaaca catcactttg ccaaaactgt 2280
gattggaatg ggcatgatgc agcatcaggg gcttctgggc ataaaaggca ggccataaac 2340
tgttactcag ggtgcccatc atcagcagag ctttcgagaa tctggtcatt tattatcgat 2400
atcccgactg tagctgctga gcccaactgt gaggatgggc taagcatgat gacaattgat 2460
gacagtgatg tgactaatca tcacggtgct tcagatgata aacgattgtt ggaaatagct 2520
aacacagcac tcatgagtga tccaccttca cctgacaagc ttaaacctct gataggctct 2580
tcttctggag atgggtttga tgttctgcct ctagccacag atcagcctgc tggaccagtt 2640
tcagcgacac ctaaggtgcg atgtgccttt tcattttttc ctccaagaat gtttctgaac 2700
gttgtgcttt gttttttgca tgtcaaaaga cttgttgctt atggcatgca agttacgtac 2760
acatataaaa taaagaatgt tttcatatga atatagcata aacatgtagc ttggttactg 2820
tttcagtctt gcatcagcac agaaagtagt acgtggaaat tattccttag tgatgattcc 2880
cttttctcta tttaacactg cctgtctgtt ttttcctgct gagctctcaa tgcccaagta 2940
tgttcttttt acaatgaaaa ttccattttt gtaacaagtt attagataca tttgcgtcaa 3000
tggacagttg caagttgcat tggttcgtat tgtttcagat cttgtttatc accagtccct 3060
ttttaaagaa aaatatgatc tattgtcgtt gtattcttat cagatgcttg ttacatctct 3120
caggtacctt atgccagaga tgacaataag ttcaatgatg gcatgtatga agacttatgt 3180
gtggatgatg ctgacctgac attcgagaat tatgaagagc tattcggtac ctctcacatt 3240
cgaatagagg aactctttga tgacgccgga attgacagtt actttgaaat gaaggaaaca 3300
ccgccttttg atttcaatga ggtatgtact attcttctat actctttgtg attctaaatt 3360
agtgacattt taggatatca acatagtcta gaaggtgtca attcggctag ggatttctat 3420
gaaaatatgg cagttcatac aaagctaact aagtgctata aaattacttc atgtaacatg 3480
tatcttacac tgtcaaagca cacaactatc atatctgatg gccgaagtat atattttcat 3540
ttgaaatttt cctcaagctc atgcatcgtc tacaccaact tgccgagcca tcctgggacc 3600
tgggtagctt gggcccaatc cgatgacagg aacaaacctg caggggatca ctggaatcac 3660
ctccagaccc ttctccccct ctaccgggcc atcacttcgg tctgtgttgg aaatggcacg 3720
accacatcgt tctggttgga cgactggctc ccctttgacc cgatcgtgga acacctgcca 3780
gatctcgatc cgcagccatg tgacatgttg aaccaactgt tagccaggtt atgcaaactg 3840
gtgtgatcaa caacctgaga actcgcctca gtcgaactgc ccaacgggag aggccattct 3900
ccaacttgct ctgaacaacg tggatatcac tgatctgcca gatcagcgcc ggaggtcccc 3960
tcattgacag cactggcaag ttgcactccg gagcccttta cacaatgatc caatctctgt 4020
cagcccccaa cctagaggag cctgactttg tgtggaacgg ttgaagctct ttatgtggct 4080
cctcaatcaa agcaaaatca accacaaagt aagcttggtc gagaaaggtg tgattgccaa 4140
ccccatctgt gacctctgcc ttcaagcaga cgaagactgc caccacatct tcctctgacc 4200
tctggtgcca ctatgcagct tccttctggc acagcgtcgg gggtccaaat cccccctgga 4260
cctgacaacg tccaagctct gggatatcac cctcccacct gcacctgctg ccccacgaca 4320
ccagagcgct ctcgtccatc tttgctgctg ggccatttgg aaacaccgga acaacgtcgt 4380
cttcaaccaa acgcttcctt cagttcagag aatccgaaga cagtgccttg aagaagctct 4440
ggagatgtag aattagaggc gactctagcg aaatagacgc atggtgtaat ctcttcatta 4500
gcatgtacct tgaaacaccc cctccccccc tgtgttgtaa ccccggctac cttgctgctc 4560
ctatcaatca atatattaaa atcaggtggg gacaatcgtc ccccctataa aaaaaactgt 4620
gggaaagaga gctcctgtgc ttagttcccc aacctacttg tagttggcca gggttagttt 4680
attttcttac ctcagttgtt atttatggtt tctgttaatt tcactcatca agcctgagtt 4740
caggacattt tggcacttga agtattataa gtttattttc catccataga ataccctatt 4800
tttttaacaa aactcaataa atattattat atacacaaaa agatcaaatg ttgttgcttt 4860
actaaaattc ttggtcattt tttatgtttt cagcagccca aaattgtgca gctacaatgt 4920
agatgtggta ccagctgatt gtgcgatgtc aaacacaggg gaaagggctg attccagcct 4980
ttgtattcct gttaggcagg tcagatctag tatatcccat cccttatctg gtttgactgg 5040
tgagagcagc gctggagatc accaagactg tggggtgtca ccaattctcc tcatgggcga 5100
gccaccctgg tattctcctg gtccagaagg ctcattagct ggaggaagca gagatagtgc 5160
tctcacacga tacaaggaga agaagaagaa aagaatgtaa gcacgtttaa atgtctgctt 5220
gaggttgttc tgcgcttaac attcatagat cgtggctatc tttttaaggc aaaaaaatgt 5280
ctccaacctt ctgtgtctct tgtttctagt ttcgataatg cattttcctt gcagaagtcg 5340
ctgattcacc tttccttttc acgaatttgg tcgacaggtt tgacaagaag atcagatatg 5400
cttctcgcaa ggctagggca gacgtgagga agagggtcaa gggacggttt ataaaggctg 5460
gcgaagcgta tgactatgat ccactaagtc aaactagaag ctactgagac tgctgagcct 5520
tgaatgcggc tgcttgttga tcgtccagtg tcagcctagc aaatcttcaa cggctcgtct 5580
gttgtaggtc gttgcgctac aggcaagatt actggagagc acagcgattg caaatttgca 5640
atgcacgcat cagagcctgc agttgaaata cgaaaaaaaa aggttaagaa gaggtaccaa 5700
gggttgggat gaatgaaaaa aaaggaaata cgacgcgaac ttgccggacg ccttgtggtt 5760
tggatggagc atacatattc attcttcagt tcatctgcag atgagagtga tttggatcag 5820
ctctgccgtc tgtgcgttga acagatgcag ttatgggcgc tcgtcctccg gctgtgtcta 5880
ccgctgcgtg caaggacctg cgtcggccac ggtgttcggc agtgagctgc caggatttta 5940
cagtctgggt aacagcctaa caggatcccc ttatttatta cctcccagct tgcgctctgt 6000
aacaatatta tttgtgaagc acaacattct cttgtcagga gattgttttc gatcgtgtgt 6060
ttatgtttgt agatggacgc aatattggta aaaagaagta gccgtcatga agtgtgttct 6120
tgtcggatcg catatagcac tggggatgag caggagaatc acacatattt catctggacg 6180
tcgaacctct aactattcta tgccagagta accttcttgt gctttgtca 6229

Claims (12)

1. The application of the ZmCOL14 gene in the regulation of the plant height and/or ear height traits of corn is characterized in that the nucleic acid sequence of the gene is shown as SEQ ID No. 1.
2. The application of protein overexpression in reducing the traits of the plant height and/or the ear height of corn is characterized in that the amino acid sequence of the protein is shown as SEQ ID No. 3.
3. Use of overexpression of a nucleic acid encoding the protein according to claim 2 for reducing the plant height and/or panicle height of maize.
4. The use of claim 3, wherein the nucleic acid sequence is as set forth in SEQ ID No. 2.
5. Use of a gene expression cassette for reducing the plant height and/or ear height trait in maize, wherein the gene expression cassette comprises a nucleic acid according to any one of claims 3 to 4.
6. The use of claim 5, wherein the nucleic acid in the gene expression cassette is operably linked to the pZmUBI promoter, the 3 XFlag tag and the nos terminator.
7. The use of claim 6, wherein the gene expression cassette has the sequence shown in SEQ ID No. 4.
8. The application of an expression vector in reducing the plant height and/or ear height of corn, which is characterized in that the expression vector contains the expression cassette of any one of claims 5-7.
9. Use of a host cell for reducing maize plant height and/or ear height traits, wherein said host cell comprises the expression vector of claim 8.
10. The use of claim 9, wherein the host cell is an agrobacterium cell.
11. A method for delaying the flowering period of corn and reducing the plant height and ear height of corn, characterized in that corn is transformed with the expression vector of claim 8 or the host cell of any one of claims 9 to 10 to obtain transgenic corn; screening materials with delayed tasseling period, spinning period and pollen scattering period and reduced plant height and ear height.
12. The application of the maize mutant gene in advancing maize flowering period and improving maize plant height and ear position height under long-day condition is characterized in that the mutant gene sequence is shown as any one of SEQ ID No.5 or SEQ ID No. 6.
CN202011480563.7A 2020-12-15 2020-12-15 Gene ZmCOL14 for controlling plant height and ear position height of corn and application thereof Active CN112500463B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011480563.7A CN112500463B (en) 2020-12-15 2020-12-15 Gene ZmCOL14 for controlling plant height and ear position height of corn and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011480563.7A CN112500463B (en) 2020-12-15 2020-12-15 Gene ZmCOL14 for controlling plant height and ear position height of corn and application thereof

Publications (2)

Publication Number Publication Date
CN112500463A CN112500463A (en) 2021-03-16
CN112500463B true CN112500463B (en) 2022-04-01

Family

ID=74972172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011480563.7A Active CN112500463B (en) 2020-12-15 2020-12-15 Gene ZmCOL14 for controlling plant height and ear position height of corn and application thereof

Country Status (1)

Country Link
CN (1) CN112500463B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395580B (en) * 2022-03-02 2024-02-27 华中农业大学 Gene for controlling maize plant height
CN115160424B (en) * 2022-05-10 2024-05-24 华中农业大学 Application of Zm00001d022481 gene in maize plant height development
CN117447575B (en) * 2023-12-19 2024-03-08 中国农业大学 Application of deep root protein in specific regulation and control of corn root included angle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906267A (en) * 2010-01-06 2013-01-30 先锋国际良种公司 Identification of diurnal rhythms in photosynthetic and non-photosynthetic tissues from zea mays and use in improving crop plants
CN103589736A (en) * 2012-03-05 2014-02-19 南京农业大学 Group of genes DTH2 for controlling rice heading period and haplotype and application of genes DTH2
CN110079534A (en) * 2019-04-04 2019-08-02 华南农业大学 Regulate and control gene, promoter and its application in corn florescence
CN110256548A (en) * 2019-07-04 2019-09-20 中国农业科学院生物技术研究所 ZmELF3.1 albumen and its afunction mutant and application with regulation plant blossom time function
WO2019204266A1 (en) * 2018-04-18 2019-10-24 Pioneer Hi-Bred International, Inc. Interactors and targets for improving plant agronomic characteristics
CN111172173A (en) * 2020-02-21 2020-05-19 未米生物科技(江苏)有限公司 Method for reducing plant height of corn or delaying flowering
CN111172171A (en) * 2020-02-04 2020-05-19 未米生物科技(江苏)有限公司 Gene for controlling plant height and flowering phase of corn and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014665A2 (en) * 2007-07-19 2009-01-29 Monsanto Technology, Llc Transgenic plants with enhanced agronomic traits
US20170114356A1 (en) * 2015-02-20 2017-04-27 E I Du Pont De Nemours And Company Novel alternatively spliced transcripts and uses thereof for improvement of agronomic characteristics in crop plants

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906267A (en) * 2010-01-06 2013-01-30 先锋国际良种公司 Identification of diurnal rhythms in photosynthetic and non-photosynthetic tissues from zea mays and use in improving crop plants
CN103589736A (en) * 2012-03-05 2014-02-19 南京农业大学 Group of genes DTH2 for controlling rice heading period and haplotype and application of genes DTH2
WO2019204266A1 (en) * 2018-04-18 2019-10-24 Pioneer Hi-Bred International, Inc. Interactors and targets for improving plant agronomic characteristics
CN110079534A (en) * 2019-04-04 2019-08-02 华南农业大学 Regulate and control gene, promoter and its application in corn florescence
CN110256548A (en) * 2019-07-04 2019-09-20 中国农业科学院生物技术研究所 ZmELF3.1 albumen and its afunction mutant and application with regulation plant blossom time function
CN111172171A (en) * 2020-02-04 2020-05-19 未米生物科技(江苏)有限公司 Gene for controlling plant height and flowering phase of corn and application thereof
CN111172173A (en) * 2020-02-21 2020-05-19 未米生物科技(江苏)有限公司 Method for reducing plant height of corn or delaying flowering

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Genome-wide analysis of maize CONSTANS-LIKE gene family and expression profiling under light/dark and abscisic acid treatment";Nannan Song 等;《gene》;20180613;第673卷;第1-11页 *
"High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize";Hai-Jun Liu 等;《The plant cell》;20200225;第32卷(第5期);第1397-1413页 *
"Portrait of a genus: the genetic diversity of Zea";Lu Chen 等;《biorxiv》;20210409;https://www.biorxiv.org/content/10.1101/2021.04.07.438828v1 *
"PREDICTED: Zea mays uncharacterized LOC100193195 (LOC100193195), transcript variant X2, mRNA";NCBI;《genbank》;20200831;ACCESSION NO.XM_008678308 *
"ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT";Minliang Jin 等;《J Integr Plant Biol》;20180314;第60卷(第6期);第465-480页 *
"抑制ZmCol3基因表达调控玉米开花期";贾伟 等;《玉米科学》;20171231;第25卷(第6期);第28-33页 *
"玉米开花期性状的QTL及杂种优势位点定位";杨慧丽 等;《作物学报》;20170531;第43卷(第5期);第678-690页 *
"玉米株高主效QTL qPH3.05精细定位及候选基因预测";徐远城;《中国优秀硕士学位论文全文数据库(电子期刊) 农业科技辑》;20180315(第3期);D047-86 *
"玉米泛转录组的构建及玉米开花抑制因子ZmCOL3的功能解析";金敏亮;《中国博士学位论文全文数据库(电子期刊) 农业科技辑》;20190115(第1期);D047-87 *

Also Published As

Publication number Publication date
CN112500463A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
CN112500463B (en) Gene ZmCOL14 for controlling plant height and ear position height of corn and application thereof
CN111763682B (en) Application of ZmSBP12 gene in regulation of drought resistance, plant height and spike height of corn
CN110862993B (en) Gene ZKM89 for controlling plant height and ear position height of corn and application thereof
CN111172173B (en) Method for reducing plant height of corn or delaying flowering
CN110079534B (en) Gene and promoter for regulating and controlling flowering period of corn and application of gene and promoter
CN111235180A (en) Method for shortening flowering phase of corn
CN110066824B (en) Artificial base editing system for rice
CN110903368B (en) Gene for controlling female character of corn, kit for creating female sterile line of corn, mutant genotype and method
CN110592134A (en) Application of SDG40 gene or coding protein thereof
CN110862440B (en) Gene ZKM465 for controlling corn plant height and application thereof
CN114230648B (en) Application of rice gene PANDA in improving plant yield
CN112662687B (en) Method, kit and gene for delaying flowering phase of corn
CN115466747B (en) Glycosyltransferase ZmKOB1 gene and application thereof in regulation and control of maize female ear set character or development
CN112646820B (en) Gene and method for changing flowering period of corn
CN116064568A (en) Alfalfa MsASG166 gene and application thereof in improving drought tolerance of plants
CN114395580A (en) Gene for controlling plant height of corn
CN111172171B (en) Gene for controlling plant height and flowering phase of corn and application thereof
CN110862994B (en) Gene ZKM76 for controlling corn plant height and ear position and application thereof
CN112646015B (en) Gene and method for changing flowering period of corn
CN112646014B (en) Gene and method for changing flowering period of corn
CN112646013B (en) Corn flowering phase gene and application thereof
CN112661823B (en) Gene and method for changing flowering period of corn
CN112724216B (en) Gene and method for changing flowering period of corn
CN112646016B (en) Gene and method for changing flowering period of corn
CN112724215B (en) Gene and method for changing flowering period of corn

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant