CN112449742A - 用于控制dc到dc转换器的输入电压的频率的方法 - Google Patents

用于控制dc到dc转换器的输入电压的频率的方法 Download PDF

Info

Publication number
CN112449742A
CN112449742A CN201980047297.8A CN201980047297A CN112449742A CN 112449742 A CN112449742 A CN 112449742A CN 201980047297 A CN201980047297 A CN 201980047297A CN 112449742 A CN112449742 A CN 112449742A
Authority
CN
China
Prior art keywords
converter
value
frequency
control
control frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980047297.8A
Other languages
English (en)
Inventor
M·塔勒布
A·马卢姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of CN112449742A publication Critical patent/CN112449742A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

本发明涉及一种用于控制DC‑DC转换器的输入电压频率的方法(4),该方法包括:‑定义设定点电压值(Vdc req)的先前步骤;以及‑根据电池电压(Vbat)、功率设定点(Preq)和所述设定点输入电压(Vdc req)来计算所述DC‑DC转换器(12)的控制频率值(fsw(ω))的步骤(40);以及‑将该控制频率应用于所述转换器的步骤。

Description

用于控制DC到DC转换器的输入电压的频率的方法
本发明涉及特别是用于电动或混合动力车辆的蓄电池充电器的领域。
更具体地,本发明涉及一种用于控制用于蓄电池充电器的DC到DC转换器的输入电压的频率的方法。
用于电动车辆的蓄电池充电器(更常称为充电器)需要高水平的充电功率,该充电功率的范围例如在三相运行中可能高达22kW,或者在单相运行中可能高达7kW。
这些充电器通常包括两个功率转换级:执行电网电压到DC总线的AC到DC转换的第一功率因数校正(通常缩写为PFC)级,以及控制对电池充电所需的输出电流并借助变压器来电隔离充电器的第二DC到DC转换级。
参考现有技术的图1,在输出电容器的端子处的两个输出DC电压总线分别耦合到DC到DC转换器。
如图2所示,DC到DC转换器可以特别是LLC DC到DC转换器,其包括电隔离充电器的变压器22。
图3示出了图2的DC到DC转换器的简化电路图,该DC到DC转换器包括一个电容器Cr以及两个电感器Lr和Lm。输入电压对应于DC总线,并且输出电压是电池的电压。增益则对应于这两个电压之比。
LLC DC到DC转换器的第一MOSFET桥120以50%的占空比操作,并受频率控制。实际上,频率控制允许调整DC到DC转换器的增益,并将充电器的输入端处DC总线的电压设置为给定设定点。取决于电池的电压和所需的功率,频率可能在例如60kHz至200kHz之间波动。
现有技术中提出的用于控制这种类型的DC到DC转换器的解决方案通常涉及调节输出电压的操作,例如在
Figure BDA0002898133510000021
Peter,
Figure BDA0002898133510000022
Michal,and
Figure BDA0002898133510000023
Anna出版物A New Approach of Control System Design for LLC Resonant Converter[用于LLC谐振转换器的控制系统设计的新方法]中披露的解决方案。在;MA TLAB forEngineers-Applications in Control,Electrical Engineering,IT and Robotics[用于工程师的MATLAB——在控制、电气工程、IT和机器人技术中的应用].In Tech,2011年,其中,通过使用斩波频率控制DC到DC转换器的输出电压。通过使用模拟对频率步长的输出电压响应的动态范围的PSPICE硬件模型,采用识别方法推导出占空比与输出电压之间的传递函数。然后基于先前推导出的传递函数来设计控制器。
传递函数也可以通过称为“小信号”方法的方法来获得,该方法包括根据函数点周围的激励来推导传递函数,并测量DC到DC转换器的响应,如YANG,Bo 2003年的博士学位论文Topology investigation of front end DC/DC converter for distributed powersystem[分布式电源系统前端DC/DC转换器的拓扑研究]所描述的。然而,该传递函数仅在所讨论的操作点处有效,并且在每次操作点发生变化时都会过时。因此,每次必须重新计算传递函数。因此,这种解决方案实施起来相对复杂并且在计算时间方面是昂贵的。
在输出电压在有限范围内变化时涉及调节DC电流的控制操作也是已知的。
最后,FANG,Zhijian,WANG,Junhua,DUAN,Shanxu等人的出版物Control of anLLC Resonant Converter Using Load Feedback Linearization[使用负载反馈线性化对LLC谐振转换器的控制],IEEE Transactions on Power Electronics[IEEE电力电子学报],2018年,第33卷,第1期,第887-898页也披露了用于控制LLC DC到DC转换器的输出电压的反馈线性化控制操作。该出版物描述了具有7个状态、随后被简化为2个状态的非线性模型,并且提出了PI回路控制。然而,这种解决方案需要复杂且昂贵的硬件和软件适应性。
在一些情况下,输出电压由电池施加。此外,在一些情况下,尤其在电动车辆应用中,该输出电压在很大的值范围内变化,例如在250V至430V之间。
因此,期望调节DC输入电压,因为这允许跨PFC的输出端处的电容器的端子来施加DC电压。
然而,调节LLC DC到DC转换器的DC输入电压是现有技术无法提供任何令人满意的解决方案的主题。
因此,需要一种用于快速且可靠地控制LLC DC到DC转换器的输入端处的DC电压的解决方案。提出了一种用于控制以50%的占空比操作并受频率控制的LLC DC到DC转换器的输入电压的频率的方法,
该方法包括:
-定义设定点电压值的预备步骤,
-基于输出电池电压、输入功率设定点和所述设定点输入电压来计算所述DC到DC转换器的控制频率值的步骤,该控制频率值是通过对所述DC到DC转换器的增益的表达式进行数学反演而获得的;以及
-将以这种方式计算出的该控制频率应用于所述转换器的步骤。
因此,可以相对简单且快速地获得对DC到DC转换器的输入控制。
有利地且非限制性地,所述DC到DC转换器是由包括两个电感器和一个电容器的等效电路的参数来定义的LLC串联谐振DC到DC转换器;所述控制频率值是所述两个电感器和所述一个电容器的值的函数。因此,通过近似DC到DC转换器的操作来获得对控制频率的计算,从而允许简化计算并加快该方法。
有利地且非限制性地,应用以这种方式计算出的该控制频率的所述步骤包括:
-定义频率增量步长;
-将该控制频率初始化为与以这种方式计算出的该控制频率相对应的初始控制值的步骤;
-定义第一阈值和第二阈值、以及该第一阈值的加法逆元和该第二阈值的加法逆元;
-计算所测得输入电压值与所述设定点输入电压之间的误差值的步骤;以及
-将所述误差值与所述阈值进行比较的步骤;
-该方法包括调节步骤,在该调节步骤期间:
-当所述误差值介于该第一阈值与该第一阈值的加法逆元之间时,并且当所述误差大于该第二阈值或小于该第二阈值的加法逆元时,使该初始控制频率增加该频率增量步长;
-当所述误差值介于该第二阈值与该第二阈值的加法逆元之间时,该控制频率被保持在其先前值;
-如果这些条件都不满足,则将该初始控制值作为该控制频率来应用。
因此,该方法包括相对简单、快速且稳健的频率控制。
根据本发明的一个特定实施例,该方法包括对控制频率的反馈控制。
本发明还涉及一种用于实施如上所述的方法的设备。
本发明还涉及一种用于蓄电池的充电器,该充电器包括功率因数校正级、至少一个DC到DC转换器、以及如上所述的设备。
本发明还涉及一种机动车辆,该机动车辆包括如上所述的用于蓄电池的充电器。
在参照附图阅读通过指示而非限制性地提供的本发明的一个具体实施例的以下描述时,本发明的其他区别特征和优点将会变得明显,在附图中:
-图1是现有技术中已知的用于蓄电池的充电器的示意图;
-图2是用于根据图1的充电器的DC到DC转换器的详细视图;
-图3是根据图2的DC到DC转换器的LLC电路的简化图;以及
-图4是根据本发明一个实施例的控制方法的流程图。
由于图1至图4涉及相同的实施例,因此将同时对其进行讨论。
参考图1,连接到三相电网10的用于蓄电池13的充电器1包括功率因数校正级11(也称为PFC级11)以及DC到DC转换器12a和12b,每个转换器包括逆变器212。
三相电网10连接到输入滤波器14,该滤波器将滤波后的输入电流传输到PFC级11。
在PFC 11的输出端处,连接到PFC级11的输出电容器的端子的两个DC电压总线分别耦合到DC到DC转换器12a、12b,所述转换器的输出端与一连串蓄电池13并联连接。
每个DC到DC转换器12a、12b(图2中仅示出了一个示例)包括输入MOSFET桥120、LLC电路121(图3中示出了对该电路的简化等效描述)、变压器22和输出二极管桥122。
充电器1进一步包括用于控制DC到DC转换器12的装置15,该装置能够实施根据本发明的控制方法4。
根据本发明的控制方法4旨在控制DC到DC转换器12的输入电压的频率。
为此,根据本发明的方法包括计算DC到DC转换器的斩波频率。
参考图3,已知根据本发明的LLC DC到DC转换器的传递函数采用以下形式:
Figure BDA0002898133510000061
其中,G是DC到DC转换器的(或至少是DC到DC转换器的逆变器部分直到变压器的初级的)传递函数的增益;
η是DC到DC转换器的变压器的匝数比;
Vbat是电池端子两端的电压,即,DC到DC转换器的输出电压;
Vdc是DC到DC转换器的DC输入电压;
并且根据通用术语:V输出是DC到DC转换器的输出电压,并且V输入是DC到DC转换器的输入电压。
参考图3,其是DC到DC转换器的简化视图,DC到DC转换器的变压器的等效电阻R对应于被称为变压器初级的电池负载。因此,R是根据以下等式计算的:
Figure BDA0002898133510000071
其中,NP和NS分别是变压器初级和次级处的匝数,P是变压器初级处的功率,并且Vbat是变压器次级处的电压。
因此,将等式(1)的传递函数写为如下:
该电路的传递函数被写为:
Figure BDA0002898133510000072
因此,为了计算DC到DC转换器的传递函数的增益,执行以下计算:
Figure BDA0002898133510000073
将该等式(4)重写为角频率ω的函数(ω=2πfsw),其中,s=jω。
因此,可以根据以下等式来写出增益等式:
Figure BDA0002898133510000074
或者
Figure BDA0002898133510000075
计算传递的增益G,以便根据等式获得控制频率fsw的表达式:
fsw(ω)=fct(Vbat,Preq,Vdc(设定点)) (5)
其中,Vbat是电池电压,Vdc是DC到DC转换器的输入电压,并且Preq是DC到DC转换器的输入功率设定点。
实际上,用G(s)表达式中的设定点Vdc值替换Vdc使得可以计算DC总线以给定电压(例如,450V)收敛的频率。
增益G被计算为是ηVbat/Vdc之比,即,在该实施例中,G=ηVbat/450V。
从中推导出取决于(ω=2πf)的三阶方程:
ω3+Aω2+Bω+C=0 (6)
其中,参数A、B和C是Vbat、Preq、Lm和Lr(DC到DC转换器的等效图的电感值)、以及Cr(DC到DC转换器的等效图的电容值)的函数。
求解ω的等式(6)使得可以使用前馈控制来计算DC到DC转换器的控制频率fsw(ω)。
由于参数离散度和计算准确度并且还由于在写出DC到DC转换器的传递函数时所进行的简化假设,应用该直接计算不足以消除所测得DC电压与设定点之间的稳态误差。然而,误差仍然较小并且最大为30V。
为了克服该问题,参考图4,已经为先前的前馈添加了控制器。该控制器通过使频率增加或减少来进行操作,直到稳态误差已被消除为止,并且因此在稍大程度上调整通过先前计算生成的初始频率,以提高准确性。
根据第一实施例的控制器是离散控制器,其中:
eps1是阈值,频率增加/频率减少从该阈值开始;
eps2是控制频率固定的阈值。
根据一个实施例,同样参考图4,在第一步骤中,如上所述,基于设定点电压VDC req(例如,450V)、所需的功率Preq(例如,范围为0<Preq<11kW的功率)且基于电池电压(使得250V<Vbat<430V)来计算40控制频率fsw(ω)(也称为开关频率fsw(ω))。
控制频率值fsw(k)被初始化41为先前计算的初始频率值fsw_前馈
然后,计算44DC到DC转换器的设定点电压VDC req与所测量输入电压Vdc 所测得之间的误差值ε。
将该误差值ε与两个误差阈值eps1和eps2进行比较。
如果(条件1)误差ε介于eps1的极限与-eps1的极限之间(例如,介于10V与-10V之间),并且另外如果误差ε大于eps2或小于-eps2、这些阈值为例如5V和-5V,则使初始频率值fsw_前馈增加43频率增量步长ΔF的增量,即:
fsw(k)=fsw_前馈+ΔF (7)
K是时间整数。
在该步骤43之后,该方法循环回到步骤44。
如果(条件2)在步骤44之后误差ε介于eps2的极限与-eps2的极限之间,则确保DC总线在设定值的5V范围内的频率值fsw(k)是固定的并被保持45在先前的值,即:
fsw(k)=fsw(k-1)
值fsw(k-1)在条件1先前尚未满足时等于fsw_前馈,或者在k个先前步骤43之后进行步骤45时等于fsw_前馈+k*ΔF。
如果在步骤44中这些条件都不满足,则使用46在步骤40中通过前馈计算出的频率值fsw(k)。该值会定期更新。只要不满足关于误差的条件,控制操作将继续应用通过前馈计算出的频率,步骤43、45和46循环回到步骤44。
本发明不限于针对误差阈值eps1和eps2给出的示例性值。特别地,根据操作点的可行性,可以将eps2设置为1V或0V。
该方法确保了收敛以通过前馈作用确保的稳定频率来进行,并借助控制器的作用使其有效,从而消除了任何残留的稳态误差并确保了DC总线准确地收敛于设定点值。
本发明不限于在第一示例性实施例中描述的这种类型的控制器。还可以提供比例积分控制器或比例积分微分控制器,尽管对该控制器的调谐比对本发明的第一实施例中的控制器的调谐更为复杂,但是其实施方式对于本领域技术人员是已知的。

Claims (7)

1.一种用于控制以50%的占空比操作并受频率控制的LLC DC到DC转换器(12)的输入电压的频率的方法(4),该方法包括:
-定义设定点电压值(Vdc req)的预备步骤,
-基于输出电池电压(Vbat)、输入功率设定点(Preq)和所述设定点输入电压(Vdc req)来计算所述DC到DC转换器(12)的控制频率值(fsw(ω))的步骤(40),该控制频率值是通过对所述DC到DC转换器(12)的增益的表达式进行数学反演而获得的;以及
-将以这种方式计算出的该控制频率应用于所述转换器的步骤。
2.如权利要求1所述的方法(4),其特征在于,所述DC到DC转换器是由包括两个电感器(Lm,Lr)和一个电容器(Cr)的等效电路的参数来定义的LLC串联谐振DC到DC转换器;
所述控制频率值(fsw(ω))是所述两个电感器(Lm,Lr)和所述一个电容器(Cr)的值的函数。
3.如权利要求1或2所述的方法(4),其特征在于,应用以这种方式计算出的该控制频率的步骤包括:
-定义频率增量步长(ΔF);
-将该控制频率(fsw(k))初始化为与以这种方式计算出的该控制频率相对应的初始控制值(fsw_前馈)的步骤(41);
-定义第一阈值(eps1)和第二阈值(eps2)、以及该第一阈值的加法逆元(-eps1)和该第二阈值的加法逆元(-eps2);
-计算所测得输入电压值(Vdc 所测得)与所述设定点输入电压(Vdc req)之间的误差值(ε)的步骤(44);以及
-将所述误差值与所述阈值(eps1,-eps1,eps2,-eps2)进行比较的步骤(42);
-该方法包括调节步骤,在该调节步骤期间:
-当所述误差值介于该第一阈值(eps1)与该第一阈值的加法逆元(-eps1)之间时,并且当所述误差大于该第二阈值(eps2)或小于该第二阈值的加法逆元(-eps2)时,使该控制频率(fsw(k))增加(43)该频率增量步长(ΔF);
-当所述误差值介于该第二阈值(eps2)与该第二阈值的加法逆元(-eps2)之间时,该控制频率(fsw(k))被保持(45)在其先前值;
-如果这些条件都不满足,则将该初始控制值作为该控制频率来应用。
4.如权利要求1至3中任一项所述的方法(4),其特征在于,该方法进一步包括对该控制频率的反馈控制。
5.一种用于实施如权利要求1至4中任一项所述的方法(4)的设备。
6.一种用于蓄电池(13)的充电器(1),该充电器包括功率因数校正级(11)、至少一个DC到DC转换器(12a,12b)、以及如权利要求5所述的设备。
7.一种机动车辆,包括如权利要求6所述的用于蓄电池(13)的充电器(1)。
CN201980047297.8A 2018-07-16 2019-06-24 用于控制dc到dc转换器的输入电压的频率的方法 Pending CN112449742A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1856534A FR3083929B1 (fr) 2018-07-16 2018-07-16 Procede de commande en frequence de la tension d'entree d'un convertisseur courant continu-courant continu
FR1856534 2018-07-16
PCT/EP2019/066607 WO2020015953A1 (fr) 2018-07-16 2019-06-24 Procédé de commande en fréquence de la tension d'entrée d'un convertisseur courant continu-courant continu

Publications (1)

Publication Number Publication Date
CN112449742A true CN112449742A (zh) 2021-03-05

Family

ID=65200908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980047297.8A Pending CN112449742A (zh) 2018-07-16 2019-06-24 用于控制dc到dc转换器的输入电压的频率的方法

Country Status (6)

Country Link
US (1) US11901830B2 (zh)
EP (1) EP3824539A1 (zh)
JP (1) JP7383002B2 (zh)
CN (1) CN112449742A (zh)
FR (1) FR3083929B1 (zh)
WO (1) WO2020015953A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082680B1 (fr) * 2018-06-15 2020-05-29 Renault S.A.S Procede de commande en frequence de la tension d'entree d'un convertisseur courant continu-courant continu
US11239709B2 (en) 2020-04-30 2022-02-01 Nucurrent, Inc. Operating frequency based power level altering in extended range wireless power transmitters
US11476722B2 (en) 2020-04-30 2022-10-18 Nucurrent, Inc. Precision power level control for extended range wireless power transfer
US11310934B2 (en) 2020-04-30 2022-04-19 Nucurrent, Inc. Multi-channel cooling for extended distance wireless power transmitter
US11482890B2 (en) 2020-04-30 2022-10-25 Nucurrent, Inc. Surface mountable wireless power transmitter for transmission at extended range
CN111736680B (zh) * 2020-05-28 2022-04-22 广东浪潮大数据研究有限公司 电源缓启动的控制方法、控制装置、控制设备及存储介质
US11637459B2 (en) 2020-12-23 2023-04-25 Nucurrent, Inc. Wireless power transmitters for transmitting power at extended separation distances utilizing T-Core shielding
US11476711B2 (en) 2020-12-23 2022-10-18 Nucurrent, Inc. Wireless power transmitters and associated base stations for through-structure charging
US11387674B1 (en) 2020-12-23 2022-07-12 Nucurrent, Inc. Wireless power transmitters for transmitting power at extended separation distances utilizing concave shielding
US11387684B1 (en) 2020-12-23 2022-07-12 Nucurrent, Inc. Wireless power transmitters and associated base stations for transmitting power at extended separation distances
US11757311B2 (en) 2020-12-23 2023-09-12 Nucurrent, Inc. Wireless power transmitters and associated base stations for transmitting power at extended separation distances
US11942799B2 (en) 2021-04-30 2024-03-26 Nucurrent, Inc. False notification suppression in wireless power transfer system
US11539247B2 (en) 2021-04-30 2022-12-27 Nucurrent, Inc. Power capability detection in precision power level control systems for wireless power transmission
US11532956B2 (en) 2021-04-30 2022-12-20 Nucurrent, Inc. Power capability detection with verification load in power level control systems for wireless power transmission
US11791667B2 (en) 2021-04-30 2023-10-17 Nucurrent, Inc. Power capability detection for wireless power transmission based on receiver power request
US11482891B1 (en) * 2021-04-20 2022-10-25 Nucurrent, Inc. Timing verification in precision power level control systems for wireless power transmission
FR3124906A1 (fr) 2021-07-05 2023-01-06 Renault S.A.S Procédé de commande d’un convertisseur DC-DC réversible.
FR3125370A1 (fr) 2021-07-13 2023-01-20 Renault S.A.S Procédé de commande d’un convertisseur DC-DC réversible.
US11637448B1 (en) 2021-10-12 2023-04-25 Nucurrent, Inc. Wireless power transmitter with removable magnetic connector panel for vehicular use
US11967830B2 (en) 2021-10-12 2024-04-23 Nucurrent, Inc. Wireless power transmitters for transmitting power at extended separation distances with magnetic connectors
CN116316535B (zh) * 2023-03-22 2023-09-12 广东工业大学 基于电容储能的直流母线电压补偿装置的控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077255B2 (en) 2013-01-11 2015-07-07 Futurewei Technologies, Inc. Resonant converters and methods
JP2016131414A (ja) * 2015-01-13 2016-07-21 新電元工業株式会社 スイッチング電源
JP6367738B2 (ja) * 2015-02-27 2018-08-01 株式会社日立製作所 電力変換装置
JP6132887B2 (ja) * 2015-09-09 2017-05-24 三菱電機株式会社 電力変換装置
US10560024B2 (en) * 2015-09-17 2020-02-11 Conductive Holding, LLC Bidirectional DC/DC converter for a charging system
US9787117B2 (en) * 2015-09-17 2017-10-10 Conductive Holding, LLC Bidirectional battery charger integrated with renewable energy generation
FR3060230B1 (fr) * 2016-12-14 2019-01-25 Renault S.A.S Procede de commande d'un dispositif de charge embarque sur un vehicule electrique ou hybride.
JP6844509B2 (ja) * 2017-11-16 2021-03-17 オムロン株式会社 電源装置及び制御装置

Also Published As

Publication number Publication date
WO2020015953A1 (fr) 2020-01-23
US11901830B2 (en) 2024-02-13
US20210296999A1 (en) 2021-09-23
FR3083929B1 (fr) 2020-06-19
JP2021531719A (ja) 2021-11-18
FR3083929A1 (fr) 2020-01-17
JP7383002B2 (ja) 2023-11-17
EP3824539A1 (fr) 2021-05-26

Similar Documents

Publication Publication Date Title
CN112449742A (zh) 用于控制dc到dc转换器的输入电压的频率的方法
KR101025896B1 (ko) 전원시스템 및 그것을 구비한 차량, 전원시스템의 제어방법 및 그 제어방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록매체
Zhang et al. Sensorless predictive current controlled DC–DC converter with a self-correction differential current observer
JP6017536B2 (ja) 単相の電力供給網にもとづいて自動車の電池を充電するための装置、およびこの装置の制御方法
WO2011039794A1 (ja) 電力変換装置
CN113939987A (zh) 用于控制为蓄电器的电池充电的双向充电器的dc-dc转换器的方法
EP3570424B1 (en) Methods and systems for controlling a dc bus voltage from a three-phase voltage source
Zhou et al. A predictive set-point modulation energy management strategy for hybrid energy storage systems
JP2011004541A (ja) 交流電動機の制御装置
JP7258054B2 (ja) Dc/dc変換器の入力電圧周波数を制御するための方法
Jia et al. DC-link voltage control strategy of a bi-directional DC/DC converter for electric vehicles
JP6973635B2 (ja) モータシステムの制御方法、及び、モータシステムの制御装置
CN116526844A (zh) 光伏储能设备的控制方法、光伏储能系统及光伏供电系统
CN110798065B (zh) 升压转换器的控制装置
JP6627702B2 (ja) 電力変換器の制御装置
Kim et al. Current Sensor-Free Output-Feedback Voltage Control for DC/DC Converters via Critical Damping Injection Technique for Converter-Fed Servo System Applications
Forato et al. Dynamic EV charging WPT system control based on Modulated Variable Laplace Transform
CN115882713A (zh) 用于控制功率因数校正以抑制过电流的设备和方法
WO2024095705A1 (ja) 電力変換装置、プログラム
CN113162417B (zh) 直流变换电路、电流纹波优化方法及车载充电机
Zheng et al. An intelligent charging control method for electric vehicle charging system
US20210399626A1 (en) Power conversion device
CN113383488A (zh) 用于控制具有n个开关单元的升压转换器的方法
JP4835812B2 (ja) 電力変換装置
CN115459595A (zh) 一种交错并联直流变换控制系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination