CN112500255A - 一种1,3-二取代茚类化合物的合成方法 - Google Patents

一种1,3-二取代茚类化合物的合成方法 Download PDF

Info

Publication number
CN112500255A
CN112500255A CN202011410496.1A CN202011410496A CN112500255A CN 112500255 A CN112500255 A CN 112500255A CN 202011410496 A CN202011410496 A CN 202011410496A CN 112500255 A CN112500255 A CN 112500255A
Authority
CN
China
Prior art keywords
reaction
formula
compound
substituents
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011410496.1A
Other languages
English (en)
Other versions
CN112500255B (zh
Inventor
成江
王志鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN202011410496.1A priority Critical patent/CN112500255B/zh
Publication of CN112500255A publication Critical patent/CN112500255A/zh
Application granted granted Critical
Publication of CN112500255B publication Critical patent/CN112500255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/2072Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by condensation
    • C07C1/2074Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by condensation of only one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/08One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种1,3‑二取代茚类化合物的合成方法,该方法在TsNHNH2存在下和布朗斯台德酸促进下,2‑(1‑芳基乙烯基)苯乙酮类底物的酮羰基和烯基经分子内碳正离子环化,以制备获得各种复杂和多样的1,3‑二取代茚类化合物。该方法适用于活性更低且位阻更大的酮类底物、不使用金属催化剂、仅在布朗斯台德酸促进下即可顺利进行,该方法同样也适用于醛类底物,较之现有技术已有合成方法具有更加宽泛的底物范围,尤其是该合成策略可以便捷地获得1,3‑二取代茚类化合物。

Description

一种1,3-二取代茚类化合物的合成方法
技术领域
本申请属于有机合成技术领域,具体涉及一种1,3-二取代茚类化合物的合成方法。
背景技术
近年来,N-对甲苯磺酰腙类化合物在有机合成中的应用得到了广泛关注,其在各类过渡金属催化或无金属催化的有机反应中作为关键构筑单元得到了广泛运用,在某些情况下,N-对甲苯磺酰腙被证明是理想的重氮或卡宾前体。例如,N-对甲苯磺酰腙与乙烯基类底物的分子间反应可以便捷地制备获得环丙烷类的目标产物(参见(a)J.Am.Chem.Soc.2010,132,11179.(b)Eur.J.Org.Chem.2012,2012,2312.(c)RSCAdv.2014,4,38425.(d)J.Org.Chem.2015,4,1144.(e)Synlett 2015,26,960.(f)Chem.Commun.2016,52,3677.(g)Org.Lett.2016,18,6448.(h)Org.Lett.2016,18,1470.(i)J.Org.Chem.2017,82,12746.(j)Tetrahedron Lett.2017,58,3003.(k)Org.Lett.2016,18,1470.)。
对于分子内反应的类型,de Bruin等报道了钴催化条件下,通过烯基C-H键的插入同时形成卡宾中间体的自由基途径合成茚类化合物(参见J.Am.Chem.Soc.2016,138,8968.)。随后,Wang等报道了铑(II)或铜(I)催化的分子内卡宾插入烯基C-H键合成茚类化合物的方法(参见Angew.Chem.Int.Ed.2017,56,16013.)。酮基N-对甲苯磺酰腙和烯基的分子内反应可以将官能团引入至茚的1号位进而可以获得复杂和多样的茚类化合物。尽管如此,以往并没有任何此类研究或报道,其原因至少在于该类底物比醛类底物的活化程度低和位阻更大。为了克服该缺陷,有必要提供一种基于不同反应机理的合成策略。
碱诱导的N-对甲苯磺酰腙在质子溶剂条件下制备烯烃的反应(Shapiro反应)涉及了碳正离子机理。事实上,N-对甲苯磺酰腙也是亲电试剂,在一系列有机反应中作为碳正离子和烷基化试剂。基于对N-对甲苯磺酰腙的化学性质研究,促使发明人课题组进一步展开对于酮基和烯基的分子内正离子环化的可行性试验。在本发明中,公开了一种无金属催化下苯乙酮N-对甲苯磺酰腙类化合物和烯基的分子内反应,在TsNHNH2存在下和布朗斯台德酸促进下,合成多取代茚类化合物。与前述醛类N-对甲苯磺酰腙类底物与烯基的反应形成鲜明对比的是,该方法的特征在于:1)采用活性较低的反应底物,对合成多取代茚的位阻更大,提高了产物的复杂性和多样性;2)反应在酸性条件下进行而不是在碱性条件下进行;3)涉及碳正离子的不同的反应机理。
发明内容
本发明的目的在于克服现有技术的不足,提供一种1,3-二取代茚类化合物的合成方法,该方法在TsNHNH2存在下和布朗斯台德酸促进下,2-(1-芳基乙烯基)苯乙酮类底物的酮羰基和烯基经分子内碳正离子环化,以制备获得各种复杂和多样的1,3-二取代茚类化合物。该方法适用于活性更低且位阻更大的酮类底物、不使用金属催化剂、仅在布朗斯台德酸促进下即可顺利进行,该方法同样也适用于醛类底物,较之现有技术已有合成方法具有更加宽泛的底物范围,尤其是该合成策略可以便捷地获得1,3-二取代茚类化合物。
本发明提供的一种1,3-二取代茚类化合物的合成方法,包括如下步骤:
向干燥的、配备磁力搅拌子的Schlenk封管反应器中,依次加入式1所示的2-(1-芳基乙烯基)苯乙酮类底物,TsNHNH2,布朗斯台德酸催化剂和有机溶剂。随后将反应混合物加热搅拌反应,反应完全后,经后处理得到式2所示的1,3-二取代茚类化合物。
反应式如下:
Figure BDA0002814692850000031
在上述反应式中,R1表示所连接苯环上的一个或多个取代基,所述多个是指两个、三个或四个,各个R1取代基彼此独立地选自氢、卤素、C1-C6烷基、C1-C6烷氧基。
R2选自取代或未取代的C6-C20芳基,其中所述取代或未取代的中的取代基选自卤素、C1-C6烷基、C1-C6烷氧基。
R3选自氢、C1-C6烷基、C3-C6环烷基、C6-C20芳基、C6-C20芳基-C1-C6烷基。
优选地,R1表示所连接苯环上的一个或多个取代基,各个R1取代基彼此独立地选自氢、氟、氯、溴、碘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、甲氧基、乙氧基。
R2选自取代或未取代的苯基,其中所述取代或未取代的中的取代基选自氟、氯、溴、碘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、甲氧基、乙氧基。
R3选自氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、环丙基、环丁基、环戊基、环己基、苯基、苄基。
最优选地,式1化合物选自如下式1a-1t的化合物:
Figure BDA0002814692850000041
根据本发明前述的合成方法,其中,所述布朗斯台德酸催化剂选自
Figure BDA0002814692850000042
根据本发明前述的合成方法,其中,所述有机溶剂选自甲醇、乙醇、二氧六环、四氢呋喃、1,2-二氯乙烷、乙腈中的任意一种。优选地,所述有机溶剂选自甲醇。
根据本发明前述的合成方法,其中,所述反应的反应温度为60-80℃,优选为80℃。所述反应的反应时间为4-12h,优选为6h。
根据本发明前述的合成方法,其中,所述反应在空气气氛或惰性气氛下进行,优选为在惰性气氛下进行。所述惰性气氛为氮气气氛或氩气气氛,优选为氮气气氛。
根据本发明前述的合成方法,其中,式1所示的化合物:TsNHNH2
Figure BDA0002814692850000051
的投料摩尔比为1:(1.05~3):(0.1~1);优选地,式1所示的化合物:TsNHNH2
Figure BDA0002814692850000052
的投料摩尔比为1:2:0.5。
根据本发明前述的合成方法,其中,所述的后处理操作如下:蒸馏除去溶剂,残余物用石油醚作为洗脱溶剂经硅胶柱层析分离得到式2所示的1,3-二取代茚类化合物。
根据本发明前述的合成方法,所述反应的反应机理如下式所示:
Figure BDA0002814692850000053
较之现有技术,本发明的方法取得了如下的有益效果:
1)本发明的方法在TsNHNH2存在下和布朗斯台德酸促进下,2-(1-芳基乙烯基)苯乙酮类底物的酮羰基和烯基经分子内碳正离子环化,可以便捷地制备获得各种复杂和多样的1,3-二取代茚类化合物。
2)本发明的方法适用于活性更低且位阻更大的酮类底物,不使用金属催化剂,仅在布朗斯台德酸促进下即可顺利进行,该方法同样也适用于醛类底物,较之现有技术已有合成方法具有更加宽泛的底物范围。
具体实施方式
以下结合具体实施例,对本发明作进一步的详述。在下文中,如无特殊说明,所使用的方法及操作均是本领域的常规方法/操作,所使用的原料/试剂均可以由常规的商业途径购买获得和/或经过已知的有机合成方法制备获得。
实施例1-16反应条件优化实施例
以式1a所示的2-(1-苯基乙烯基)苯乙酮为模板,在TsNHNH2存在下,探究不同反应条件下对于式2a的茚类目标产物产率的影响(见反应式一)。结果如表1所示:
以实施例11为例,反应的典型试验操作如下:
Figure BDA0002814692850000061
向干燥的、配备磁力搅拌的Schlenk封管反应器中,依次加入式1a所示的2-(1-苯基乙烯基)苯乙酮(0.1mmol),TsNHNH2(0.2mmol),
Figure BDA0002814692850000062
(0.5equiv),和MeOH(2.0mL)。将反应器抽真空至-0.1MPa随后充入N2(1atm),如此反复三次,将反应混合物在80℃油浴搅拌反应6小时,反应完全后,蒸馏除去溶剂,残余物用石油醚作为洗脱溶剂经硅胶柱层析分离得到式2a的目标产物。(
Figure BDA0002814692850000063
16.7mg,81%yield)白色油状液体。1H NMR(CDCl3,400MHz)δ7.67-7.59(m,3H),7.55-7.47(m,3H),7.44-7.28(m,3.9H),7.25-7.14(m,0.72H),6.56(d,J=2.0Hz,1H),6.32-6.30(m,0.18H),4.60-4.58(m,0.18H),3.68-3.61(m,1H),2.26(s,0.54H),1.45(d,J=7.56Hz,3H).13C NMR(100MHz,CDCl3)δ150.4,145.6,143.5,143.2,140.3,139.8,138.3,136.2,134.7,128.8,128.7,128.0,127.9,127.8,126.8,126.5,125.4,125.3,123.9,123.2,120.6,119.2,55.3,44.2,16.4,13.2;HRMS(EI)m/z calcd for C16H14 +[M+]:206.1090;found:206.1092。
表1:
Figure BDA0002814692850000071
a反应条件:1a(0.1mol),TsNHNH2(0.2mmol),溶剂(2.0mL),在N2气氛下反应6h,分离产率.b在空气气氛下反应.cTsNHNH2(0.12mmol)。
反应底物拓展试验
在获得了最佳反应条件的基础上(实施例11),发明人进一步探究了最佳反应条件对于不同取代基反应底物的适应性,即通过改变反应底物结构,按照实施例11的方法进行反应,制备获得了一系列不同的1,3-二取代茚类化合物,反应式如下,结果如下:
Figure BDA0002814692850000081
产物结构表征数据如下:
化合物2b:
Figure BDA0002814692850000082
1H NMR(CDCl3,400MHz)δ7.68-7.59(m,3H),7.54-7.47(m,3H),7.44-7.27(m,3.9H),7.25-7.14(m,0.72H),6.64(d,J=2.2Hz,1H),6.32-6.30(m,0.18H),4.60-4.58(m,0.18H),3.58-3.53(m,1H),2.68-2.64(m,0.36H),2.14-2.04(m,1H),1.74-1.64(m,1H),1.39-1.34(m,0.54H),1.10-1.04(m,3H);
13C NMR(75MHz,CDCl3)δ148.8,145.9,145.0,144.1,143.5,140.3,136.1,136.0,132.6,129.1,128.6,128.6,127.8,127.7,127.6,126.7,126.6,126.4,125.2,125.0,123.9,123.3,120.3,119.1,55.1,50.8,24.8,20.7,12.4,11.9;
HRMS(EI)m/z calcd for C17H16 +[M+]:220.1247;found:220.1248。
化合物2c:
Figure BDA0002814692850000091
1H NMR(CDCl3,400MHz)δ7.63-7.53(m,3H),7.50-7.44(m,3H),7.42-7.36(m,1.5H),7.32-7.28(m,2H),7.25-7.19(m,2.5H),7.18-7.15(m,0.5H),7.13-7.09(m,1H),6.56(d,J=2.0Hz,1H),6.26-6.25(m,0.5H),4.53(s,0.5H),3.54-3.52(m,1H),3.03-2.95(m,0.5H),2.48-2.39(m,1H),1.34(d,J=7.0Hz,1.5H),1.32(d,J=6.4Hz,1.5H),1.20(d,J=6.8Hz,3H),0.69(d,J=6.8Hz,3H);
13C NMR(75MHz,CDCl3)δ150.8,149.3,148.0,144.9,144.4,144.0,140.3,136.2,133.9,131.2,128.6,128.5,127.8,127.7,127.6,126.6,126.5,126.3,125.1,124.9,124.0,123.4,120.2,119.6,55.8,54.9,30.5,26.9,21.8,17.8;
HRMS(EI)m/z calcd for C18H18 +[M+]:234.1403;found:234.1405.
化合物2d:
Figure BDA0002814692850000092
1H NMR(CDCl3,300MHz)δ7.66-7.59(m,3.5H),7.55-7.35(m,4.5H),7.34-7.28(m,2H),7.25-7.08(m,3.5H),6.61(d,J=1.9Hz,1H),6.26(d,J=1.9Hz,0.5H),4.50(d,J=2.1Hz,0.5H),3.39(d,J=2.0Hz,1H),1.43(s,4.5H),1.10(s,9H);
13C NMR(75MHz,CDCl3)δ153.0,150.2,146.8,144.5,144.4,143.4,140.3,136.2,135.3,131.9,128.6,128.5,128.5,127.8,127.8,127.6,126.7,126.3,126.1,125.2,124.7,124.5,124.2,122.3,120.2,60.2,54.4,34.7,33.2,29.5,28.7;
HRMS(ESI)m/z calcd for C19H21 +[M+H+]:249.1638;found:249.1638。
化合物2e:
Figure BDA0002814692850000101
1H NMR(CDCl3,400MHz)δ7.70-7.67(m,3H),7.50-7.39(m,3H),7.36-7.26(m,5H),7.25-7.18(m,3H),6.66(d,J=2.2Hz,1H),4.73(d,J=2.2Hz,1H);
13C NMR(75MHz,CDCl3)δ149.3,144.6,143.2,139.5,136.3,135.6,128.7,128.6,128.0,127.8,127.8,126.9,126.7,125.6,124.3,120.6,55.4;
HRMS(EI)m/z calcd for C21H16 +[M+]:268.1247;found:268.1248。
化合物2f:
Figure BDA0002814692850000102
1H NMR(CDCl3,400MHz)δ7.68-7.60(m,3H),7.56-7.48(m,3H),7.44-7.29(m,3.5H),7.23-7.15(m,0.4H),6.66(s,1H),6.31(s,0.1H),4.60(s,0.1H),3.63-3.59(m,1H),2.67-2.62(m,0.2H),1.67-1.47(m,3.4H),1.42-1.36(m,4H),0.98-0.94(m,3.3H);
13C NMR(100MHz,CDCl3)δ149.3,145.2,144.6,144.1,143.5,140.4,136.6,136.3,133.6,128.8,128.7,128.0,127.9,127.7,126.8,126.7,126.5,125.4,125.2,124.1,123.4,120.5,119.4,55.3,49.6,32.4,32.1,32.0,27.8,27.7,22.8,14.3;
HRMS(EI)m/z calcd for C20H22 +[M+]:262.1716;found:262.1715。
化合物2g:
Figure BDA0002814692850000111
1H NMR(CDCl3,400MHz)δ7.60-7.56(m,3H),7.48-7.43(m,2H),7.40-7.27(m,9.26H),7.25-7.20(m,1.54H),7.19-7.11(m,0.72H),6.49(d,J=1.9Hz,1H),6.23(s,0.18H),4.60(s,0.18H),3.97(s,0.36H),3.86-3.81(m,1H),3.27-3.21(m,1H),2.82-2.75(m,1H);
13C NMR(100MHz,CDCl3)δ148.3,144.2,143.6,141.6,140.5,136.0,135.8,129.3,129.1,128.8,128.7,128.6,128.5,128.0,127.9,127.8,126.9,126.8,126.5,126.4,125.5,125.2,124.1,123.7,120.7,119.8,55.3,51.0,38.4,34.5;
HRMS(EI)m/z calcd for C22H18 +[M+]:282.1043;found:282.1042。
化合物2h:
Figure BDA0002814692850000112
1H NMR(CDCl3,400MHz)δ7.65-7.54(m,3H),7.53-7.44(m,3H),7.41-7.28(m,3.5H),7.25-7.10(m,1.75H),6.59(d,J=2.8Hz,1H),6.25(s,0.25H),4.54(s,0.25H),3.52(d,J=3.9Hz,1H),2.68-2.62(m,0.25H),2.16-1.98(m,2.5H),1.90-1.66(m,3H),1.51-1.28(m,5H),1.21-0.95(m,3H);
13C NMR(100MHz,CDCl3)δ149.9,148.0,144.6,144.1,140.4,136.3,134.8,131.6,128.7,128.7,128.0,127.9,127.7,126.8,126.6,126.4,125.2,125.0,124.1,123.6,120.3,119.6,55.6,55.1,41.0,37.1,32.6,28.5,27.1,26.9,26.7;
HRMS(EI)m/z calcd for C21H22 +[M+]:274.1716;found:274.1716。
化合物2i:
Figure BDA0002814692850000121
1H NMR(CDCl3,300MHz)δ7.65-7.60(m,3H),7.58-7.44(m,3H),7.43-7.27(m,4.5H),7.21-7.11(m,1.2H),6.94-6.91(m,0.3H),6.63-6.62(m,0.3H),6.61-6.59(m,1H),4.63-4.61(m,0.3H),3.53(d,J=2.2Hz,1H);
13C NMR(75MHz,CDCl3)δ145.2,144.8,143.9,139.8,139.3,136.2,131.5,131.0,128.7,128.6,128.1,127.8,127.7,127.6,126.8,126.8,126.2,125.3,124.9,124.1,123.9,121.2,120.3,56.5,38.2;
HRMS(EI)m/z calcd for C15H12 +[M+]:192.0934;found:192.0930。
化合物2j:
Figure BDA0002814692850000122
1H NMR(CDCl3,400MHz)δ7.59-7.56(m,2H),7.49-7.44(m,4H),7.41-7.36(m,1H),7.31-7.22(m,2.2H),7.14-7.07(m,1.2H),6.52(d,J=2.2Hz,1H),6.33-6.31(m,0.3H),4.53-4.51(m,0.3H),3.63-3.56(m,1H),2.19(s,0.9H),1.40(d,J=7.6Hz,3H);
13C NMR(100MHz,CDCl3)δ152.1,142.8,141.6,138.4,136.4,135.6,131.4,131.2,128.84,128.8,128.0,127.8,127.7,127.0,126.6,125.2,124.8,123.7,121.4,119.6,54.9,44.1,16.2,13.0;
HRMS(EI)m/z calcd for C16H13Cl+[M+]:240.0700;found:240.0701。
化合物2k:
Figure BDA0002814692850000131
1H NMR(CDCl3,400MHz)δ7.61-7.58(m,2H),7.49-7.44(m,3H),7.41-7.36(m,1H),7.31-7.27(m,0.6H),7.25-7.09(m,2.3H),7.04-6.98(m,1.2H),6.88-6.82(m,0.3H),6.49(d,J=2.0Hz,1H),6.36-6.34(m,0.3H),4.52(s,0.3H),3.62-3.55(m,1H),2.19(s,0.9H),1.40(d,J=7.6Hz,3H);
13C NMR(100MHz,CDCl3)δ161.8(d,JC-F=242.0Hz),152.6,152.5,142.8,139.8,139.0,138.9,137.7,137.6,136.8,135.9,128.8,128.7,127.9,127.8,127.7,126.9,124.7(d,JC-F=8.9Hz),121.2(d,JC-F=8.7Hz),113.2(d,JC-F=22.5Hz),111.8(d,JC-F=22.7Hz),110.9(d,JC-F=22.9Hz),106.5(d,JC-F=23.2Hz),54.7,44.1,16.4,13.0;
HRMS(EI)m/z calcd for C16H13F+[M+]:224.0996;found:224.0997。
化合物2l:
Figure BDA0002814692850000132
1H NMR(CDCl3,400MHz)δ7.66-7.62(m,2H),7.50-7.37(m,4H),7.32-7.27(m,2H),7.25-7.21(m,1H),7.17-7.10(m,4H),6.94-6.88(m,2H),6.77-6.73(m,1H),6.44(d,J=1.8Hz,1H),6.33-6.31(m,1H),4.55-4.52(m,1H),3.89(s,3H),3.88(s,3H),3.63-3.56(m,1H),2.23(s,3H),1.42(d,J=7.6Hz,3H);
13C NMR(100MHz,CDCl3)δ159.4,158.4,152.4,147.2,143.0,141.1,140.6,139.5,136.3,136.2,136.1,128.7,128.7,127.9,127.7,127.7,126.7,124.4,121.0,111.7,110.7,109.9,105.3,55.8,55.7,54.6,44.1,16.7,13.2;
HRMS(EI)m/z calcd for C17H16O+[M+]:236.1196;found:236.1202。
化合物2m:
Figure BDA0002814692850000141
1H NMR(CDCl3,400MHz)δ7.58-7.55(m,2H),7.51-7.44(m,3H),7.41-7.36(m,2H),7.30-7.27(m,0.6H),7.25-7.18(m,1.6H),7.11-7.08(m,0.4H),6.56(d,J=2.1Hz,1H),6.27-6.25(m,0.2H),4.53-4.51(m,0.2H),3.62-3.54(m,1H),2.19(s,0.6H),1.38(d,J=7.6Hz,3H);
13C NMR(75MHz,CDCl3)δ150.4,148.4,144.8,142.7,139.6,139.1,135.3,134.9,132.4,131.3,128.7,128.7,127.9,127.7,127.6,126.9,126.8,125.0,124.2,123.9,120.7,119.9,55.0,43.8,16.1,13.0;
HRMS(EI)m/z calcd for C16H13Cl+[M+]:240.0700;found:240.0699。
化合物2n:
Figure BDA0002814692850000142
1H NMR(CDCl3,400MHz)δ7.59-7.56(m,2H),7.49-7.44(m,2H),7.42-7.37(m,2H),7.31-7.27(m,0.36H),7.25-7.22(m,1.36H),7.12-7.09(m,0.36H),7.03-6.92(m,1.36H),6.60(d,J=2.0Hz,1H),6.25-6.23(m,0.18H),4.53-4.51(m,0.18H),3.62-3.54(m,1H),2.20(s,0.54H),1.39(d,J=7.6Hz,3H);
13C NMR(100MHz,CDCl3)δ162.5(d,JC-F=240.0Hz),151.0,150.9,145.7,145.1,145.0,143.0,142.9,140.1,139.6,139.1,135.6,134.3,128.8,128.0,127.9,127.7,127.0,123.8(d,JC-F=9.2Hz),119.8(d,JC-F=8.7Hz),113.5(d,JC-F=22.5Hz),111.8(d,JC-F=22.8Hz),111.7(d,JC-F=23.3Hz),107.8(d,JC-F=23.8Hz),55.2,43.7,16.4,13.2;
HRMS(EI)m/z calcd for C16H13F+[M+]:224.0996;found:224.0994。
化合物2o:
Figure BDA0002814692850000151
1H NMR(CDCl3,300MHz)δ7.60-7.55(m,2H),7.44-7.35(m,3H),7.33-7.26(m,0.9H),7.25-7.18(m,2.3H),7.15-7.11(m,1H),7.01-6.94(m,0.9H),6.88-6.82(m,0.3H),6.41(d,J=2.1Hz,1H),6.26-6.24(m,0.3H),4.74-4.72(m,0.3H),3.68-3.59(m,1H),2.20(s,0.9H),1.39(d,J=7.6Hz,3H);
13C NMR(75MHz,CDCl3)δ156.8(d,JC-F=248.5Hz),153.7,153.6,141.9,141.8,139.5,139.4,138.1,136.3,135.6,129.1(d,JC-F=7.1Hz),128.5,128.2(d,JC-F=3.6Hz),127.9,127.6,127.5,126.8,126.7,118.9(d,JC-F=3.2Hz),115.2(d,JC-F=2.9Hz),114.1(d,JC-F=21.7Hz),112.7(d,JC-F=20.7Hz),52.8,44.6,16.3,13.0;
HRMS(EI)m/z calcd for C16H13F+[M+]:224.0996;found:224.0997。
化合物2p:
Figure BDA0002814692850000152
1H NMR(CDCl3,300MHz)δ7.69-7.64(m,2H),7.54-7.48(m,2H),7.46-7.40(m,3H),7.35-7.26(m,0.6H),6.57-6.54(m,1H),6.26-6.23(m,0.15H),4.57-4.55(m,0.15H),3.66-3.59(m,1H),2.48-2.45(m,3H),2.39-2.37(m,0.45H),2.27-2.24(m,0.45H),1.46-1.41(m,3H);
13C NMR(100MHz,CDCl3)δ147.6,143.4,138.6,136.3,136.2,135.1,133.7,128.7,128.1,127.9,127.7,127.5,126.8,126.0,124.8,122.9,121.3,118.9,55.1,43.9,21.8,16.6,13.2;
HRMS(EI)m/z calcd for C17H16 +[M+]:220.1247;found:220.1247。
化合物2q:
Figure BDA0002814692850000161
1H NMR(CDCl3,300MHz)δ7.60-7.49(m,4H),7.35-7.27(m,4.6H),7.25-7.15(m,0.6H),7.11-7.01(m,1.2H),6.51(d,J=1.8Hz,1H),6.28-6.26(m,0.3H),4.54(d,J=3.1Hz,0.3H),3.64-3.57(m,1H),2.44(s,3H),2.33(s,0.9H),2.23(s,0.9H),1.42(d,J=7.6Hz,3H);
13C NMR(100MHz,CDCl3)δ150.4,149.0,145.6,143.3,139.6,137.7,137.5,136.3,134.9,133.2,129.4,129.4,127.8,127.7,126.7,126.5,125.3,125.1,123.8,123.1,120.6,119.2,54.9,44.1,21.5,21.2,16.4,13.1;
HRMS(EI)m/z calcd for C17H16 +[M+]:220.1247;found:220.1247。
化合物2r:
Figure BDA0002814692850000162
1H NMR(CDCl3,300MHz)δ7.58-7.50(m,4H),7.46-7.43(m,2H),7.37-7.28(m,2.36H),7.26-7.19(m,0.72H),7.07-7.04(m,0.36H),6.54(d,J=2.2Hz,1H),6.25-6.23(m,0.18H),4.53-4.51(m,0.18H),3.66-3.58(m,1H),2.24(s,0.54H),1.42(d,J=7.6Hz,3H);
13C NMR(100MHz,CDCl3)δ150.3,142.8,142.4,138.7,134.6,134.2,133.5,129.3,129.2,128.9,128.9,127.0,126.6,125.5,125.5,123.8,123.3,120.3,119.3,54.5,44.3,16.3,13.2;
HRMS(EI)m/z calcd for C16H13Cl+[M+]:240.0700;found:240.0707。
化合物2s:
Figure BDA0002814692850000171
1H NMR(CDCl3,300MHz)δ7.63-7.49(m,4H),7.42-7.28(m,4.36H),7.26-7.19(m,0.72H),7.10-7.03(m,0.36H),6.56(d,J=2.2Hz,1H),6.25-6.23(m,0.18H),4.53-4.51(m,0.18H),3.66-3.59(m,1H),2.24(s,0.54H),1.42(d,J=7.6Hz,3H);
13C NMR(100MHz,CDCl3)δ145.5,137.8,137.5,134.4,133.2,129.9,129.1,125.2,123.2,123.1,123.0,122.3,122.3,121.9,121.5,121.2,120.8,120.7,119.1,118.5,115.6,114.6,45.0,39.5,11.5,8.4;
HRMS(EI)m/z calcd for C16H13Cl+[M+]:240.0700;found:240.0700。
化合物2t:
Figure BDA0002814692850000172
1H NMR(CDCl3,300MHz)δ7.53-7.47(m,2H),7.43-7.39(m,1H),7.35-7.30(m,2H),7.28-7.25(m,2H),7.20-7.15(m,1H),6.53(d,J=2.0Hz,1H),3.72-3.63(m,1H),1.43(d,J=7.6Hz,3H);
13C NMR(75MHz,CDCl3)δ149.2,143.5,140.9,140.4,135.0,133.3,131.0,129.9,128.8,126.6,126.2,125.1,122.8,120.8,44.5,16.1;
HRMS(EI)m/z calcd for C16H13Cl+[M+]:240.0700;found:240.0702。
以上所述实施例仅为发明人的经过大量的试验筛选之后确定的优选实施例,而并非本发明可行实施的穷举。对于本领域技术人员而言,在不背离本发明合成路线的前提下,对其所作出的任何显而易见的改动,都应当被认为包含在本发明的权利要求保护范围之内。

Claims (10)

1.一种1,3-二取代茚类化合物的合成方法,包括如下步骤:
向干燥的、配备磁力搅拌子的Schlenk封管反应器中,依次加入式1所示的2-(1-芳基乙烯基)苯乙酮类底物,TsNHNH2,布朗斯台德酸催化剂和有机溶剂,随后将反应混合物加热搅拌反应,反应完全后,经后处理得到式2所示的1,3-二取代茚类化合物;
反应式如下:
Figure FDA0002814692840000011
在上述反应式中,R1表示所连接苯环上的一个或多个取代基,所述多个是指两个、三个或四个,各个R1取代基彼此独立地选自氢、卤素、C1-C6烷基、C1-C6烷氧基;
R2选自取代或未取代的C6-C20芳基,其中所述取代或未取代的中的取代基选自卤素、C1-C6烷基、C1-C6烷氧基;
R3选自氢、C1-C6烷基、C3-C6环烷基、C6-C20芳基、C6-C20芳基-C1-C6烷基。
2.根据权利要求1所述的合成方法,其特征在于,R1表示所连接苯环上的一个或多个取代基,各个R1取代基彼此独立地选自氢、氟、氯、溴、碘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、甲氧基、乙氧基;
R2选自取代或未取代的苯基,其中所述取代或未取代的中的取代基选自氟、氯、溴、碘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、甲氧基、乙氧基;
R3选自氢、甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、环丙基、环丁基、环戊基、环己基、苯基、苄基。
3.根据权利要求1或2所述的合成方法,其特征在于,式1化合物选自如下式1a-1t的化合物:
Figure FDA0002814692840000021
4.根据权利要求1-3任意一项所述的合成方法,其特征在于,所述布朗斯台德酸催化剂选自
Figure FDA0002814692840000022
5.根据权利要求1-3任意一项所述的合成方法,其特征在于,所述有机溶剂选自甲醇、乙醇、二氧六环、四氢呋喃、1,2-二氯乙烷、乙腈中的任意一种。
6.根据权利要求5所述的合成方法,其特征在于,所述的有机溶剂选自甲醇。
7.根据权利要求1-3任意一项所述的合成方法,其特征在于,所述加热搅拌反应的反应温度为60-80℃,所述反应的反应时间为4-12h。
8.根据权利要求7所述的合成方法,其特征在于,所述加热搅拌反应的反应温度为80℃,所述反应的反应时间为6h。
9.根据权利要求1-3任意一项所述的合成方法,其特征在于,所述反应在空气气氛或惰性气氛下进行;优选为在惰性气氛下进行,所述惰性气氛为氮气气氛或氩气气氛,优选为氮气气氛。
10.根据权利要求1-3任意一项所述的合成方法,其特征在于,式1所示的化合物:TsNHNH2
Figure FDA0002814692840000031
的投料摩尔比为1:(1.05~3):(0.1~1);优选地,式1所示的化合物:TsNHNH2
Figure FDA0002814692840000032
的投料摩尔比为1:2:0.5。
CN202011410496.1A 2020-12-03 2020-12-03 一种1,3-二取代茚类化合物的合成方法 Active CN112500255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011410496.1A CN112500255B (zh) 2020-12-03 2020-12-03 一种1,3-二取代茚类化合物的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011410496.1A CN112500255B (zh) 2020-12-03 2020-12-03 一种1,3-二取代茚类化合物的合成方法

Publications (2)

Publication Number Publication Date
CN112500255A true CN112500255A (zh) 2021-03-16
CN112500255B CN112500255B (zh) 2022-09-20

Family

ID=74970117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011410496.1A Active CN112500255B (zh) 2020-12-03 2020-12-03 一种1,3-二取代茚类化合物的合成方法

Country Status (1)

Country Link
CN (1) CN112500255B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170006345A (ko) * 2015-07-07 2017-01-18 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
CN106866348A (zh) * 2017-01-18 2017-06-20 中国科学院上海有机化学研究所 一种多环芳烃化合物、合成方法及用途
CN108863740A (zh) * 2018-06-13 2018-11-23 南昌航空大学 一种萘酮类化合物的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170006345A (ko) * 2015-07-07 2017-01-18 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
CN106866348A (zh) * 2017-01-18 2017-06-20 中国科学院上海有机化学研究所 一种多环芳烃化合物、合成方法及用途
CN108863740A (zh) * 2018-06-13 2018-11-23 南昌航空大学 一种萘酮类化合物的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI, K ET AL.: "Synthesis of 3-Aryl-2-methoxyinden-1-one (Z)-Phenylhydrazones via Hydrobromic Acid-Mediated Cyclization of 2-(1-Aryl-2-methoxyethenyl)benzaldehyde Phenylhydrazones", 《HELVETICA CHIMICA ACTA》 *
QI ZHOU ET AL.: "Rhodium(II)- or Copper(I)-Catalyzed Formal Intramolecular Carbene Insertion into Vinylic C(sp2)−H Bonds: Access to Substituted 1H-Indenes", 《ANGEWANDTE CHEMIE-INTERNATIONAL EDITION》 *

Also Published As

Publication number Publication date
CN112500255B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
US7250510B2 (en) Transition metal complexes of N-heterocyclic carbenes, method of preparation and use in transition metal catalyzed organic transformations
CN111018708B (zh) 一种光催化下二氟烷基取代芳香酮类化合物的合成方法
Ohmiya et al. Copper-catalyzed Conjugate Additions of Alkylboranes to Aryl α, β-Unsaturated Ketones
CN110041235B (zh) 一种n-苯基-n-对甲苯磺酰基三氟乙酰胺及应用
CN112645836B (zh) 一种非均相催化剂Cu@COF-Me-M及其制备方法和应用
CN112500255B (zh) 一种1,3-二取代茚类化合物的合成方法
CN111995554B (zh) 无金属化学氧化法制备不对称有机硒醚类化合物的方法
CN108033866B (zh) 钌催化二苄基甲酮与内炔环化反应制备多芳取代萘衍生物的方法及应用
CN108383706B (zh) 一种α-芳酮或α-杂芳酮的合成方法
CN115160211A (zh) 一种异吲哚啉酮类化合物的绿色合成方法
CN110627823B (zh) 一种催化芳基胺发生脱氨基硼酸酯化或卤化的方法
CN109180446A (zh) 一种2,3-二苯基-1h-茚-1-酮衍生物的合成方法
CN111205261B (zh) 一种合成萘并吡喃-2-酮类化合物的方法
CN107629049B (zh) 一种吡啶[2,1-a]并异吲哚类化合物的合成方法
CN112442025A (zh) 一种合成咪唑并[1,2a]吡啶类化合物的方法
CN114890881B (zh) 一种简单合成烯丙基二羰基化合物的方法
CN112390831B (zh) 三碟烯环金属钯化合物及用途
CN114988994B (zh) 一种一步制备二芳基乙酮的方法
CN114605273B (zh) 一种钯催化co参与的1,4-烯炔芳构化反应合成芳胺基酚类化合物的方法
CN114315608B (zh) 一种由三苯胺制备三(4-乙炔基苯基)胺的方法
CN112047885B (zh) 一种γ-(9-吖啶)重氮乙酰乙酸酯、γ-(9-吖啶亚甲基)-β-酮酯及其制备方法
CN115197124B (zh) 碘化铵催化下基于α,β-不饱和肟酯合成多取代吡啶衍生物的方法
CN108516945B (zh) 一种邻位酯基取代的2-芳基-乙烯基磺酰氟化合物的制备方法
WO2001016057A1 (en) Coupling reactions using palladium catalysts
CN110003062B (zh) 一种n-苯基-n-对甲苯磺酰基二氟乙酰胺及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant