CN112480111A - 一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法 - Google Patents

一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法 Download PDF

Info

Publication number
CN112480111A
CN112480111A CN202011502214.0A CN202011502214A CN112480111A CN 112480111 A CN112480111 A CN 112480111A CN 202011502214 A CN202011502214 A CN 202011502214A CN 112480111 A CN112480111 A CN 112480111A
Authority
CN
China
Prior art keywords
azaindole
reaction
catalyst
aryl
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011502214.0A
Other languages
English (en)
Inventor
潘长多
袁成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN202011502214.0A priority Critical patent/CN112480111A/zh
Publication of CN112480111A publication Critical patent/CN112480111A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明公开了一种7‑氮杂吲哚取代芳基乙酸酯化合物的合成方法,涉及医药、有机化工及精细化工领域。该方法以取代的N‑芳基‑7‑氮杂吲哚化合物、α‑重氮麦氏酸及醇溶剂为原料,在以[Cp*IrCl2]2为催化剂、AgNTf2为催化剂助剂的反应体系作用下,经过简单的合成反应条件即可高得率的合成含7‑氮杂吲哚基的芳基乙酸酯类化合物,具有较广阔的应用前景。

Description

一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法
技术领域
本发明涉及医药、有机化工及精细化工领域,特别涉及到一种含有7-氮杂吲哚取代芳基乙酸酯化合物的合成方法。
背景技术
杂环结构,特别是含氮杂环结构广泛存在于天然产物、生物碱以及其他有生理活性的分子中,因此对于含氮杂环的合成及衍生化反应研究都有着重要的意义。7-氮杂吲哚(吡咯并吡啶)结构是一类重要的含氮杂环结构。含有氮杂吲哚的分子广泛应用于抗肿瘤,抗癌,抗炎症,抗微生物和抗恶性疟原虫等方面。此外,在材料科学领域,尤其是OLED、离子传感器等方面也有诸多应用。因此,对于含有7-氮杂吲哚结构化合物的合成及衍生化反应的研究具有重要的价值。
羧酸(羧酸酯)是有机分子的常见基团,具有亲水性,在有机分子中引入羧基可以大大改变其生理、药理活性。对于芳基酸的合成,有传统的芳烃氧化法,主要用于合成芳基甲酸结构,但是需要强氧化剂,条件苛刻,官能团兼容性差。芳氰水解也可以得到芳基甲酸,但是氰化反应需要用到毒性大的试剂,可操作性低。此外,芳基格氏试剂与二氧化碳的反应、Kolbe-Schmitt反应等也可以在分子中引入羧基。这些反应都是合成芳基甲酸的经典方法,而对于在分子中直接引入乙酸(乙酸酯)基的研究还较少。
重氮化合物,由于具有较高的反应活性,是一类非常重要的反应中间体。其中,重氮乙酸乙酯参与反应,在过渡金属催化作用下可以实现芳烃的乙酸乙酯化[A.Conde,G.Sabenya,M.Rodríguez,V.Postils,J.M.Luis,M.M.Díaz-Requejo,M.Costas,P.J.Pérez,Angew.Chem.Int.Ed.2016,55,6530-6534]。但是反应过程中需要加入过渡金属催化剂(铁、锰等)、复杂的四齿氮配体以及8当量的四氧基(双-3,5-三氟甲基苯基)硼酸酯。反应体系复杂,操作性不强,且常混有环加成的副产物。
因此,非常有必要发展一类新型的、官能团适用范围广的芳基乙酸酯的合成方法。如果该乙酸酯化反应发生在具有生理活性的骨架分子上,将有更大的价值。
发明内容
本发明的目的在于解决现有技术中的不足,提供一种在过渡金属催化作用下,以N-芳基-7-氮杂吲哚、α-重氮麦氏酸以及醇为原料合成含有7-氮杂吲哚取代基的芳基乙酸酯化合物的方法。在金属铱的催化作用下,实现N-芳基-7-氮杂吲哚的芳环上的C-H活化作用,接着α-重氮麦氏酸脱N2与金属配位,在醇的亲核进攻下,发生脱二氧化碳、脱丙酮反应,最后得到含有7-氮杂吲哚取代基的芳基乙酸酯结构。
本发明的技术方案为:
一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法,反应按照以下步骤进行:以N-芳基-7-氮杂吲哚化合物和α-重氮麦氏酸(5-重氮-2,2-二甲基-1,3-二恶烷-4,6-二酮)为原料,醇溶剂为溶剂和烷氧基来源,在催化体系的作用下、通过相应的反应条件即合成含7-氮杂吲哚取代基的芳基乙酸酯化合物。
进一步地,催化体系为:以[Cp*IrCl2]2(二氯(五甲基环戊二烯基)合铱二聚体)为催化剂,AgNTf2(双三氟甲烷磺酰亚胺银盐)为催化剂助剂。
进一步地,反应温度范围为室温至100℃,反应时间范围为20分钟到2小时。
进一步地,该合成方法的具体合成路线为:
Figure BDA0002843800940000021
其中,R1取代基是取代在吡啶环上的氯、溴,或者是取代在吡咯环的甲酰基;
R2是取代在苯环上的甲基、叔丁基、苯基、甲氧基、三氟甲氧基、氟、氯、溴、三氟甲基、乙氧羰基、乙酰基;
R3来自于反应物醇,其中R3所代表的取代基是甲基、乙基、异丙基、叔丁基。
进一步地,反应物N-芳基-7-氮杂吲哚的浓度为0.1-0.2mmol/mL醇溶剂。
进一步地,原料N-芳基-7-氮杂吲哚化合物和α-重氮麦氏酸的物质的量比为1:1~2.0。
进一步地,所述的催化剂[Cp*IrCl2]2的用量为2.5mol%,催化剂助剂AgNTf2的用量为10mol%。
该合成方法以α-重氮麦氏酸为乙酰基来源,与重氮乙酸乙酯相比,α-重氮麦氏酸是固体,更稳定,毒性低,储存、转移都方便,可操作性强;反应以简单醇为溶剂,毒性低,也方便回收再利用。该反应是合成含7-氮杂吲哚取代基芳基乙酸酯(以及相应羧酸)的非常有效的方法。
本发明的有益效果为:
(1)本发明公开的合成方法以α-重氮麦氏酸为乙酰基来源,简单醇分子为烷氧基来源,实现N-芳基-7-氮杂吲哚化合物的N-芳基上的C-H键活化,乙酸酯化反应,可得到一系列具有多种不同官能团的含7-氮杂吲哚的芳基乙酸酯化合物,合成原料易得,反应时间短,后处理方便,产物得率高,具有较广阔的应用前景。
(2)利用本发明公开方法合成的化合物由于分子中既有含氮杂环7-氮杂吲哚,又有芳基乙酸酯基,而酯基很容易碱性水解得到羧基或其他相关官能团,所以该合成方法也为含7-氮杂吲哚取代基的芳基乙酸结构的合成提供了一条可靠的途径。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
本发明公开的合成方法的具体路线及主要产物结构式如下所示:
Figure BDA0002843800940000041
实施例1
将N-苯基-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.24mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1mL)加入到Schlenk反应管中,密封。加热到80℃,反应20分钟。反应结束后减压除溶剂,柱色谱分离得到目标产物3a,产率为95%。1H NMR(CDCl3,400MHz):δ8.32(d,J=4.6Hz,1H),7.99(d,J=7.6Hz,1H),7.51-7.43(m,3H),7.38-7.33(m,2H),7.15-7.11(m,1H),6.64(d,J=3.5Hz,1H),3.97(q,J=7.1Hz,2H),3.52(s,2H),1.10(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ171.1,148.1,143.7,137.4,132.6,131.4,129.7,129.1,128.8,128.7,128.4,120.6,116.4,101.1,60.8,37.6,14.0.HRMS(ESI)m/z calcd for C17H16N2NaO2(M+Na)+303.1104,found 303.1107.
实施例2
将N-(对甲基苯基)-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.24mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1.2mL)加入到Schlenk反应管中,密封。加热到80℃,反应30分钟。反应结束后减压除溶剂,柱色谱分离得到目标产物3b,产率为85%。1H NMR(CDCl3,400MHz):δ8.30(d,J=4.5Hz,1H),7.96(d,J=7.8Hz,1H),7.31-7.21(m,4H),7.11-7.08(m,1H),6.60(d,J=3.5Hz,1H),3.95(q,J=7.1Hz,2H),3.45(s,2H),2.42(s,3H),1.08(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ171.2,148.3,143.7,138.7,134.8,132.2,131.9,129.8,129.1,129.0,128.5,120.5,116.3,100.9,60.8,37.6,21.2,14.0.HRMS(ESI)m/z calcd for C18H18N2NaO2(M+Na)+317.1260,found 317.1263.
实施例3
将N-(对叔丁基苯基)-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.24mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1.5mL)加入到Schlenk反应管中,密封。加热到80℃,反应1小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3c,产率为89%。1H NMR(CDCl3,400MHz):δ8.33(d,J=4.7Hz,1H),7.97(d,J=7.8Hz,1H),7.49-7.43(m,2H),7.32(d,J=3.5Hz,1H),7.28(d,J=8.2Hz,1H),7.12-7.08(m,1H),6.61(d,J=3.5Hz,1H),3.96(q,J=7.1Hz,2H),3.51(s,2H),1.39(s,9H),1.08(t,J=7.1Hz,3H).13CNMR(CDCl3,100MHz):δ171.2,151.5,148.2,143.6,134.7,131.7,129.9,129.0,128.5,128.1,125.4,120.6,116.3,100.9,61.7,37.9,34.7,31.4,14.0.HRMS(ESI)m/z calcd forC21H24N2NaO2(M+Na)+359.1730,found 359.1726.
实施例4
将N-(对苯苯基)-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.2mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1.2mL)加入到Schlenk反应管中,密封。加热到60℃,反应1小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3d,产率为72%。1HNMR(CDCl3,400MHz):δ8.37(d,J=4.6Hz,1H),8.01(d,J=7.8Hz,1H),7.73-7.72(m,1H),7.68-7.66(m,3H),7.51-7.39(m,5H),7.17-7.14(m,1H),6.68(d,J=3.5Hz,1H),4.01(q,J=7.2Hz,2H),3.62(s,2H),1.12(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ171.1,148.3,143.8,141.8,140.3,136.5,132.8,130.3,129.8,129.2,129.0,128.9,127.7,127.3,127.2,120.7,116.5,101.3,60.9,37.8,14.1.HRMS(ESI)m/z calcd for C23H20N2NaO2(M+Na)+379.1417,found 379.1423.
实施例5
将N-(对甲氧基苯基)-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.25mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1.5mL)加入到Schlenk反应管中,密封。加热到100℃,反应30分钟。反应结束后减压除溶剂,柱色谱分离得到目标产物3e,产率为80%。1H NMR(CDCl3,400MHz):δ8.31(d,J=4.7Hz,1H),7.97(d,J=7.8Hz,1H),7.30-7.26(m,2H),7.12-7.08(m,1H),7.01(d,J=2.8Hz,1H),6.97-6.94(m,1H),6.60(d,J=3.5Hz,1H),3.97(q,J=7.1Hz,2H),3.86(s,3H),3.44(s,2H),1.09(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ170.9,159.5,148.4,143.7,133.9,130.2,130.0,129.7,129.0,120.5,116.4,116.3,113.7,100.8,60.8,55.6,37.7,14.0.HRMS(ESI)m/z calcd for C18H18N2NaO3(M+Na)+333.1210,found 333.1213.
实施例6
将N-(对三氟甲氧基苯基)-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.4mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(2mL)加入到Schlenk反应管中,密封。室温下反应2小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3f,产率为89%。1HNMR(CDCl3,400MHz):δ8.31(d,J=4.7Hz,1H),7.98(d,J=7.8Hz,1H),7.40-7.38(m,2H),7.30-7.27(m,2H),7.15-7.11(m,1H),6.64(d,J=3.6Hz,1H),3.98(q,J=7.1Hz,2H),3.52(s,2H),1.09(t,J=7.2Hz,3H).13C NMR(CDCl3,100MHz):δ170.3,148.8,148.7,148.1,143.8,135.9,134.6,130.0,129.4,129.3,123.8,120.7,120.6,120.4(q,JC-F=256.4Hz),116.7,101.7,61.0,37.5,13.9.HRMS(ESI)m/z calcd for C18H15F3N2NaO3(M+Na)+387.0927,found 387.0939.
实施例7
将N-(对氟苯基)-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.3mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1.5mL)加入到Schlenk反应管中,密封。加热到100℃,反应1小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3g,产率为97%。1HNMR(CDCl3,400MHz):δ8.31(d,J=4.7Hz,1H),7.98(d,J=7.8Hz,1H),7.34-7.30(m,1H),7.28(d,J=3.6Hz,1H),7.23-7.30(m,1H),7.14-7.09(m,2H),6.62(d,J=3.6Hz,1H),3.98(q,J=7.2Hz,2H),3.46(s,2H),1.10(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ170.5,162.2(d,J=246.6Hz),148.2,143.7,134.9(d,J=8.7Hz),133.4(d,J=3.1Hz),130.3(d,J=9.0Hz),129.6,129.2,120.6,118.4(d,J=23.0Hz),116.5,115.2(d,J=22.4Hz),101.4,61.0,37.4(d,J=1.1Hz),14.0.HRMS(ESI)m/z calcd for C17H15FN2NaO2(M+Na)+321.1010,found 321.1011.
实施例8
将N-(间氯苯基)-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.24mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1mL)加入到Schlenk反应管中,密封。加热到80℃,反应1.5小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3h,产率为88%。1HNMR(CDCl3,400MHz):δ8.32(d,J=4.7Hz,1H),7.98(d,J=7.8Hz,1H),7.43(s,2H),7.38(s,1H),7.30(d,J=3.76Hz,1H),7.15-7.12(m,1H),6.64(d,J=3.6Hz,1H),3.97(q,J=7.2Hz,2H),3.49(s,2H),1.09(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ170.7,148.0,143.8,138.4,133.6,132.4,131.2,129.3,129.2,128.9,128.6,120.6,116.7,101.8,60.9,37.2,14.0.HRMS(ESI)m/z calcd for C17H15ClN2NaO2(M+Na)+337.0714,found 337.0721.
实施例9
将N-(对溴苯基)-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.24mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1mL)加入到Schlenk反应管中,密封。加热到80℃,反应1小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3i,产率为70%。1HNMR(CDCl3,400MHz):δ8.31(d,J=4.7Hz,1H),7.98(d,J=7.8Hz,1H),7.65(d,J=2.2Hz,1H),7.57-7.55(m,1H),7.30(d,J=3.6Hz,1H),7.24(d,J=8.3Hz,1H),7.15-7.12(m,1H),6.64(d,J=3.6Hz,1H),3.98(q,J=7.1Hz,2H),3.49(s,2H),1.10(t,J=7.2Hz,3H).13C NMR(CDCl3,100MHz):δ170.5,148.1,143.8,136.5,134.6,134.4,131.5,130.2,129.3,129.2,122.4,120.6,116.6,101.6,61.0,37.4,14.0.HRMS(ESI)m/z calcd for C17H15BrN2NaO2(M+Na)+381.0209,found 381.0222.
实施例10
将N-(对三氟甲基苯基)-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.24mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1mL)加入到Schlenk反应管中,密封。加热到80℃,反应50分钟。反应结束后减压除溶剂,柱色谱分离得到目标产物3j,产率为80%。1H NMR(CDCl3,400MHz):δ8.31(d,J=4.7Hz,1H),7.99(d,J=7.8Hz,1H),7.77(s,1H),7.70(d,J=8.2Hz,1H),7.49(d,J=8.2Hz,1H),7.33(d,J=3.6Hz,1H),7.16-7.13(m,1H),6.67(d,J=3.6Hz,1H),3.98(q,J=7.1Hz,2H),3.62(s,2H),1.09(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ170.3,148.0,143.9,140.6,133.4,130.5(q,JC-F=32.7Hz),129.4,129.2,129.1,128.7(q,JC-F=3.8Hz),125.4(q,JC-F=3.7Hz),123.8(q,JC-F=270.4Hz),120.7,116.8,102.1,61.1,37.7,13.9.HRMS(ESI)m/z calcd for C18H15F3N2NaO2(M+Na)+371.0978,found 371.0972.
实施例11
将N-(间乙氧羰基苯基)-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.4mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1.5mL)加入到Schlenk反应管中,密封。加热到80℃,反应30分钟。反应结束后减压除溶剂,柱色谱分离得到目标产物3k,产率为80%。1H NMR(CDCl3,400MHz):δ8.30(d,J=4.7Hz,1H),8.12(d,J=8.0Hz,1H),8.03(d,J=1.7Hz,1H),7.98(dd,J=7.8,1.6Hz,1H),7.57(d,J=8.1Hz,1H),7.33(d,J=3.6Hz,1H),7.15-7.10(m,1H),6.65(d,J=3.6Hz,1H),4.37(q,J=7.2Hz,2H),3.96(q,J=7.2Hz,2H),3.58(s,2H),1.36(q,J=7.1Hz,2H),1.08(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ170.4,165.5,148.1,143.8,137.64,137.62,131.6,130.8,129.8,129.7,129.5,129.2,120.6,116.6,101.7,61.2,60.9,37.8,14.3,14.0.HRMS(ESI)m/z calcd for C20H20N2NaO4(M+Na)+375.1315,found 375.1323.
实施例12
将N-(对乙酰基苯基)-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.24mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1.2mL)加入到Schlenk反应管中,密封。加热到80℃,反应1小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3l,产率为81%。1H NMR(CDCl3,400MHz):δ8.30(d,J=4.4Hz,1H),8.08-8.07(m,1H),8.02-7.96(m,2H),7.48-7.44(m,1H),7.33(d,J=7.2Hz,1H),7.15-7.10(m,1H),6.66(d,J=3.6Hz,1H),3.95(q,J=7.1Hz,2H),3.62(s,2H),2.64(s,3H),1.07(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ197.1,170.7,147.9,143.8,141.6,136.8,132.8,131.7,129.3,129.1,128.9,128.3,120.8,116.8,102.1,61.0,37.8,26.8,14.0.HRMS(ESI)m/z calcd for C19H18N2NaO3(M+Na)+345.1210,found 345.1202.
实施例13
将N-苯基-3-甲酰基-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.24mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1mL)加入到Schlenk反应管中,密封。加热到80℃,反应1.5小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3m,产率为78%。1H NMR(CDCl3,400MHz):δ10.05(s,1H),8.65(d,J=7.8Hz,1H),8.41(d,J=4.6Hz,1H),8.01(s,1H),7.56-7.47(m,3H),7.39(d,J=7.2Hz,1H),7.33-7.30(m,1H),3.96(q,J=7.1Hz,2H),3.49(s,2H),1.09(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ185.1,170.8,149.1,145.9,139.9,136.1,132.4,131.8,131.0,129.9,128.7,128.5,119.4,117.5,117.4,61.1,37.6,14.0.HRMS(ESI)m/z calcd for C18H16N2NaO3(M+Na)+331.1053,found331.1046.
实施例14
将N-苯基-4-氯-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.24mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1mL)加入到Schlenk反应管中,密封。加热到100℃,反应1.5小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3n,产率为82%。1HNMR(CDCl3,400MHz):δ8.19(d,J=5.2Hz,1H),7.50-7.42(m,3H),7.37-7.34(m,2H),7.15(d,J=5.2Hz,1H),6.74(d,J=3.6Hz,1H),3.97(q,J=7.1Hz,2H),3.49(s,2H),1.00(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ170.9,148.6,144.0,136.9,136.3,132.5,131.5,130.3,129.1,128.6,128.5,119.9,116.6,99.7,60.9,37.6,14.0.HRMS(ESI)m/z calcdfor C17H15ClN2NaO2(M+Na)+337.0714,found 337.0721.
实施例15
将N-苯基-5-溴-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.22mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、乙醇(1mL)加入到Schlenk反应管中,密封。加热到80℃,反应1.5小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3o,产率为66%。1HNMR(CDCl3,400MHz):δ8.32(d,J=2.1Hz,1H),8.11(d,J=2.1Hz,1H),7.51-7.43(m,3H),7.35-7.33(m,2H),6.58(d,J=3.6Hz,1H),3.98(q,J=7.1Hz,2H),3.48(s,2H),1.11(t,J=7.1Hz,3H).13C NMR(CDCl3,100MHz):δ170.9,146.5,144.2,136.9,132.5,131.5,131.3,131.1,129.1,128.6,128.5,122.2,112.4,100.7,60.9,37.6,14.0.HRMS(ESI)m/z calcdfor C17H15BrN2NaO2(M+Na)+381.0209,found 381.0222.
实施例16
将N-苯基-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.24mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、甲醇(2mL)加入到Schlenk反应管中,密封。加热到80℃,反应1.5小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3p,产率为81%。1H NMR(CDCl3,400MHz):δ8.31(d,J=4.6Hz,1H),7.98(d,J=7.8Hz,1H),7.49-7.41(m,3H),7.37-7.31(m,2H),7.13-7.10(m,1H),6.64(d,J=3.6Hz,1H),3.53(s,2H),3.49(s,3H).13C NMR(CDCl3,100MHz):δ171.5,148.2,143.7,137.4,132.5,131.4,129.6,129.2,128.8,128.7,128.4,120.6,116.4,101.2,51.9,37.4.HRMS(ESI)m/z calcd for C16H14N2NaO2(M+Na)+289.0947,found 289.0948.
实施例17
将N-苯基-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.25mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、异丙醇(1mL)加入到Schlenk反应管中,密封。加热到70℃,反应1.5小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3q,产率为93%。1HNMR(CDCl3,400MHz):δ8.32(d,J=4.7Hz,1H),7.97(d,J=7.8Hz,1H),7.49-7.40(m,3H),7.37-7.33(m,2H),7.12-7.09(m,1H),6.62(d,J=3.5Hz,1H),4.89-4.82(m,1H),3.49(s,2H),1.09(s,3H),1.07(s,3H).13C NMR(CDCl3,100MHz):δ170.7,148.1,143.7,137.4,132.6,131.4,129.8,129.1,128.7,128.6,128.3,120.6,116.4,101.1,68.2,37.9,21.6.HRMS(ESI)m/z calcd for C18H18N2NaO2(M+Na)+317.1260,found 317.1264.
实施例18
将N-苯基-7-氮杂吲哚(0.2mmol)、α-重氮麦氏酸(0.24mmol)、[Cp*IrCl2]2(4mg,2.5mol%)、AgNTf2(8mg,10mol%)、叔丁醇(2mL)加入到Schlenk反应管中,密封。加热到100℃,反应2小时。反应结束后减压除溶剂,柱色谱分离得到目标产物3r,产率为79%。1H NMR(CDCl3,400MHz):δ8.32(d,J=4.7Hz,1H),7.98(d,J=7.8Hz,1H),7.49-7.40(m,3H),7.37-7.34(m,2H),7.13-7.10(m,1H),6.62(d,J=3.5Hz,1H),3.43(s,2H),1.31(s,9H).13C NMR(CDCl3,100MHz):δ170.5,148.2,143.7,137.4,132.9,131.4,129.9,129.0,128.7,128.6,128.2,120.6,116.3,100.9,80.8,38.7,27.9.HRMS(ESI)m/z calcd for C19H20N2NaO2(M+Na)+331.1417,found 331.1421.
以上显示和描述了本发明的基本原理、主要特征及优点。但是以上所述仅为本发明的具体实施例,本发明的技术特征并不局限于此,任何本领域的技术人员在不脱离本发明的技术方案下得出的其他实施方式均应涵盖在本发明的专利范围之中。

Claims (7)

1.一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法,其特征在于,反应按照以下步骤进行:以N-芳基-7-氮杂吲哚化合物和α-重氮麦氏酸为原料,醇溶剂为反应溶剂和烷氧基来源,在催化体系的作用下、通过相应的反应条件即合成含7-氮杂吲哚取代基的芳基乙酸酯化合物。
2.如权利要求1所述的一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法,其特征在于,催化体系是以[Cp*IrCl2]2为催化剂,AgNTf2为催化剂助剂。
3.如权利要求1所述的一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法,其特征在于,具体反应条件为:反应温度范围为室温至100℃,反应时间范围为20分钟到2小时。
4.如权利要求1所述的一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法,其特征在于,具体的合成路线为:
Figure FDA0002843800930000011
其中,R1是取代在吡啶环上的氯、溴,或者是取代在吡咯环的甲酰基;
R2是取代在苯环上的甲基、叔丁基、苯基、甲氧基、三氟甲氧基、氟、氯、溴、三氟甲基、乙氧羰基、乙酰基;
R3来自于反应物醇,其中R3所代表的取代基是甲基、乙基、异丙基、叔丁基。
5.如权利要求1所述的一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法,其特征在于,反应物N-芳基-7-氮杂吲哚的浓度为0.1-0.2mmol/mL醇溶剂。
6.如权利要求1所述的一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法,其特征在于,原料N-芳基-7-氮杂吲哚化合物和α-重氮麦氏酸的物质的量比为1:1~2.0。
7.如权利要求2所述的一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法,其特征在于,所述催化剂[Cp*IrCl2]2的用量为2.5mol%,催化剂助剂AgNTf2的用量为10mol%。
CN202011502214.0A 2020-12-18 2020-12-18 一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法 Pending CN112480111A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011502214.0A CN112480111A (zh) 2020-12-18 2020-12-18 一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011502214.0A CN112480111A (zh) 2020-12-18 2020-12-18 一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法

Publications (1)

Publication Number Publication Date
CN112480111A true CN112480111A (zh) 2021-03-12

Family

ID=74914795

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011502214.0A Pending CN112480111A (zh) 2020-12-18 2020-12-18 一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法

Country Status (1)

Country Link
CN (1) CN112480111A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193742A (zh) * 2014-09-23 2014-12-10 西华师范大学 一种3-烷基取代-7-氮杂吲哚化合物的合成方法
CN110066280A (zh) * 2019-05-24 2019-07-30 江苏师范大学 一种氧代吲哚螺吡啶类化合物及其合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193742A (zh) * 2014-09-23 2014-12-10 西华师范大学 一种3-烷基取代-7-氮杂吲哚化合物的合成方法
CN110066280A (zh) * 2019-05-24 2019-07-30 江苏师范大学 一种氧代吲哚螺吡啶类化合物及其合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIN-TAO YU等: "Iridium-catalyzed selective ortho CA H carbenoid functionalization of N-aryl-7-azaindoles with diazotized Meldrum’s acid", 《TETRAHEDRON LETTERS》 *
SIQI LI等: "Ruthenium(II)-Catalyzed Regioselective C-H Hydroxymethylation of N-Aryl-azaindoles with Paraformaldehyde", 《HETEROCYCLES》 *

Similar Documents

Publication Publication Date Title
CN108409747B (zh) 一种2-氨基喹啉并二氢呋喃类化合物的合成方法
CN111675662B (zh) 一种2-三氟甲基取代的喹唑啉酮化合物的制备方法
CN107382856B (zh) 新型多取代异喹啉衍生物及其合成方法
CN108864189A (zh) 亚磺酰胺类手性单膦配体及其制备方法和应用
CN112125856A (zh) 一种2-三氟甲基取代的喹唑啉酮衍生物的制备方法
CN114478375B (zh) 一种3-烯基喹啉-2(1h)酮衍生物的制备方法
CN113735778B (zh) 一种5-三氟甲基取代的咪唑化合物的制备方法
CN113045503B (zh) 一种2-三氟甲基取代的喹唑啉酮化合物的制备方法以及在合成药物分子中的应用
CN112480111A (zh) 一种7-氮杂吲哚取代芳基乙酸酯化合物的合成方法
CN116178299A (zh) 一种4H-苯并[d][1,3]恶嗪-4-酮化合物的制备方法
CN113861228B (zh) 一种烷基硼烷衍生物及其合成方法
CN112724171A (zh) 一种2-膦酰基-3-氟代乙烯基吲哚化合物及其制备方法
CN111138396A (zh) 一种用二氧化碳合成戊烯二酸酐类化合物的方法
CN112142661B (zh) 3-氨基喹啉-5-羧酸甲酯的合成方法
CN109535076B (zh) 2,3-二氢喹啉-4-酮类化合物的制备方法
CN114989072B (zh) 一种不对称催化合成手性1,4-二氢吡啶化合物的方法及其应用
CN111333507B (zh) 一种β-羟基酯类化合物的合成方法
CN116768745A (zh) 一种光诱导n-芳基苯甲酰胺化合物的合成方法
CN107602602A (zh) 一种3‑氰基吡啶‑5‑硼酸频哪醇酯的合成方法
CN110305157B (zh) 一种共轭烯炔酰胺类衍生物及其制备方法和应用
WO2022134287A1 (zh) 一种制备羧酸酯化合物的方法
CN116655467A (zh) 一种芳基羧酸酯类化合物及其制备方法
CN118619879A (zh) 一种三氟甲基取代烯胺酮的制备方法及其应用
CN114031497A (zh) 一种环丙烯酮与氧杂环化合物的开环双氯化反应方法
CN118561840A (zh) 一种二氢咪唑并[2,1-a]异喹啉类衍生物的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210312

RJ01 Rejection of invention patent application after publication