CN112420858A - 一种硅基脊波导光电晶体管探测器 - Google Patents

一种硅基脊波导光电晶体管探测器 Download PDF

Info

Publication number
CN112420858A
CN112420858A CN202011120442.1A CN202011120442A CN112420858A CN 112420858 A CN112420858 A CN 112420858A CN 202011120442 A CN202011120442 A CN 202011120442A CN 112420858 A CN112420858 A CN 112420858A
Authority
CN
China
Prior art keywords
region
ridge waveguide
collector region
silicon
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011120442.1A
Other languages
English (en)
Other versions
CN112420858B (zh
Inventor
谢红云
向洋
沙印
朱富
纪瑞朗
张万荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202011120442.1A priority Critical patent/CN112420858B/zh
Publication of CN112420858A publication Critical patent/CN112420858A/zh
Application granted granted Critical
Publication of CN112420858B publication Critical patent/CN112420858B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种硅基脊波导光电晶体管探测器。该晶体管包括Si衬底、在Si衬底上制备的SiO2 BOX层、在BOX层上依次制备的Si次集电区、Si集电区、Si0.8Ge0.2基区和多晶Si发射区,其中由n型Si次集电区、n型Si集电区、p型Si0.8Ge0.2基区和n型多晶硅发射区构成渐变耦合脊波导结构。一种硅基脊波导光电晶体管探测器的入射光,代替传统HPT光从顶端垂直入射的方式,由Si次集电区、Si集电区、Si0.8Ge0.2基区和多晶Si发射区构成的波导的端面侧向入射,光传输方向与载流子运动方向垂直,实现被探测光由侧边探测吸收,缓解光响应度和光电响应速度之间的矛盾,为提高光吸收效率和提高载流子传输速度提供了机会。

Description

一种硅基脊波导光电晶体管探测器
技术领域
本发明属于半导体光电子领域,特别涉及一种硅基脊波导光电晶体管探测器,其中入射光由Si次集电区、Si集电区、Si0.8Ge0.2基区和多晶Si发射区构成的波导的端面侧向入射,沿着波导方向水平传输,与电子和空穴输运方向垂直,可以分别优化光吸收效率和载流子传输速度。
背景技术
硅光子以其先进的处理技术、高集成密度、低价格、高带宽、高传输速率和抗干扰等特点得到了广泛的认可。同时,SiGe探测器具有优良的光电特性,如近红外波段高响应率和高带宽,与CMOS处理兼容等,成为近年来的研究热点。目前传统的HPT采用的是单异质结外延结构和垂直面入射结构,基区和集电区同为光吸收区,产生光生载流子,由于空穴迁移率较低,其在集电区中的缓慢输运严重限制了器件的光电响应速度。为了缩短光生载流子尤其是光生空穴从集电区漂移至发射结的渡越时间,提高器件的工作速度,需要薄的基区和集电区,而若要提高器件光吸收效率并获得高的光响应度,则需要厚的基区和集电区。因此传统台面结构的单异质结光敏晶体管器件在高效探测和高速工作的优化上会出现矛盾。
同时,采用波导型的PIN二极管探测器也在快速发展。2007年,Fidaner等获得了2.5Gb/s数据速率和17.9mA/cm2暗电流密度的波导SiGe探测器。2012年Onaran等研制出了一种波导SiGe探测器,其低暗电流为10mA/cm2,响应率值超过0.1A/W。在2014年。Chaisakul等获得了带宽为4GHz、暗电流为2.5mA/cm2的波导SiGe探测器。
发明内容
本发明的目的是针对现有HPT探测器在光响应度和光响应速度的优化之间的矛盾,提出一种硅基脊波导光电晶体管探测器。
一种硅基脊波导光电晶体管探测器,其特征在于:包括Si衬底、SiO2 BOX层、Si次集电区、Si集电区、Si0.8Ge0.2基区和多晶Si发射区;其中,SiO2 BOX层的厚度介于0.2μm到0.4μm之间,掺有磷元素的Si次集电区的掺杂浓度介于2×1018cm-3到2×1020cm-3之间且厚度介于0.2μm到0.4μm之间,掺有磷元素的Si集电区的掺杂浓度介于7×1015cm-3到7×1017cm-3之间且厚度介于0.5μm到0.7μm之间,掺有硼元素的Si0.8Ge0.2基区的掺杂浓度介于1×1015cm-3到1×1017cm-3之间且厚度介于0.05μm到0.1μm之间,掺有磷元素的Si发射区的掺杂浓度介于2×1019cm-3到2×1021cm-3之间且厚度介于0.2μm到0.4μm之间。
进一步,其中Si次集电区、n型Si集电区、Si0.8Ge0.2基区和和多晶Si发射区构成脊波导结构,脊波导的宽度为2.5-3μm,长度≥20μm。
进一步,其中入射光由Si次集电区、Si集电区、Si0.8Ge0.2基区和多晶Si发射区构成的脊波导结构的端面侧向入射,沿着波导方向水平传输,与电子和空穴输运方向垂直。
此脊波导结构能够保证探测器为单模传输,TE模和TM模可以很好地限制在波导里面,提高入射光的吸收效率。
上述方案中,入射光由Si次集电区、Si集电区、Si0.8Ge0.2基区和多晶Si发射区构成的波导的端面侧向入射,沿着波导方向水平传输,与电子和空穴输运方向垂直,可以独立优化光的吸收和载流子传输速率。
附图说明
为进一步说明本发明的技术特征,结合以下附图,对本发明作一个详细的描述,其中:
图1是一种硅基脊波导光电晶体管探测器三维示意图。
图2是一种硅基脊波导光电晶体管探测器的光波导分布:(a)TE模场(b)TM模场。
图3是一种硅基脊波导光电晶体管探测器与垂直入射的传统硅锗光电晶体管探测器的对比图:(a)光特征频率、(b)集电极电流。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
该探测器包括:Si衬底1、SiO2 BOX层2、Si次集电区3、Si集电区4、Si0.8Ge0.2基区5和多晶Si发射区6。
上述方案中SiO2 BOX层为SiO2 BOX层2,厚度介于0.2μm到0.4μm之间;
上述方案中Si次集电区为Si次集电区3,掺有磷元素的Si次集电区的掺杂浓度介于2×1018cm-3到2×1020cm-3之间、厚度介于0.2μm到0.4μm之间;
上述方案中Si集电区为Si集电区4,掺有磷元素的Si集电区的掺杂浓度介于7×1015cm-3到7×1017cm-3之间、厚度介于0.5μm到0.7μm之间;
上述方案中Si0.8Ge0.2基区为Si0.8Ge0.2基区5,掺有硼元素的Si0.8Ge0.2基区的掺杂浓度介于1×1015cm-3到1×1017cm-3之间、厚度介于0.05μm到0.1μm之间;
上述方案中多晶Si发射区为多晶Si发射区6,掺有磷元素的多晶Si发射区的掺杂浓度介于2×1019cm-3到2×1021cm-3之间、厚度介于0.2μm到0.4μm之间。
上述方案中,Si次集电区3、Si集电区4、Si0.8Ge0.2基区5和多晶Si发射区6共同形成了渐变耦合脊波导结构,其中脊波导的宽度为2.5-3μm,长度≥20μm。
如图1所示,本发明实施例提供的一种硅基脊波导光电晶体管探测器包括:Si衬底1、SiO2 BOX层2、Si次集电区3、Si集电区4、Si0.8Ge0.2基区5和多晶Si发射区6。其中Si衬底厚度为0.5μm,SiO2 BOX层的厚度为0.3μm,掺有磷元素的Si次集电区的掺杂浓度介于2×1018cm-3到2×1020cm-3之间、厚度介于0.2μm到0.4μm之间,掺有磷元素的Si集电区的掺杂浓度介于7×1015cm-3到7×1017cm-3之间、厚度介于0.5μm到0.7μm之间,掺有硼元素的Si0.8Ge0.2基区的掺杂浓度介于1×1015cm-3到1×1017cm-3之间、厚度介于0.05μm到0.1μm之间,掺有磷元素的Si发射区的掺杂浓度介于2×1019cm-3到2×1021cm-3之间、厚度介于0.2μm到0.4μm之间。
所述n型Si次集电区、n型Si集电区、p型Si0.8Ge0.2基区和n型多晶Si发射区构成渐变耦合脊波导结构,其中脊波导的宽度为2.5-3μm,此宽度能够确保探测器为单模传输,TE模和TM模可以很好地限制在波导里面;脊波导的长度≥20μm,此长度能够确保入射光可以完全被吸收,如图2所示,(a)为TE模场分布,(b)为TM模场分布。
耦合进入光波导结构中光沿着波导方向水平传输,与电子和空穴输运方向垂直,光的吸收不再受限于吸收区的厚度,因此可以设计薄的吸收层来提高器件的响应速率。
图3(a)给出了在相同电流下,硅基脊波导光电晶体管探测器的特征频率,在集电极电流为65mA时的最大特征频率为102GHz,约为垂直光电晶体管探测器的特征频率的5倍,这是因为垂直入射光电晶体管探测器的吸收层厚度较厚,工作速度受空穴低迁移率的严重影响,降低了器件的特征频率。硅基脊波导光电晶体管探测器则由于光的传输方向沿着波导方向传输,载流子运动方向垂直于波导方向,可以独立优化光的吸收和载流子传输速率,减小了空穴对器件特征频率的影响,提高了器件的工作速度。
图3(b)给出了集电极电压为5V的情况下,硅基脊波导光电晶体管探测器的饱和集电极电流约为20mA,响应度为0.5A/W,其输出电流和响应度低于垂直光电晶体管探测器,其原因为硅基脊波导光电晶体管探测器对侧面入射光的吸光区体积远远小于垂直HPT对垂直入射光的吸光区体积(垂直SiGe HPT的光学窗口面积为6μm x 6μm)。
由此可见,本发明提供的一种硅基脊波导光电晶体管探测器缓解了光响应度和光电响应速度之间的矛盾,为提高光吸收效率和提高器件的工作速度提供了机会。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.一种硅基脊波导光电晶体管探测器,其特征在于:包括Si衬底、SiO2BOX层、Si次集电区、Si集电区、Si0.8Ge0.2基区和多晶Si发射区;其中,SiO2BOX层的厚度介于0.2μm到0.4μm之间,掺有磷元素的Si次集电区的掺杂浓度介于2×1018cm-3到2×1020cm-3之间且厚度介于0.2μm到0.4μm之间,掺有磷元素的Si集电区的掺杂浓度介于7×1015cm-3到7×1017cm-3之间且厚度介于0.5μm到0.7μm之间,掺有硼元素的Si0.8Ge0.2基区的掺杂浓度介于1×1015cm-3到1×1017cm-3之间且厚度介于0.05μm到0.1μm之间,掺有磷元素的Si发射区的掺杂浓度介于2×1019cm-3到2×1021cm-3之间且厚度介于0.2μm到0.4μm之间。
2.根据权利要求1所述一种硅基脊波导光电晶体管探测器,其中Si次集电区、Si集电区、Si0.8Ge0.2基区和和多晶Si发射区构成脊波导结构,脊波导的宽度为2.5-3μm,长度≥20μm。
3.根据权利要求1所述一种硅基脊波导光电晶体管探测器,其中入射光由Si次集电区、Si集电区、Si0.8Ge0.2基区和多晶Si发射区构成的脊波导结构的端面侧向入射,沿着波导方向水平传输,与电子和空穴输运方向垂直。
CN202011120442.1A 2020-10-20 2020-10-20 一种硅基脊波导光电晶体管探测器 Active CN112420858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011120442.1A CN112420858B (zh) 2020-10-20 2020-10-20 一种硅基脊波导光电晶体管探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011120442.1A CN112420858B (zh) 2020-10-20 2020-10-20 一种硅基脊波导光电晶体管探测器

Publications (2)

Publication Number Publication Date
CN112420858A true CN112420858A (zh) 2021-02-26
CN112420858B CN112420858B (zh) 2022-09-09

Family

ID=74840159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011120442.1A Active CN112420858B (zh) 2020-10-20 2020-10-20 一种硅基脊波导光电晶体管探测器

Country Status (1)

Country Link
CN (1) CN112420858B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183237A (ja) * 1991-12-27 1993-07-23 Fujitsu Ltd 半導体受光装置
CN101034185A (zh) * 2006-03-06 2007-09-12 中国科学院半导体研究所 多层金属间氧化物脊形波导结构及其制作方法
CN103545399A (zh) * 2013-10-28 2014-01-29 北京工业大学 行波电极渐变耦合脊波导InP双异质结光敏晶体管
CN205723580U (zh) * 2016-05-09 2016-11-23 厦门市计量检定测试院 Si基Ge混合型波导光电探测器
CN107946383A (zh) * 2017-11-23 2018-04-20 北京工业大学 一种具有行波电极的硅基波导型光敏晶体管探测器
US20180348431A1 (en) * 2015-12-02 2018-12-06 The Trustees Of The University Of Pennsylvania High refractive index waveguides and method of fabrication
CN110047969A (zh) * 2019-05-06 2019-07-23 北京工业大学 一种SOI基SiGe双异质结光敏晶体管探测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183237A (ja) * 1991-12-27 1993-07-23 Fujitsu Ltd 半導体受光装置
CN101034185A (zh) * 2006-03-06 2007-09-12 中国科学院半导体研究所 多层金属间氧化物脊形波导结构及其制作方法
CN103545399A (zh) * 2013-10-28 2014-01-29 北京工业大学 行波电极渐变耦合脊波导InP双异质结光敏晶体管
US20180348431A1 (en) * 2015-12-02 2018-12-06 The Trustees Of The University Of Pennsylvania High refractive index waveguides and method of fabrication
CN205723580U (zh) * 2016-05-09 2016-11-23 厦门市计量检定测试院 Si基Ge混合型波导光电探测器
CN107946383A (zh) * 2017-11-23 2018-04-20 北京工业大学 一种具有行波电极的硅基波导型光敏晶体管探测器
CN110047969A (zh) * 2019-05-06 2019-07-23 北京工业大学 一种SOI基SiGe双异质结光敏晶体管探测器

Also Published As

Publication number Publication date
CN112420858B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN105247691B (zh) 一种雪崩光电二极管及其制造方法
US20180294365A1 (en) Optical waveguide detector and optical module
CN113035982B (zh) 全硅掺杂多结电场增强型锗光波导探测器
CN210136887U (zh) 一种波导型光电探测器
CN105742397A (zh) 一种可见光到红外光探测的宽波段光电二极管
CN103701533B (zh) 基于标准SiGe BiCMOS工艺的光电集成接收机
CN110896112B (zh) 波导集成的GeSn光电探测器及其制造方法
CN111276555A (zh) 基于InGaAs/InAlAs/InP雪崩光电探测器的结构优化方法
CN104576786A (zh) 新型零伏响应雪崩光电探测器芯片及其制作方法
CN113838940B (zh) 一种集成型光电探测器及其制作方法
CN112201723A (zh) 一种波导型光电探测器及其制备方法
CN204067379U (zh) 新型零伏响应雪崩光电探测器芯片
CN112420858B (zh) 一种硅基脊波导光电晶体管探测器
CN203691420U (zh) 基于标准SiGe BiCMOS工艺的光电集成接收机
CN110808312B (zh) 一种提高光电探测器芯片产出量的制备工艺方法
CN109904274B (zh) 一种锗硅光电探测器
CN115224138B (zh) 一种水平拉通型锗硅雪崩光电探测器
CN100433340C (zh) 与深亚微米射频工艺兼容的硅光电探测器
CN110890436B (zh) 波导型GeSn光电晶体管及其制造方法
CN107240616B (zh) 具有本征层结构的InGaAs/InP光敏晶体管红外探测器
CN109686805B (zh) 硅基高速高响应pin光电探测器及其制作方法
CN112420857A (zh) 光子晶体SiGe/Si光敏晶体管探测器
CN220829969U (zh) 一种可见光及近红外片上传感结构
Khan et al. Spectral response modelling of GaAs-based heterojunction phototransistors for short wavelength detection
CN109494276A (zh) 一种高速高效可见光增敏硅基雪崩光电二极管阵列

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant