CN112473745B - 一种介孔金属有机骨架多中心催化剂及其制备方法和应用 - Google Patents

一种介孔金属有机骨架多中心催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN112473745B
CN112473745B CN202011361082.4A CN202011361082A CN112473745B CN 112473745 B CN112473745 B CN 112473745B CN 202011361082 A CN202011361082 A CN 202011361082A CN 112473745 B CN112473745 B CN 112473745B
Authority
CN
China
Prior art keywords
organic framework
metal organic
pcn
catalyst
mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011361082.4A
Other languages
English (en)
Other versions
CN112473745A (zh
Inventor
李鹏
毕云波
徐睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202011361082.4A priority Critical patent/CN112473745B/zh
Publication of CN112473745A publication Critical patent/CN112473745A/zh
Application granted granted Critical
Publication of CN112473745B publication Critical patent/CN112473745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/42Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明属于多孔复合材料催化领域,具体为一种介孔金属有机骨架多中心催化剂及其制备方法和应用。本发明以锆氧簇为节点,以四羧酸金属卟啉为有机链构建棒状(六方)或立方晶体;所述金属有机骨架材料,由锆氧簇和四羧酸金属卟啉通过配位作用在一定温度下自组装形成;该金属有机骨架材料具有大孔道尺寸、高比表面积与优异的热稳定性和化学稳定性;通过后修饰的办法可以将氯化亚锡负载到锆氧簇上以得到介孔金属有机骨架多催化中心催化剂。该催化剂材料在光热条件下,可以高效的将葡萄糖转化为2,5‑呋喃二甲酸。

Description

一种介孔金属有机骨架多中心催化剂及其制备方法和应用
技术领域
本发明属于多孔复合材料催化技术领域,具体涉及一种介孔金属有机骨架多中心催化剂及其制备方法和在生物质转化中的应用。
背景技术
化石燃料作为不可再生能源,其可探查的存量预计将要在50-100年间被开采完,这也严重威胁到了全球的能源安全。因此,寻找传统化石燃料的绿色可循环替代品就成为了解决这个问题的关键。生物质作为地球上最大的可循环碳资源,具有解决这个问题的潜力。生物质是由纤维素、半纤维素、木质素等有机物组成的重要资源,具有来源广泛、绿色、可再生以及含有多种含氧官能团的特点。每年,地球上会新产生1.7×1011吨生物质。是能满足目前人类社会对燃料和原料的需求。2010年,美国能源部发布了14种具有完全取代化石燃料的潜力的平台化合物。综合来看,这些平台分子中的5-羟甲基糠醛(HMF)及其衍生物2,5-呋喃二甲酸因其与苯环的相似性,可以作为最佳的生物质构建单元。
然而生物质转化目前还面临着一些问题:
(a)当前的研究主要集中在利用高温,高压和均相催化剂进行反应,反应能耗大,催化剂回收困难,生产成本高;
(b)由于葡萄糖转化过程中存在多种反应副产物,目前的催化过程反应选择性差,增加了产物的分离成本。
因此开发区别于传统催化剂的新型催化剂就成为了解决这些问题的手段之一。
与均相催化剂相比,多孔材料催化剂避免了均相催化剂不能循环、易被污染以及不易分离的缺点。同时多孔材料催化剂高表面积和均一的孔结构能作为良好的催化剂载体。与固相半导体催化剂相比。多孔材料催化剂具有明确且独立的配位点用来与催化物种进行结合。这使得其能参与构建和负载单位点催化剂。在使用光敏性有机物或者金属有机化合物作为构建多孔材料的链时,我们能制备出具有单催化位点的具有光催化活性的多孔材料。这种多孔材料催化剂不仅具有均相催化剂活性高的优点而且还具有非均相催化剂易于循环的特点。其中在光催化领域,多孔材料中的MOF材料和COF材料已经应用于二氧化碳还原、产氢、污染物降解以及有机物转化等。
近年来,具有超高稳定性的多孔金属有机骨架材料(MOF)成为构筑含多催化中心的非均相催化剂的研究热点。MOF材料具有可调节的孔道结构,超高的比表面积和孔隙率。利用其易修饰的特点可以实现不同的催化中心在有机配体或者金属节点上的精准修饰,实现多催化中心在单一载体上的高度有序集成。这些复合催化剂可实现多步催化串联催化,由于各个催化中心彼此在空间上的隔离避免了催化剂间的副反应,其催化表现甚至优于同等的均相催化剂。
本发明开发了一种以金属有机骨架材料为载体,通过原位法和后合成等合成方法来构筑含有过渡金属和金属卟啉等多种催化活性位点的复合催化剂的合成方法,从而实现光热条件下将葡萄糖高效转化为FDCA。
发明内容
本发明的目的在于提供一种具有超高稳定性的新型介孔金属有机骨架多中心催化剂及其制备方法和在生物质光热转化中的应用,以填补现有技术的空白。
本发明提供的介孔金属有机骨架多中心催化剂,是一种介孔氢键有机骨架纤维复合材料。本发明以锆氧簇为节点,以四羧酸金属卟啉为有机链构建棒状(六方)或立方晶体;金属有机骨架材料由锆氧簇和四羧酸金属卟啉通过配位作用在一定温度下自组装形成;该金属有机骨架材料具有大孔道尺寸、高比表面积与优异的热稳定性和化学稳定性;通过后修饰,将氯化亚锡负载到锆氧簇上以得到介孔金属有机骨架多催化中心催化剂。制备的具体步骤如下:
(1)羧酸苯基卟啉(金属)的制备:将对醛基苯甲酸甲酯与等当量的吡咯加入在丙酸中,在110~150 ℃条件下反应1~24小时,得到甲酸甲酯苯基卟啉(无金属);将甲酸甲酯苯基卟啉(无金属)与相应金属盐(如FeCl2,CoCl2,NiCl2,CuCl2)加入到DMF溶液中,在120~155℃条件下反应6~48小时,得到甲酸甲酯苯基卟啉(金属);将甲酸甲酯苯基卟啉(金属)加入到含碱的四氢呋喃/甲醇溶液中,在60~85℃的条件下反应1~24小时,得到羧酸苯基卟啉(金属);
(2)金属有机骨架的制备:将苯甲酸和ZrOCl2或者ZrCl4加入到DMF中,于50-130℃加热0.5-6小时,然后将不同种类的羧酸苯基金属卟啉(如金属为铁、钴、镍或铜)加入到上述溶液中,超声溶解,在90~130℃的环境中加热1~48小时,观察到大量沉淀产生,即得到金属有机骨架材料,记为PCN-222(M)(六方)或PCN-224(M)(立方),这里M代表金属,具体如铁、钴、镍或铜;
其中,金属有机骨架尺寸可通过改变苯甲酸在DMF中的浓度来调节,其尺寸范围为100 nm~500 um;
(3)介孔金属有机骨架多中心催化剂的制备:将1~10倍量的氯化锡与上述金属有机骨架材料分散到DMF或DMSO中,在25~150℃的环境中加热1~72小时,用热DMF或DMSO清洗3次,再用丙酮、乙醇清洗至干净,即得到介孔金属(M)有机骨架多中心催化剂,记为Sn-PCN-222(M)(六方)或Sn-PCN-224(M)(立方)。
本发明步骤(1)中,所用的金属盐为FeCl2、CoCl2、NiCl2或CuCl2,则步骤(3)得到的介孔金属(M)有机骨架多中心催化剂中,有机链中心金属(M)为铁、钴、镍或铜。
本发明制备得到的介孔金属有机骨架多中心催化剂,含有大量Sn2+,在一定温度下可以实现葡萄糖的异化与脱水,从而实现葡萄糖到5-羟甲基糠醛(HMF)的热反应过程;同时,其有机链中含有大的发色团结构,在光照条件下通过电子激发的发色团对基态分子氧的光敏作用,能够产生单线态氧,可以氧化HMF到其氧化产物FDCA。同时由于介孔金属有机骨架多中心催化剂的多孔性,可以预先对葡萄糖进行有效的吸附。因此,本发明制备介孔金属有机骨架多中心催化剂可用于生物质的光热转化。具体地,例如催化剂材料在光热条件下,可以高效的将葡萄糖转化为2,5-呋喃二甲酸。
附图说明
图1为实施例1中PCN-222(Co)的SEM图。
图2为实施例1中PCN-222(Co)系列的X射线粉末衍射图(PXRD)。
图3为实施例1中PCN-222(Co)系列的氮气吸附曲线。
图4为实施例1中PCN-224(Co)的SEM图。
图5为实施例1中PCN-224(Co)系列的X射线粉末衍射图(PXRD)。
图6为实施例2中PCN-222(Fe)的SEM图。
图7为实施例2中PCN-224(Fe)的SEM图。
图8为实施例3中PCN-224(Ni)的SEM图。
图9为实施例4中Sn-PCN-222(Co)的EDS图。
图10为实施例4中Sn-PCN-224(Co)的EDS图。
图11为实施例5中Sn-PCN-222转化葡萄糖的核磁NMR图。
图12为实施例5中Sn-PCN-222转化葡萄糖到FDCA的催化性能图。
图13为本发明介孔金属有机骨架多中心催化剂制备方法流程图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
主要试剂来源:对醛基苯甲酸甲酯,吡咯,苯甲酸,氯化锡,氯化钴,氯氧化锆,氯化锆,氢氧化钾,甲醇,乙酸乙酯,四氢呋喃,丙酮,N,N-二甲基甲酰胺(DMF),N,N-二甲基甲酰胺(DEF)购于上海泰坦科技股份有限公司。
实施例1,金属有机骨架(PCN-222(Co)或PCN-224(Co))的合成。
PCN-222(Co)的合成:将苯甲酸(1.25 g)、氯氧化锆(50 mg)溶解在10 mLDEF中,在100 ℃的环境中加热1小时,将羧酸苯基钴卟啉(50 mg)上述溶液中,超声溶解,在120 ℃条件下加热12 h,用DMF和丙酮清洗后,得紫红色固体50 mg。产率50 %。
如图1所示,所制备样品的扫描电子显微镜(SEM)图像显示,PCN-222(Co)的微观形貌为棒状微米级晶体。PCN-222(Co)的晶体结构(图2)是通过对X射线粉末衍射图(PXRD)进行验证。N2吸附数据(图3)显示PCN-222(Co)为介孔材料,且孔径为3.6nm。
PCN-224(Co)的合成:将苯甲酸(1.5 g)、氯氧化锆(50 mg)溶解在10 mLDMF中,在100 ℃的环境中加热1小时,将羧酸苯基卟啉(金属)(25 mg)上述溶液中,超声溶解,在120℃条件下加热12 h,用DMF和丙酮清洗后,得紫红色固体40 mg。产率53 %。
如图4所示,所制备样品的扫描电子显微镜(SEM)图像显示,PCN-224(Co)的微观形貌为微米级立方晶体。PCN-224(Co)的晶体结构(图5)是通过对X射线粉末衍射图(PXRD)进行验证。
实施例2,金属有机骨架(PCN-222(Fe)或PCN-224(Fe))的合成。
PCN-222(Fe)的合成:将苯甲酸(1.25 g)、氯氧化锆(50 mg)溶解在10 mLDEF中,在100 ℃的环境中加热1小时,将羧酸苯基铁卟啉(50 mg)上述溶液中,超声溶解,在120 ℃条件下加热12 h,用DMF和丙酮清洗后,得褐色固体50 mg。产率50 %。
如图所示,所制备样品的扫描电子显微镜(SEM)图像显示,PCN-222(Fe)的微观形貌为棒状微米级晶体。PCN-222(Fe)的晶体结构(图6)。
PCN-224(Fe)的合成:将苯甲酸(1.5 g)、氯氧化锆(50 mg)溶解在10 mLDMF中,在100 ℃的环境中加热1小时,将羧酸苯基铁卟啉(25 mg)上述溶液中,超声溶解,在120 ℃条件下加热12 h,用DMF和丙酮清洗后,得褐色固体40 mg。产率53 %。
如图所示,所制备样品的扫描电子显微镜(SEM)图像显示,PCN-224(Fe)的微观形貌为微米级立方晶体。PCN-224(Fe)的晶体结构(图7)。
实施例3,金属有机骨架(PCN-222(Ni)或PCN-224(Ni))的合成。
PCN-224(Ni)的合成:将苯甲酸(1.5 g)、氯氧化锆(50 mg)溶解在10 mLDMF中,在100 ℃的环境中加热1小时,将羧酸苯基镍卟啉(25 mg)上述溶液中,超声溶解,在120 ℃条件下加热12 h,用DMF和丙酮清洗后,得红色固体40 mg。产率53 %。
如图所示,所制备样品的扫描电子显微镜(SEM)图像显示,PCN-224(Ni)的微观形貌为微米级立方晶体。PCN-224(Ni)的晶体结构(图8)。
实施例4,介孔金属有机骨架多中心催化剂(Sn-PCN-222(Co)或Sn-PCN-224(Co))的制备。
称取PCN-222(Co)或者PCN-224(Co)(100 mg),SnCl2·2H2O(200 mg)加入到20 mL的DMF溶液中,在100 ℃的环境中加热1小时,用DMF和丙酮清洗后,得紫红色固体约110 mg。
如图9所示,所制备样品的EDS图像显示,Sn-PCN-222(Co)的微观形貌为微米级棒状晶体且Sn元素在其中均匀分布,且Sn的含量为4.41Wt%。如图10所示,所制备样品的EDS图像显示,Sn-PCN-224(Co)的微观形貌为微米级棒状晶体且Sn元素在其中均匀分布,且Sn的含量为30 %。
实施例5,介孔金属有机骨架多中心催化剂的生物质光热催化转化性能测试
对所合成的介孔金属有机骨架多中心催化剂在光热条件对葡萄糖到FDCA的转化过程进行了研究。用核磁(NMR)和液相色谱(HPLC))进行监测,当使用1 mol%的催化剂(基于Co)时,Sn-PCN-222(Co)可以在4小时内转化100%的原料(图11),在9小时内实现90%的FDCA选择性(图12)。

Claims (5)

1.一种用于葡萄糖光热转化为2,5-呋喃二甲酸的介孔金属有机骨架多中心催化剂的制备方法,其特征在于,包括通过羧基卟啉配体与锆氧簇之间的金属有机配位作用构造出具有大孔道尺寸和高比表面积的介孔金属有机骨架;包括步骤如下:
(1)羧基苯基金属卟啉的制备:将对醛基苯甲酸甲酯与等当量的吡咯加入到丙酸中,在110~150 ℃条件下反应1~24小时,得到甲酸甲酯苯基卟啉;将甲酸甲酯苯基卟啉与相应金属盐加入到DMF溶液中,在120~155℃条件下反应6~48小时,得到甲酸甲酯苯基金属卟啉;将甲酸甲酯苯基金属卟啉加入到含碱的四氢呋喃-甲醇溶液中,在60~85℃的条件下反应1~24小时,得到羧基苯基金属卟啉;
(2)金属有机骨架的制备:将苯甲酸和ZrOCl2或者苯甲酸和ZrCl4加入到DMF中,于50-130℃加热0.5-6小时得溶液,然后将羧基苯基金属卟啉加入到所得溶液中,超声溶解,在90~130℃的环境中加热1~48小时,观察到大量沉淀产生,即得到金属有机骨架,记为PCN-222(M)或PCN-224(M),M代表所述金属盐的金属元素化学符号;
其中,金属有机骨架尺寸通过改变苯甲酸在DMF中的浓度来调节,金属有机骨架尺寸范围为100 nm~500μ m ;
(3)介孔金属有机骨架多中心催化剂的制备:以所述金属有机骨架为基准,将1~10倍质量的氯化亚锡与所述金属有机骨架分散到DMF或DMSO中,在25~150℃的环境中加热1~72小时,用热DMF或热DMSO清洗3次,再用丙酮或乙醇清洗至干净,即得到介孔金属有机骨架多中心催化剂,记为Sn-PCN-222(M)或Sn-PCN-224(M)。
2.根据权利要求1所述的介孔金属有机骨架多中心催化剂的制备方法,其特征在于,步骤(1)中所用的金属盐为FeCl2、CoCl2、NiCl2或CuCl2,则步骤(3)所得的介孔金属有机骨架多中心催化剂Sn-PCN-222(M)或Sn-PCN-224(M)中,金属M为Fe、Co、Ni或Cu。
3.一种如权利要求1或2所述制备方法制备得到的介孔金属有机骨架多中心催化剂,其特征在于,所述催化剂为介孔氢键有机骨架纤维复合材料。
4.一种如权利要求3所述的介孔金属有机骨架多中心催化剂在葡萄糖光热转化为2,5-呋喃二甲酸中的应用。
5.根据权利要求4所述的应用,其特征在于,用于葡萄糖的异构化与脱水,实现葡萄糖到5-羟甲基糠醛的热反应过程。
CN202011361082.4A 2020-11-27 2020-11-27 一种介孔金属有机骨架多中心催化剂及其制备方法和应用 Active CN112473745B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011361082.4A CN112473745B (zh) 2020-11-27 2020-11-27 一种介孔金属有机骨架多中心催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011361082.4A CN112473745B (zh) 2020-11-27 2020-11-27 一种介孔金属有机骨架多中心催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112473745A CN112473745A (zh) 2021-03-12
CN112473745B true CN112473745B (zh) 2021-08-17

Family

ID=74936499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011361082.4A Active CN112473745B (zh) 2020-11-27 2020-11-27 一种介孔金属有机骨架多中心催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112473745B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110029382B (zh) * 2019-05-22 2021-09-24 电子科技大学 一种用于直接电镀的表面处理工艺及其相关直接电镀工艺
CN113731504B (zh) * 2021-09-09 2023-08-29 天津理工大学 一种催化剂及其制备方法和应用
CN115806675B (zh) * 2021-09-15 2023-10-03 中国科学院福建物质结构研究所 一种基于羧基卟啉配体构筑的氢键有机框架材料及其制备方法和应用
CN116068850A (zh) * 2021-10-31 2023-05-05 华为技术有限公司 化合物、图案化材料、半导体器件、终端和图案化方法
CN114100692B (zh) * 2021-12-21 2023-07-18 淮北师范大学 一种卟啉基多功能光催化MOFs材料
CN115160585B (zh) * 2022-07-26 2023-08-22 陕西师范大学 一种金属有机框架固定多核金属簇材料及其制备方法和应用
CN115521470B (zh) * 2022-08-29 2023-10-31 中国人民解放军国防科技大学 N-氯代锆-卟啉mof、n-氯代锆-卟啉mof/聚合物复合材料及制备方法
CN116651504A (zh) * 2023-01-13 2023-08-29 浙江工业大学 一种基于锆基金属有机框架和Bi4O5I2的复合材料及其应用
CN117659432B (zh) * 2024-02-01 2024-04-02 四川大学 一种多孔镍卟啉基氢键有机框架材料及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744105A (zh) * 2011-04-18 2012-10-24 韩国化学研究院 多孔性金属-有机骨架物质的功能化方法及其应用
CN106715690A (zh) * 2014-07-03 2017-05-24 联邦科学和工业研究组织 主‑客金属有机骨架系统
CN107163006A (zh) * 2017-06-20 2017-09-15 中国科学院长春应用化学研究所 一种催化糖合成5‑羟甲基糠醛的催化剂以及一种催化糖合成5‑羟甲基糠醛的方法
WO2017210874A1 (en) * 2016-06-08 2017-12-14 Xia, Ling Imperfect mofs (imofs) material, preparation and use in catalysis, sorption and separation
CN109046464A (zh) * 2018-08-21 2018-12-21 东北师范大学 一种硅藻土固载多酸基多孔仿生催化材料及其制备方法
WO2019135565A1 (ko) * 2018-01-02 2019-07-11 재단법인대구경북과학기술원 이온성 고분자 내의 확산 조절을 통한 금속-유기 구조체의 인-시츄 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102744105A (zh) * 2011-04-18 2012-10-24 韩国化学研究院 多孔性金属-有机骨架物质的功能化方法及其应用
CN106715690A (zh) * 2014-07-03 2017-05-24 联邦科学和工业研究组织 主‑客金属有机骨架系统
WO2017210874A1 (en) * 2016-06-08 2017-12-14 Xia, Ling Imperfect mofs (imofs) material, preparation and use in catalysis, sorption and separation
CN107163006A (zh) * 2017-06-20 2017-09-15 中国科学院长春应用化学研究所 一种催化糖合成5‑羟甲基糠醛的催化剂以及一种催化糖合成5‑羟甲基糠醛的方法
WO2019135565A1 (ko) * 2018-01-02 2019-07-11 재단법인대구경북과학기술원 이온성 고분자 내의 확산 조절을 통한 금속-유기 구조체의 인-시츄 제조방법
CN109046464A (zh) * 2018-08-21 2018-12-21 东北师范大学 一种硅藻土固载多酸基多孔仿生催化材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Zirconium-Based Porphyrinic Metal-Organic Framework (PCN-222): Enhanced Photoelectrochemical Response and Its Application for Label-Free Phosphoprotein Detection;Zhang, GuangYao,et al.;《ANALYTICAL CHEMISTRY》;20161018;第88卷(第22期);第11207-11212页 *
生物质碳水化合物催化转化制2,5-呋喃二甲酸的研究进展;刘贤响等;《石油化工》;20160715;第45卷(第7期);第872-879页 *
铂纳米颗粒修饰的多孔卟啉基金属-有机框架化合物高效光催化产氢(英文);王强等;《无机化学学报》;20171130;第33卷(第11期);第2038-2044页 *

Also Published As

Publication number Publication date
CN112473745A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
CN112473745B (zh) 一种介孔金属有机骨架多中心催化剂及其制备方法和应用
Cui et al. Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4
Meng et al. Oxygen-deficient metal oxides supported nano-intermetallic InNi3C0. 5 toward efficient CO2 hydrogenation to methanol
Wen et al. Design and architecture of metal organic frameworks for visible light enhanced hydrogen production
Qin et al. Amorphous Fe2O3 improved [O] transfer cycle of Ce4+/Ce3+ in CeO2 for atom economy synthesis of imines at low temperature
CN108299358B (zh) 用于呋喃醇或醛类化合物的选择性氧化方法
JP4970120B2 (ja) 金微粒子を担体に分散・固定する方法
Bi et al. A Cobalt‐Modified Covalent Triazine‐Based Framework as an Efficient Cocatalyst for Visible‐Light‐Driven Photocatalytic CO2 Reduction
AU2012343061B2 (en) Fischer-Tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparation method therefor
CN113813948B (zh) Co@In2O3/C复合光催化剂及其制备方法和应用
Shah et al. Covalent Organic Frameworks (COFs) for heterogeneous catalysis: Recent trends in design and synthesis with structure-activity relationship
Liu et al. Porous framework materials for energy & environment relevant applications: A systematic review
CN109384750B (zh) 一种催化加氢5-羟甲基糠醛制备2,5-二甲基呋喃的方法
Zhang et al. The functional and synergetic optimization of the thermal-catalytic system for the selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran: a review
Jia et al. Boosting the lattice oxygen activity of Fe-catalyst for producing 2, 5-diformylfuran from 5-hydroxymethylfurfural
Li et al. Pyridinic Nitrogen‐Doped Graphene Nanoshells Boost the Catalytic Efficiency of Palladium Nanoparticles for the N‐Allylation Reaction
Shen et al. Transformations of biomass-based levulinate ester into γ-valerolactone and pyrrolidones using carbon nanotubes-grafted N-heterocyclic carbene ruthenium complexes
Mei et al. Facilely fabrication of the direct Z-scheme heterojunction of NH2-UiO-66 and CeCO3OH for photocatalytic reduction of CO2 to CO and CH4
Zuo et al. Biochar catalysts for efficiently 5-Hydroxymethylfurfural (HMF) synthesis in aqueous natural deep eutectic solvent (A-NADES)
Ahmad et al. Aqueous phase conversion of CO2 into acetic acid over thermally transformed MIL-88B catalyst
Lucas et al. Efficacy of Octahedral Molecular Sieves for green and sustainable catalytic reactions
Zheng et al. Boosting 2, 5-Furandicarboxylic acid production via coating carbon over CeO2 in a Pt catalyst
CN110756197B (zh) Ni@Au核壳型纳米催化剂及其合成与应用
CN106975486A (zh) 一种co加氢制低碳混合醇的催化剂及其制备方法
CN111187238B (zh) 一种2,5-呋喃二甲酸的合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant