CN203691420U - 基于标准SiGe BiCMOS工艺的光电集成接收机 - Google Patents

基于标准SiGe BiCMOS工艺的光电集成接收机 Download PDF

Info

Publication number
CN203691420U
CN203691420U CN201320867887.5U CN201320867887U CN203691420U CN 203691420 U CN203691420 U CN 203691420U CN 201320867887 U CN201320867887 U CN 201320867887U CN 203691420 U CN203691420 U CN 203691420U
Authority
CN
China
Prior art keywords
input
sige bicmos
output
photoelectric
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201320867887.5U
Other languages
English (en)
Inventor
谢生
毛陆虹
郭增笑
付友
康玉琢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201320867887.5U priority Critical patent/CN203691420U/zh
Application granted granted Critical
Publication of CN203691420U publication Critical patent/CN203691420U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

本实用新型属于光纤通信系统及光互连领域,为实现单片集成所具有的体积小、成本低、可靠性好、功能丰富等优点。本实用新型提出一种与标准SiGe BiCMOS工艺兼容的光电探测器,以及集成该探测器的高速、高灵敏度单片集成光接收机。为了达到上述技术要求,本实用新型采用的技术方案是,基于标准SiGe BiCMOS工艺的光电集成接收机,包括:两个结构完全对称的光电探测器、一个全差分结构的跨阻放大器、一组顺序级联的全差分限幅放大器、一个输出缓冲级,其作用是将限幅放大器输出的差分电压信号转换成单端输出的电压信号,并提供驱动能力。本实用新型主要应用于光纤通信系统的设计制造。

Description

基于标准SiGe BiCMOS工艺的光电集成接收机
技术领域
本实用新型属于光纤通信系统及光互连领域,涉及一种与锗硅双极-互补金属氧化物半导体(SiGe BiCMOS)工艺兼容的光电探测器,以及单片集成该探测器的高速光接收机,具体讲,涉及一种基于标准SiGe BiCMOS工艺的光电集成接收机。
背景技术
随着通信和多媒体技术的不断发展,人们对数据信息的需求量持续增加。由于光纤通信具有高速、大容量等优点,故在干线网络中得到广泛应用。然而,对于用户终端而言,受光电集成芯片的成本限制,光纤到户的“最后一公里”难以持续推进。因此,研制低成本、高性能的光电集成芯片成为集成光电子领域的研究热点。
作为光纤通信系统的重要组成部分,光接收机前端的参数指标决定着通信系统的整体性能。目前,现行实用的光接收机普遍采用III-V族化合物半导体探测器和硅基标准CMOS电路的混合集成,因而存在寄生效应大、成本高、可靠性差等问题。为了克服混合集成的上述限制,科研人员提出采用技术成熟的硅基标准CMOS工艺实现光接收机的单片集成化,并实施了多种集成方案。例如,毛陆虹等人对标准CMOS工艺的探测器结构和单片集成光接收机进行了系统研究,提出了与CMOS工艺兼容的硅光电探测器(ZL200310101069.5,ZL200720098995.5),带前均衡电路的CMOS光电集成接收机(ZL200510015149.8),以及带宽和灵敏度均倍增的标准CMOS差分光电集成接收机(ZL200710060333.3)等结构。然而,受硅材料自身的间接带隙特性和工艺结构的限制,标准CMOS工艺制备的光电探测器难以同时兼顾速度和响应度两方面的性能。常规结构探测器的带宽仅为数十MHz,严重限制了单片集成光接收机的整体性能。另外,基于标准CMOS工艺实现的硅基探测器无法检测1310nm和1550nm两个重要的通信波段。因此,到目前为止,基于标准CMOS工艺实现的光电集成接收机尚未进入实用阶段。
发明内容
本实用新型旨在解决现有技术的不足,克服硅基标准CMOS工艺制备光电探测器的限制,同时实现单片集成所具有的体积小、成本低、可靠性好、功能丰富等优点。本实用新型提出一种与标准SiGe BiCMOS工艺兼容的光电探测器,以及集成该探测器的高速、高灵敏度单片集成光接收机。为了达到上述技术要求,本实用新型采用的技术方案是,基于标准SiGeBiCMOS工艺的光电集成接收机,包括:
两个结构完全对称的光电探测器,其中一个探测器是将光纤输入的光信号转换成电流信号,另一个探测器用于维持差分电路的输入负载平衡,增加接收机带宽;
一个全差分结构的跨阻放大器,其作用是把光电探测器输出的电流信号转化为电压信号,并进行初步放大;
一组顺序级联的全差分限幅放大器,其作用是将跨阻放大器输出的电压信号放大到数字处理单元所需的电压水平;
一个输出缓冲级,其作用是将限幅放大器输出的差分电压信号转换成单端输出的电压信号,并提供驱动能力。
高跨导的锗硅异质结双极晶体管(SiGe HBT)作为跨阻放大器的共射级输入。
限幅放大器为四级,后两级为带折叠有源电感负载结构,第四级限幅放大器输入差分对管采用高跨导的锗硅异质结双极晶体管替代传统金属氧化物场效应晶体管(Si MOSFET),以提高限幅放大器的增益。
输出缓冲级采用锗硅异质结双极晶体管作为输入差分对,采用电流镜负载实现双端输入向单端输出的转换,并在负载管两端并联由栅极、漏极相连的MOS管形成的二极管结构实现阻抗匹配。
探测器结构为:在p型轻掺杂硅衬底上顺序外延重掺杂的n型硅埋层和轻掺杂的n型硅层;然后光刻、刻蚀深沟槽和浅沟槽,并用高密度等离子体技术分别填充绝缘介质和氧化硅,形成深沟槽和浅沟槽隔离区域,浅沟槽隔离区域位于轻掺杂n型硅层,深沟槽隔离区域穿越轻掺杂的n型外延层和重掺杂的n型埋层,直至p型衬底;在其他区域被掩模保护的情况下,利用砷离子对轻掺杂n型硅层进行重掺杂注入,形成探测器的n型接触区;在其他区域被多晶硅保护的情况下,在轻掺杂的n型硅层上选择外延生长p型掺杂的SiGe层;通过光刻、刻蚀技术形成环绕p型掺杂的锗硅层的多晶硅图形,对多晶硅进行B+注入掺杂和退火激活,形成光电探测器的p型重掺杂区和p型多晶硅外接触区;淀积氧化硅和氮化硅介质层,该介质层同时兼作探测器的抗反射膜,增加入射光在探测器表面的入射效率;光刻、刻蚀探测器的电极窗口,淀积Ni/Ti/Au金属复合膜,制备出探测器的阳极电极和阴极电极。
与现有硅基标准CMOS工艺的光电集成接收机相比,本实用新型具有如下优点:
1、利用标准SiGe BiCMOS工艺的结构特点,可实现多种结构的光电探测器。此外,由于锗硅对850nm波长光的吸收系数更高,因而可实现高速、高响应度的光电探测器;
2、由于锗硅异质结双极晶体管具有比传统硅基金属氧化物场效应晶体管(MOSFET)更高的有效跨导,因而基于SiGe BiCMOS工艺更容易设计出增益带宽积高、噪声系数低的放大电路;
3、本实用新型设计的光电探测器和放大电路均与标准SiGe BiCMOS工艺兼容,可在同一芯片上实现高性能的光接收机前端与信号处理后端的单片集成,从而降低成本,增强功能。综上所诉,本实用新型提出光接收机具有良好的应用前景。
附图说明
图1给出本实用新型所设计光接收机的电路结构原理图。
图2给出了本实用新型所设计的光电探测器的剖面示意图。
图3给出了本实用新型所设计的光接收机前端的电路原理图,其中:
(a)差分共射跨阻放大器电路图
(b)差分共射共栅跨阻放大器电路图
(c)限幅放大器电路图
(d)输出缓冲级电路图
具体实施方式
1、本实用新型提出的光电探测器可充分利用SiGe BiCMOS工艺的结构特点,构建出PN结、PIN、MSM及光电晶体管等多种探测器结构,亦可利用锗硅外延层提高探测器的响应度。
2、本实用新型提出的基于标准SiGe BiCMOS工艺的光接收机前端电路包括:
两个结构完全对称的光电探测器,其中一个探测器是将光纤输入的光信号转换成电流信号,另一个探测器用于维持差分电路的输入负载平衡,增加接收机带宽;
一个全差分结构的跨阻放大器,其作用是把光电探测器输出的电流信号转化为电压信号,并进行初步放大;
一组顺序级联的全差分限幅放大器,其作用是将跨阻放大器输出的电压信号放大到数字处理单元所需电压水平;
一个输出缓冲级,其作用是将限幅放大器输出的差分电压信号转换成单端输出的电压信号,并提供驱动能力。
3、两个结构完全对称的光电探测器中的第一探测器PD1用于探测光纤输出的光信号,第二探测器PD2为补偿探测器,为全差分跨阻放大器提供对称的输入电容,保持跨阻前置放大器的输入负载平衡。
4、采用高跨导的锗硅异质结双极晶体管(SiGe HBT)作为跨阻放大器的共射级输入。由于锗硅异质结双极晶体管具有比金属氧化物场效应晶体管(MOSFET)更大的有效跨导,因而可将输入极点向高频方向推移,从而有效降低探测器寄生电容对电路带宽的恶化。
5、考虑系统功耗和放大器多级级联引起的宽带变窄,本实用新型优选四级限幅放大器。为了增加带宽,同时不影响系统整体的噪声性能,后两级限幅放大器采用折叠有源电感技术。另外,第四级限幅放大器输入差分对管采用高跨导的锗硅异质结双极晶体管替代传统金属氧化物场效应晶体管(Si MOSFET),以提高限幅放大器的增益。
6、为提高光接收机的带宽和实现输出阻抗匹配,输出缓冲级采用锗硅异质结双极晶体管作为输入差分对,采用PMOS电流镜负载实现双端输入向单端输出的转换,并在PMOS管旁并联低阻抗的NMOS管,以调整输出电阻,增大驱动能力。
下面结合附图和实施例对本实用新型作进一步地详述。
本实用新型提供了一种基于标准SiGe BiCMOS工艺实现的光电探测器及其高速光电集成接收机。该接收机是在全差分光电集成接收机的架构基础上,利用SiGe BiCMOS工艺的结构特点及其提供的锗硅外延层,实现了纵向结构的PIN光电探测器;利用锗硅异质结双极晶体管高速、高驱动能力和CMOS电路低功耗、高集成度的优点,设计出高速、低噪声的放大电路。本实用新型所设计光接收机的电路结构原理图如图1所示。该接收机包括两个结构完全对称的光电探测器、一个全差分结构的跨阻放大器、一组顺序级联的全差分限幅放大器和一个输出缓冲级。
作为优选实例,本实用新型中的光电探测器由异质结双极晶体管的p+基区、n-集电区和n+埋层实现,器件的剖面结构如图2所示。其中,1为p型衬底;2为重掺杂的n型埋层;3为轻掺杂的n型外延层;4为选择外延的p型掺杂层;5为重掺杂的n型接触区;6为绝缘介质填充的深沟槽;7为氧化物填充的浅沟槽;8为光电探测器的p型重掺杂区;9为光电探测器的p型多晶硅接触区;10为光电探测器的阳极电极;11为光电探测器的阴极电极;12为介质隔离层。由于本实用新型提出的光电探测器结构与标准SiGe BiCMOS工艺兼容,所以可在制备锗硅异质结双极晶体管的过程中同时实现光电探测器。
图2中:层7位于层6之上,层9位于层7之上,层11位于层5之上。其中,层11和层5电学导通。层7和层6、层7和层9的叠放位置是固定的、必须的。
下面结合实施例和附图2对光电探测器的具体实现工艺进行描述:在优选实施例中,首先在p型轻掺杂硅衬底1上顺序外延重掺杂的n型硅埋层2和轻掺杂的n型硅层3;然后光刻、刻蚀深沟槽和浅沟槽,并用高密度等离子体技术分别填充绝缘介质和氧化硅,形成深沟槽6和浅沟槽7所示的隔离区域;在其他区域被掩模保护的情况下,利用砷离子对图2所示的轻掺杂n型硅层3进行重掺杂注入,形成探测器的n型接触区5;在其他区域被多晶硅保护的情况下,在轻掺杂的n型硅层3上选择外延生长p型掺杂的SiGe层4;通过光刻、刻蚀技术形成环绕p型掺杂的锗硅层4的多晶硅图形,对多晶硅进行B+注入掺杂和退火激活,形成光电探测器的p型重掺杂区8和p型多晶硅外接触区9;淀积氧化硅和氮化硅介质层12,该介质层同时兼作探测器的抗反射膜,增加入射光在探测器表面的入射效率;光刻、刻蚀探测器的电极窗口,淀积Ni/Ti/Au金属复合膜,制备出探测器的阳极电极10和阴极电极11。
图3(a)给出了差分跨阻放大器的一个优选实施例。该结构为差分共射跨阻放大器,由锗硅异质结双极晶体管Q1和Q2、NMOS晶体管M0、PMOS晶体管M1至M4组成。其中,双极晶体管Q1和Q2作为差分输入对管;NMOS晶体管M0为偏置管,提供偏置电流;PMOS晶体管M1和M2为工作在深线性区的MOS管电阻,该电阻跨接在输入管Q1和Q2的基极和集电极之间,作为反馈电阻;PMOS管M3和M4为恒流源负载。差分共射跨阻放大器的左右支路完全对称,即输入差分对管Q1和Q2的尺寸和版图形状、反馈电阻M1和M2的尺寸和版图形状以及负载管M3和M4的尺寸和版图形状都是完全相同的,且他们在版图排布上也是完全对称的。
本实用新型差分跨阻放大器的另一优选实施例如图3(b)所示。该实施例为差分共射共栅结构,由双极晶体管Q11和Q12、NMOS晶体管M10至M16及PMOS晶体管M17和M18组成。其中,异质结双极晶体管Q11和Q12作为共射共栅结构的共射管;M10为偏置管,提供偏置电流;NMOS晶体管M11、M12为MOS管电阻;NMOS晶体管M13和M14为共射共栅结构的共栅管,与异质结双极晶体管Q11和Q12组成共射共栅结构;NMOS晶体管M15和M16为二极管连接负载;PMOS晶体管M17和M18为工作于线性区的MOS管电阻。共射共栅结构跨阻放大器的左右支路完全对称,即共射对管Q11和Q12的尺寸和版图形状、共栅对管M13和M14的尺寸和版图形状、负载管M15和M16的尺寸和版图形状以及线性MOS电阻管M17和M18的尺寸和版图形状都完全相同,且他们在版图排布上完全对称。
本实用新型所述的差分限幅放大器采用四级全差分结构。其中,前两级结构完全相同,后两级结构相似。前两级限幅放大器由NMOS管M20至M29组成,其中M20和M25为偏置管,提供偏置电流;NMOS管M21、M22及M26、M27分别为差分输入对管;NMOS管M23、M24及M28、M29为负载管。这些相互配对的NMOS管的尺寸和形状完全相同,在版图结构上也是完全对称的。为拓展频带的同时保持系统整体的噪声性能,后两级放大器采用折叠有源电感技术。第三级限幅放大器由MOS管M30至M36组成。其中,M30为偏置管;M31和M32为差分输入对管;M33和M34为差分输入的负载管;PMOS管M35和M36为有源折叠电感。为提高限幅放大器的增益,第四级限幅放大器由双极晶体管Q41和Q42、NMOS管M40至M42及PMOS管M43和M44组成。其中,双极晶体管Q41和Q42为差分输入对管;M40为偏置管,提供偏置电流;M33和M34为差分输入的负载管;PMOS管M43和M44为有源折叠电感。同上,所述第三和第四级限幅放大器中相互配对的NMOS管、PMOS管及双极晶体管的尺寸和形状完全相同,在版图排布上也是完全对称的。
差分转单端的输出缓冲级由NMOS偏置管M50、差分输入对管Q51和Q52、NMOS负载管M51和M52以及PMOS晶体管M53和M54所组成。差分输入对管Q51和Q52的尺寸和形状、NMOS负载管M51和M52的尺寸和形状以及PMOS晶体管M53和M54的尺寸和形状完全相同,在版图排布上完全对称。NMOS偏置管M50的作用是提供偏置电流;PMOS负载管M53的栅极和M54栅极短接在一起,并与双极晶体管Q51的集电极相连,形成一个双端转单端结构,实现单端输出;NMOS负载管M51和M52的漏极和栅极以及PMOS负载管M53和M54的源级均与VDD相连。
在IBM0.18μm SiGe BiCMOS标准工艺条件下,图1所示的差分光电集成接收机的-3dB带宽优于2.7GHz,跨阻增益大于75dBΩ。

Claims (4)

1.一种基于标准SiGe BiCMOS工艺的光电集成接收机,其特征是,包括: 
两个结构完全对称的光电探测器,其中一个探测器是将光纤输入的光信号转换成电流信号,另一个探测器用于维持差分电路的输入负载平衡,增加接收机带宽; 
一个全差分结构的跨阻放大器,其作用是把光电探测器输出的电流信号转化为电压信号,并进行初步放大; 
一组顺序级联的全差分限幅放大器,其作用是将跨阻放大器输出的电压信号放大到数字处理单元所需的电压水平; 
一个输出缓冲级,其作用是将限幅放大器输出的差分电压信号转换成单端输出的电压信号,并提供驱动能力。 
2.如权利要求1所述的基于标准SiGe BiCMOS工艺的光电集成接收机,其特征是,高跨导的锗硅异质结双极晶体管(SiGe HBT)作为跨阻放大器的共射级输入。 
3.如权利要求1所述的基于标准SiGe BiCMOS工艺的光电集成接收机,其特征是,限幅放大器为四级,后两级为带折叠有源电感负载结构,第四级限幅放大器输入差分对管采用高跨导的锗硅异质结双极晶体管替代传统金属氧化物场效应晶体管(Si MOSFET),以提高限幅放大器的增益。 
4.如权利要求1所述的基于标准SiGe BiCMOS工艺的光电集成接收机,其特征是,输出缓冲级采用锗硅异质结双极晶体管作为输入差分对,采用电流镜负载实现双端输入向单端输出的转换,并在负载管两端并联由栅极、漏极相连的MOS管形成的二极管结构实现阻抗匹配。 
CN201320867887.5U 2013-12-20 2013-12-20 基于标准SiGe BiCMOS工艺的光电集成接收机 Expired - Fee Related CN203691420U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201320867887.5U CN203691420U (zh) 2013-12-20 2013-12-20 基于标准SiGe BiCMOS工艺的光电集成接收机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201320867887.5U CN203691420U (zh) 2013-12-20 2013-12-20 基于标准SiGe BiCMOS工艺的光电集成接收机

Publications (1)

Publication Number Publication Date
CN203691420U true CN203691420U (zh) 2014-07-02

Family

ID=51013269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201320867887.5U Expired - Fee Related CN203691420U (zh) 2013-12-20 2013-12-20 基于标准SiGe BiCMOS工艺的光电集成接收机

Country Status (1)

Country Link
CN (1) CN203691420U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105808486A (zh) * 2014-12-29 2016-07-27 北京华大九天软件有限公司 以有源电感为负载的高速驱动电路的实现
CN107749743A (zh) * 2017-10-10 2018-03-02 天津大学 基于SiGe BiCMOS的有源反馈共射共基跨阻放大器
CN111200463A (zh) * 2020-01-08 2020-05-26 广东省半导体产业技术研究院 一种阻抗调节装置及信号发射装置
CN114095092A (zh) * 2022-01-21 2022-02-25 微龛(广州)半导体有限公司 光接收模组及均衡补偿方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105808486A (zh) * 2014-12-29 2016-07-27 北京华大九天软件有限公司 以有源电感为负载的高速驱动电路的实现
CN107749743A (zh) * 2017-10-10 2018-03-02 天津大学 基于SiGe BiCMOS的有源反馈共射共基跨阻放大器
CN111200463A (zh) * 2020-01-08 2020-05-26 广东省半导体产业技术研究院 一种阻抗调节装置及信号发射装置
CN111200463B (zh) * 2020-01-08 2021-09-24 广东省半导体产业技术研究院 一种阻抗调节装置及信号发射装置
CN114095092A (zh) * 2022-01-21 2022-02-25 微龛(广州)半导体有限公司 光接收模组及均衡补偿方法

Similar Documents

Publication Publication Date Title
CN103701533B (zh) 基于标准SiGe BiCMOS工艺的光电集成接收机
CN102820857B (zh) 宽带高增益跨阻放大器
CN107147448B (zh) 一种高灵敏度的宽带光接收机前端电路
CN101197625B (zh) 带宽与灵敏度均倍增的标准cmos差分光电集成接收机
Yin et al. Low-cost, high-efficiency, and high-speed SiGe phototransistors in commercial BiCMOS
CN203691420U (zh) 基于标准SiGe BiCMOS工艺的光电集成接收机
CN103746667B (zh) 一种低噪声宽带光纤跨阻放大器
CN101197623B (zh) 一种差分光接收机及灵敏度和带宽同时倍增的方法
Garrett et al. A silicon-based integrated NMOS-pin photoreceiver
CN108923753A (zh) 基于cmos工艺的共源共栅跨阻放大器的带宽扩展电路
Schow et al. A 15-Gb/s 2.4-V optical receiver using a Ge-on-SOI photodiode and a CMOS IC
CN102856324B (zh) 用于塑料光纤通信的硅基单片光电集成接收芯片
Schneider et al. Highly sensitive optical receivers
CN102916655B (zh) 光耦合装置
CN103779361B (zh) 空间调制结构的光电探测器及其制备方法
CN101719504B (zh) 用于光电单片集成的硅基光电探测器及其制备方法
CN105471514A (zh) 一种用于cmos光接收机的高速全差分噪声降低装置
CN102833006A (zh) 光接收机
Escid et al. 0.35 μm CMOS optical sensor for an integrated transimpedance circuit
CN100413078C (zh) 带前均衡电路的cmos光电集成接收机
CN115224138B (zh) 一种水平拉通型锗硅雪崩光电探测器
CN103972247B (zh) 用于自动电力抄表系统的硅基单片光电集成接收芯片
CN201188423Y (zh) 带平面螺旋电感的cmos硅光电探测器
CN112635453A (zh) 一种光电探测器结构
Hammoudi et al. High bandwidth 0.35 μm CMOS transimpedance amplifier

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140702

Termination date: 20161220