CN112442192B - 一种氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系统的制备方法 - Google Patents

一种氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系统的制备方法 Download PDF

Info

Publication number
CN112442192B
CN112442192B CN201910810834.1A CN201910810834A CN112442192B CN 112442192 B CN112442192 B CN 112442192B CN 201910810834 A CN201910810834 A CN 201910810834A CN 112442192 B CN112442192 B CN 112442192B
Authority
CN
China
Prior art keywords
zinc oxide
agar
solution
hydrogel
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910810834.1A
Other languages
English (en)
Other versions
CN112442192A (zh
Inventor
冯章启
李�瑞
金飞
李通
杜丽娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201910810834.1A priority Critical patent/CN112442192B/zh
Publication of CN112442192A publication Critical patent/CN112442192A/zh
Application granted granted Critical
Publication of CN112442192B publication Critical patent/CN112442192B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/12Agar-agar; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系统的方法。该方法先将纳米氧化锌颗粒高度分散在水与乙醇的混合溶液中得到纳米氧化锌分散液,并将琼脂粉末溶解在水中,使其高度溶胀后与上述溶液混合,再在混合溶液中加入N‑羟乙基丙烯酰胺单体与1wt%HEAA的2‑羟基‑4‑(2‑羟基乙氧基)‑2‑甲基苯丙酮作为光引发剂,搅拌,充分反应后,将预凝胶液倒入特氟龙模板中并覆以PET膜,置于波长为365nm的紫外灯下,光照反应1小时。通过在琼脂基体中原位形成ZnO纳米棒,先用乙醇溶液氧化锌纳米粒子,再用一种高聚物p(HEAA)增加韧性,本发明制备的氧化锌纳米粒子介导的高韧性水凝胶拥有优异的强度和良好的导电性。

Description

一种氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系 统的制备方法
技术领域
本发明属于医用材料制备技术领域,涉及一种氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系统的制备方法。
背景技术
自1981年美国上市第一个用于治疗运动病的TTS—东莨菪碱贴剂以来,透皮吸收制剂应用于临床受到普遍欢迎。透皮给药可以避免传统给药方式存在的问题,提高药物在体内的预见性,可避免肝脏的首过效应和药物在胃肠道的降解,克服因吸收过快产生血药浓度过高而引起的不良反应;可持续控制给药速度,灵活给药等。而且,透皮给药使用方便,给药时病体不适感低,更适合于婴儿、老人或因呕吐不宜口服药物的病人以及长期用药的病人。鉴于其更人性化的给药治疗特点以及透皮技术的不断发展,会具有更广阔的前景。
水凝胶是一类与天然细胞外基质高度相似、易于穿透皮肤屏障,具有极小的侵入性和限制性的高分子材料。迄今为止,水凝胶逐渐成为生物医学应用中药物输送系统和组织工程的潜在材料,包括表皮、药物控制和细胞工程。水凝胶皮肤贴剂与皮肤有很好的亲和性,可以促进皮肤角质层细胞的水化膨胀,有利于药物的透皮释放。同时,交联聚合物网络使水凝胶呈固态,具有吸湿性、优异的透氧性、优异的结构稳定性和多样性,
大多数研究表明,药物从亲水凝胶骨架中释放过程符合Fick定律,因此质地均匀,稠度适宜是透皮凝胶材料的首选。如Shen及其同事采用透析膜扩散法制备了一种丹参凝胶剂并进行了体外释药试验;Meng等人用微针阵列对皮肤进行刺透约150um以提高有效药物利用浓度。这些亲水材料的应用对释药有或多或少的阻碍,因此降低材料黏性、添加响应性机制有助于改进该类透皮给药凝胶系统。
该凝胶系统含有乙烯基功能基团,所以采用的是2-羟基-4-(2-羟基乙氧基)-2-甲基苯丙酮作为光引发剂进行光交联固化水凝胶,该种引发剂能随光的照射而分解,将不会漂浮在凝胶表面,从而减少细胞毒性。
发明内容
本发明目的在于提供一种氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系统的制备方法。该水凝胶具有良好的力学性能、自愈性能和导电性能,同时纳米氧化锌的抗菌能力和酸碱响应性,可以改善现有响应性水凝胶,响应性单一、易污染的缺点,扩宽了水凝胶材料在药物递送系统中的应用。
实现本发明目的的技术方案如下:
氧化锌纳米粒子介导的高韧性水凝胶的制备方法,具体步骤如下:
步骤1,以乙醇和水的混合溶液为溶剂,将氧化锌纳米粒子溶于溶剂中,超声至均匀分散,得到纳米氧化锌的分散液,加入琼脂,高温搅拌至溶胀完全,再加入N-羟乙基丙烯酰胺与光引发剂,搅拌至混合均匀,除去气泡,得到预凝胶溶液,其中,琼脂的浓度为1.5~2.5wt%,氧化锌纳米粒子为琼脂质量的3.33%~16.7%,N-羟乙基丙烯酰胺的浓度为35.0~46.3wt%,光引发剂的用量为N-羟乙基丙烯酰胺单体的1wt%;
步骤2,采用光聚合法,选择波长365nm、功率10w的紫外灯,置于距预凝胶液上方,光照反应,得到琼脂-氧化锌纳米粒子/p(HEAA)水凝胶。
优选地,步骤1中,所述的溶剂中,乙醇和水的体积比为8:1~9:1。
优选地,步骤1中,所述的纳米氧化锌为棒状纳米氧化锌。
优选地,步骤1中,所述的超声时间为1h。
优选地,步骤1中,所述的高温搅拌时间为2~3h,高温搅拌温度为90~100℃。
优选地,步骤1中,所述的琼脂的浓度为1.77wt%,氧化锌纳米粒子质量为琼脂质量的6.67wt%,N-羟乙基丙烯酰胺的浓度为40.0wt%。
优选地,步骤2中,所述的预凝胶倒入聚四氟乙烯模具中,覆上PET薄膜。
优选地,步骤2中,所述的光照反应为0.5h。
与现有技术相比,本发明具有以下显著优点:
(1)本发明的工艺简单,原料易得;
(2)本发明制备的水凝胶柔性好,韧性高;
(3)本发明制备的水凝胶比表面积大,具有较高的质子导电率,其质子导电率可达0.11s/cm;
(4)本发明制得的复合膜吸水率高,化学稳定性好,效能利用率高。
附图说明
图1为本发明制得的琼脂-氧化锌纳米粒子/p(HEAA)水凝胶的光学照片,a、宏观照片展示了良好的透明度和物理柔性b、生物倒置显微镜下观察到的自愈效果c、利用导电性点亮灯泡。
图2为本发明制得的琼脂-氧化锌纳米粒子/p(HEAA)水凝胶的应力-应变图。
图3为本发明制得的琼脂-氧化锌纳米粒子/p(HEAA)水凝胶的电导率图。
图4为本发明制得的琼脂-氧化锌纳米粒子/p(HEAA)水凝胶的循环伏安图。
图5为本发明制得的琼脂-氧化锌纳米粒子/p(HEAA)水凝胶的EIS图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步详述。
实施例1
将1mg的棒状纳米氧化锌颗粒超声处理1h,使其高度分散在体积比为9:1的乙醇和水的混合溶液中。将30mg琼脂粉溶于该混合溶液中,置于95℃恒温搅拌机上1000r/min高速搅拌2-3h,待其完全溶胀。再加入600mL N-羟乙基丙烯酰胺单体(HEAA)与适量光引发剂。然后,在温度40℃、转速1000r/min下恒温高速搅拌至溶液澄清透明,得到的预凝胶溶液进行光照聚合,最后,先将预凝胶液倒入模具中覆上PET膜,选择波长365nm、功率10w的紫外灯,置于距预凝胶液上方6cm处,光照反应0.5h,得到氧化锌纳米粒子介导的高韧性水凝胶。
实施例2
将2mg的棒状纳米氧化锌颗粒超声处理1h,使其高度分散在体积比为9:1的乙醇和水的混合溶液中。将30mg琼脂粉溶于该混合溶液中,置于95℃恒温搅拌机上1000r/min高速搅拌2-3h,待其完全溶胀。再加入700mL N-羟乙基丙烯酰胺单体(HEAA)与适量光引发剂。然后,在温度40℃、转速1000r/min下恒温高速搅拌至溶液澄清透明,得到的预凝胶溶液进行光照聚合,最后,先将预凝胶液倒入模具中覆上PET膜,选择波长365nm、功率10w的紫外灯,置于距预凝胶液上方6cm处,光照反应0.5h,得到琼脂-氧化锌纳米粒子/p(HEAA)水凝胶。
实施例3
将5mg的棒状纳米氧化锌颗粒超声处理1h,使其高度分散在体积比为9:1的乙醇和水的混合溶液中。将30mg琼脂粉溶于该混合溶液中,置于95℃恒温搅拌机上1000r/min高速搅拌2-3h,待其完全溶胀。再加入600mL N-羟乙基丙烯酰胺单体(HEAA)与适量光引发剂。然后,在温度40℃、转速1000r/min下恒温高速搅拌至溶液澄清透明,得到的预凝胶溶液进行光照聚合,最后,先将预凝胶液倒入模具中覆上PET膜,选择波长365nm、功率10w的紫外灯,置于距预凝胶液上方6cm处,光照反应0.5h,得到氧化锌纳米粒子介导的高韧性水凝胶。
图1为实施例制得的琼脂-氧化锌纳米粒子/p(HEAA)水凝胶的实物代表图。从图中可以看出,通过光引发制备的水凝胶呈透明状,能作为导体点亮LED灯,并且具有良好的自愈性能。
图2为实施例制得的琼脂-氧化锌纳米粒子/p(HEAA)水凝胶的力学拉伸图。
从图中可以看出,其,最大拉伸强度可达1.6MPa,最大拉伸断裂率是800%,通过杨氏模量公式(E=ε/δ,ε代表拉伸应力,δ代表拉伸应变)换算可得到水凝胶的杨氏模量为:4.3MPa。
图3为实施例制得的琼脂-氧化锌纳米粒子/p(HEAA)水凝胶的循环伏安图。从图中可以看出,整个图形呈现闭合曲线,曲线中间无尖端突出,表明这种导电水凝胶的电化学稳定性良好。
图4为实施例制得的琼脂-氧化锌纳米粒子/p(HEAA)水凝胶的电阻率图。从图中可以看出,随ZnO纳米粒子用量的增加,电阻率下降,说明电导率升高,导电性变好。
图5为实施例制得的琼脂-氧化锌纳米粒子/p(HEAA)水凝胶的电化学阻抗图。从图中可以看出,其电化学阻抗值为1.38KΩ,通过质子导电率公式(σ=L/twR,L为电极的距离、t为膜的厚度、w为膜的宽度、R为膜的阻抗)换算可得到纳米纤维膜的质子导电率为:0.011s/cm。
对比例1
本对比例与实施例1基本相同,唯一不同的是氧化锌纳米粒子的形貌为粒径为20-30nm的球形。在优选条件下,该类水凝胶电阻率增大明显。
对比例2
本对比例与实施例1基本相同,唯一不同的是氧化锌纳米粒子的形貌为粒径为70-90nm的球形。在优选条件下,该类水凝胶电阻率增大。
对比例3
本对比例与实施例1基本相同,唯一不同的是是否添加琼脂,在优选条件下,得到了硬质ZnO/p(HEAA)高聚物,通过测试发现该高聚物没有导电性。

Claims (8)

1.氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系统的制备方法,其特征在于,具体步骤如下:
步骤1,制备预凝胶液,以水和乙醇为溶剂,加入氧化锌纳米粒子;微波超声至均匀分散,加入琼脂粉,加热搅拌使其完全溶胀并均匀包裹纳米氧化锌粒子,再加入N-羟乙基丙烯酰胺作为增韧机制、2-羟基-4′-(2-羟乙氧基)-2-甲基苯丙酮作为光引发剂,磁力搅拌下反应;所述的纳米氧化锌是棒状纳米氧化锌;
步骤2,采用光聚合法,选择波长365nm、功率10w的紫外灯,置于距预凝胶液上方,光照反应,得到琼脂/氧化锌纳米粒子/HEAA纳米复合水凝胶。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的溶剂中水和乙醇的体积比为8-9:1。
3.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的搅拌时间为2~3h,搅拌温度为90~100℃。
4.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的琼脂粉占溶剂的30mg/ml,氧化锌纳米粒子与琼脂的质量比为1:30,N-羟乙基丙烯酰胺与溶剂体积比为3:5。
5.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的光引发剂含量是HEAA的1wt%。
6.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的磁力搅拌的转速为1000r/min,时间为1h。
7.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的预凝胶倒入聚四氟乙烯模具中,并覆上PET薄膜再进行光照反应。
8.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的光照反应为0.5h。
CN201910810834.1A 2019-08-29 2019-08-29 一种氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系统的制备方法 Active CN112442192B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910810834.1A CN112442192B (zh) 2019-08-29 2019-08-29 一种氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系统的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910810834.1A CN112442192B (zh) 2019-08-29 2019-08-29 一种氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系统的制备方法

Publications (2)

Publication Number Publication Date
CN112442192A CN112442192A (zh) 2021-03-05
CN112442192B true CN112442192B (zh) 2022-09-13

Family

ID=74741332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910810834.1A Active CN112442192B (zh) 2019-08-29 2019-08-29 一种氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系统的制备方法

Country Status (1)

Country Link
CN (1) CN112442192B (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507629A (ja) * 2013-02-20 2016-03-10 セルフォース インコーポレイテッド ナノ結晶性セルロースを含むチューナブルかつ応答性のフォトニックヒドロゲル

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Synthesis, characterization and antimicrobial applications of zincoxide nanoparticles loaded gum acacia/poly(SA) hydrogelsS;S.K.Bajpai等;《Carbonhydrate Polymers》;20160721;第60-65页 *
水溶性纳米氧化锌粒子对聚N,N-异丙基丙烯酰胺/nZnO@clay纳米复合水凝胶性能的影响;张燕等;《2011年全国高分子学术论文报告会》;20110928;第722页 *

Also Published As

Publication number Publication date
CN112442192A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
Wei et al. Conductive self-healing nanocomposite hydrogel skin sensors with antifreezing and thermoresponsive properties
Jiang et al. Three-dimensional printing and injectable conductive hydrogels for tissue engineering application
Li et al. Iontophoresis-driven porous microneedle array patch for active transdermal drug delivery
Hong et al. Biocompatible conductive hydrogels: applications in the field of biomedicine
CN113679888A (zh) 光固化成型复合水凝胶基质前驱体及其制备方法和带有其的支架
CN106362202B (zh) 一种具有微电流和药物缓释作用的水凝胶及制备方法与应用
CN113174074A (zh) 一种导电丝素蛋白膜及其制备方法和用途
Dutta et al. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization
CN109621181A (zh) 一种光热响应性复合微针及其制备方法
Lu et al. Intestine-inspired wrinkled MXene microneedle dressings for smart wound management
Zeng et al. Tailoring food biopolymers into biogels for regenerative wound healing and versatile skin bioelectronics
Han et al. A 3D printable gelatin methacryloyl/chitosan hydrogel assembled with conductive PEDOT for neural tissue engineering
CN115386259A (zh) 一种防干抗冻光敏水凝胶墨水及其制备方法和高精度光固化水凝胶及其应用
CN112442192B (zh) 一种氧化锌纳米粒子介导的高韧性水凝胶制备电响应药控系统的制备方法
CN108635619A (zh) 一种多功能纳米纤维复合凝胶敷料的制备方法
Montaina et al. Three-dimensional-printed polyethylene glycol diacrylate-polyaniline composites by in situ aniline photopolymerization: An innovative biomaterial for electrocardiogram monitoring systems
Lu et al. Developing hierarchical microneedles for biomedical applications
Cheng et al. Generation of a photothermally responsive antimicrobial, bioadhesive gelatin methacryloyl (GelMA) based hydrogel through 3D printing for infectious wound healing
Zhu et al. Photocuring 3D printable flexible strain sensor enhanced by in situ grown silk fibroin nanoparticles
Li et al. Kirigami triboelectric spider fibroin microneedle patches for comprehensive joint management
Xu et al. Versatile Graphene Oxide Hybrid Supramolecular Hydrogel Driven by Host–Guest Interaction Showing Excellent Mechanical and Sensing Properties and Photothermal Responsiveness
Han et al. Modern microelectronics and microfluidics on microneedles
Chen et al. 3D-printed piezocatalytic hydrogels for effective antibacterial treatment of infected wounds
CN216603546U (zh) 一种仿生丝素蛋白基的自驱动电控载药贴片
Regato-Herbella et al. ROS-Responsive 4D Printable Acrylic Thioether-Based Hydrogels for Smart Drug Release

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant