CN112420857A - 光子晶体SiGe/Si光敏晶体管探测器 - Google Patents

光子晶体SiGe/Si光敏晶体管探测器 Download PDF

Info

Publication number
CN112420857A
CN112420857A CN202011120433.2A CN202011120433A CN112420857A CN 112420857 A CN112420857 A CN 112420857A CN 202011120433 A CN202011120433 A CN 202011120433A CN 112420857 A CN112420857 A CN 112420857A
Authority
CN
China
Prior art keywords
photonic crystal
sige
region
light
air holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011120433.2A
Other languages
English (en)
Inventor
谢红云
沙印
向洋
朱富
纪瑞朗
张万荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202011120433.2A priority Critical patent/CN112420857A/zh
Publication of CN112420857A publication Critical patent/CN112420857A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

光子晶体SiGe/Si光敏晶体管探测器属于半导体光电子领域,是更高效的红外波段探测器。该光子晶体SiGe/Si光敏晶体管探测器包括Si衬底、在Si衬底上依次制备出的SiO2 BOX层、Si亚集电区、Si集电区、SiGe基区、多晶硅发射区及光子晶体结构。光窗口设计在发射区台面且光从顶端垂直多晶硅发射区上表面入射,Si集电区、SiGe基区、多晶硅发射区为吸收层,光子晶体结构制作在吸收层中。通过调整光子晶体中空气孔的直径、深度、排布周期和排布形式,使其产生的光子带隙位于红外波段,在红外波段产生准陷光效应,将入射光限制在空气孔中,并且向空气孔周围泄露,使SiGe/Si光敏晶体管的吸收层从垂直方向的吸收层转化为水平方向的长吸收路径,从而提高SiGe/Si光敏晶体管的在红外波段的光吸收效率。

Description

光子晶体SiGe/Si光敏晶体管探测器
技术领域
本发明属于半导体光电子技术领域,特别涉及一种光子晶体SiGe/Si光敏晶体管探测器。这种光敏晶体管探测器在红外光波段有较高的光吸收效率,且工作速度可以不受光吸收效率的制约而实现独立优化。缓解了传统光敏晶体管的光吸收效率和工作速度之间的矛盾。
背景技术
光接入与互连、光处理与感知逐渐成为支撑激光雷达、大数据、物联网与智慧城市等应用领域自主可控发展的关键技术。其中的短距离光通信系统、高性能计算和激光雷达等所用光波长均落于800nm-1100nm的红外波段。覆盖红外波段的高速高效光电探测器是光传输、光感知和光处理系统中的关键元件。异质结光敏晶体管探测器集成了光探测和电放大两种功能,兼顾光探测器的响应度、灵敏度和工作速度,制备工艺与BiCMOS技术兼容,便于低成本高速高效光电集成接收芯片的实现,因此近几年硅基异质结光敏晶体管探测器成为研究人员强烈关注的热点。
对于传统的光敏晶体管,入射光从晶体管顶端入射,其采用厚的基区和集电区作为光吸收层以实现高响应度,光生载流子(电子和空穴)主要产生于基区和集电区,而空穴的迁移率较低,其在吸收层中的输运缓慢严重限制了器件的工作速度,在光吸收效率和工作速度之间存在矛盾。
发明内容
本发明的目的是提供一种高效且速度可独立优化的红外波段光子晶体SiGe/Si光敏晶体管探测器,缓解传统光敏晶体管探测器在光吸收效率和工作速度优化之间的矛盾。
本发明公开的这种新型红外波段光子晶体SiGe/Si光敏晶体管探测器,包括:
Si衬底1;在Si衬底上依次制备出的SiO2 BOX层2、Si亚集电区3、Si集电区4、SiGe基区5、多晶硅发射区6,其中Si集电区4、SiGe基区5、多晶硅发射区6为吸收层;位于吸收层中的光子晶体7。
上述方案中,所述多晶硅发射区6、SiGe基区5和Si集电区4构成的器件的光吸收层。
上述方案中,所述光子晶体7位于吸收层中,其空气孔的周期排布规律为方形或六边形,空气孔的深度0<h≤吸收区的总厚度,空气孔的分布周期a>光波长λ(λ为800nm-1100nm),空气孔的直径0nm<d≤1200nm。
上述方案中,红外波段(800nm≤λ≤1100nm)入射光垂直入射时,所述的光子晶体7可产生准陷光效应,入射光限制在空气孔中,并且向空气孔周围泄露,将垂直入射光的平面波模式转换成横向收集模式。由于吸收层在垂直方向上的总厚度很薄,但在水平方向上的尺寸很长,准陷光效应增长了光的吸收路径,故所述光子晶体7可将垂直超薄吸收层转化为长度更长的水平吸收区,从而提高SiGe/Si光敏晶体管在红外波段的光吸收效率。
附图说明
为进一步说明本发明的内容,以下结合附图和具体实例对本发明作进一步的描述,其中:
图1是光子晶体SiGe/Si光敏晶体管结构示意图;
图2是光子晶体空气孔方形和六边形排布示意图;(a)方形分布(b)六边形分布
图3是光子晶体XY面和XZ面光场分布图。(a)XY面光场在Z=0nm、100nm、200nm、400nm时的分布图;(b)XZ面光场分布图
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下结合具体实例,并参照附图,对本发明作进一步详细说明。
请参阅图1所示,本发明实例提供的光子晶体SiGe/Si光敏晶体管探测器包括:
Si衬底1;在Si衬底上依次制备出的SiO2 BOX层2、Si亚集电区3、Si集电区4、SiGe基区5、多晶硅发射区6,其中Si集电区4、SiGe基区5、多晶硅发射区6为吸收层;位于吸收层中的光子晶体7;发射极8制作在多晶硅发射区6上;基极9制作在SiGe基区5上;集电极10制作在Si亚集电区3上。
所述Si衬底1是非掺杂的本征Si衬底,厚度为2μm;
所述SiO2 BOX层2为非掺杂的SiO2 BOX层,厚度为0.4μm;
所述Si亚集电区3为n型重掺杂磷的Si亚集电区,掺杂浓度为1×1019cm-3-1×1020cm-3,厚度为0.3-0.4μm;
所述Si集电区4为n型轻掺杂磷的Si集电区,掺杂浓度为1×1016cm-3-1×1017cm-3,厚度为0.6-0.7μm;
所述SiGe基区5为p型重掺杂硼的SiGe基区,掺杂浓度为1×1018cm-3-1×1019cm-3,厚度为0.08-0.1μm;
所述多晶硅发射区6为n型重掺杂磷的多晶硅发射区,掺杂浓度为1×1019cm-3-1×1020cm-3,厚度为0.3-0.4μm;
所述多晶硅发射区6、SiGe基区5、Si集电区4构成器件的光吸收层;多晶硅发射区6的上表面为光子晶体SiGe/Si光敏晶体管探测器的光入射窗口。
所述的光子晶体7位于吸收层中,其空气孔的周期排布规律为方形或六边形,空气孔的深度0<h≤吸收层的总厚度,空气孔的分布周期a>光波长λ(λ为800nm-1100nm),空气孔的直径0<d≤1200nm。其可在红外波段(800nm≤λ≤1100nm)产生准陷光效应,入射光限制在空气孔中,并且向空气孔周围泄露,将垂直入射光的平面波模式转换成横向收集模式,实现垂直超薄吸收层转化为长度更长的水平吸收区,从而提高SiGe/Si光敏晶体管在红外波段的光吸收效率。
图2是光子晶体空气孔的方形和六边形排布示意图,柱子为空气孔,空气孔以外的区域为Si介质,其中空气孔的排布周期a为1000nm,空气孔的直径d为350nm,空气孔的深度h为1090nm。
图3是光子晶体XY面和XZ面光场分布图。在光子晶体空气柱的底部设置9个独立的光纤光源(光波长λ=940nm)沿Z轴正方向入射,得到光子晶体XY面光场随传输时间和距离增加的分布示意图3(a)。如图3(a)所示,光波在XY面发生横向传输,随着传输距离增大,光场存在区域增大,场强逐渐减小。光子晶体XZ面的光场分布如图3(b)所示,可以看出,在空气孔以外的Si介质中存在一定的光强。结果表明,所设计的光子晶体结构产生准陷光效应,入射光限制在空气孔中,并且向空气孔周围泄露,将垂直入射光的平面波模式转换成横向收集模式,实现垂直超薄吸收层转化为长度更长的水平吸收区,可以提高SiGe/Si光敏晶体管在红外波段的光吸收效率。同时,避免了为提高光敏晶体管的吸收效率而采用厚的吸收层导致的载流子渡越时间增加、晶体管工作速度减慢的情况,使晶体管的工作速度可以不受吸收效率的限制实现独立优化。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种光子晶体SiGe/Si光敏晶体管探测器,其特征在于包括:
Si衬底;在Si衬底上依次制备出的SiO2 BOX层、Si亚集电区、Si集电区、SiGe基区、多晶硅发射区;光子晶体结构;其中多晶硅发射区、SiGe基区和Si集电区构成器件的光吸收层,光子晶体位于吸收层中;
位于吸收层的光子晶体,其空气孔的周期排布规律为方形或六边形,空气孔的深度0<h≤吸收层的总厚度,空气孔的分布周期a>光波长λ,λ为800nm-1100nm,空气孔的直径0nm<d≤1200nm。
2.根据权利要求1所述光子晶体SiGe/Si光敏晶体管探测器,其特征在于:入射光垂直多晶硅发射区上表面入射,光子晶体将入射光限制在空气孔中,并且向空气孔周围泄露,将垂直的平面波模式转换成横向收集模式,实现垂直方向的吸收层转化为水平方向的吸收区。
CN202011120433.2A 2020-10-20 2020-10-20 光子晶体SiGe/Si光敏晶体管探测器 Pending CN112420857A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011120433.2A CN112420857A (zh) 2020-10-20 2020-10-20 光子晶体SiGe/Si光敏晶体管探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011120433.2A CN112420857A (zh) 2020-10-20 2020-10-20 光子晶体SiGe/Si光敏晶体管探测器

Publications (1)

Publication Number Publication Date
CN112420857A true CN112420857A (zh) 2021-02-26

Family

ID=74840942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011120433.2A Pending CN112420857A (zh) 2020-10-20 2020-10-20 光子晶体SiGe/Si光敏晶体管探测器

Country Status (1)

Country Link
CN (1) CN112420857A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551633A (zh) * 2022-02-27 2022-05-27 北京工业大学 一种吸收区独立且带有周期性光控单元的双极晶体管型硅基光探测器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105556680A (zh) * 2013-05-22 2016-05-04 王士原 微结构增强型吸收光敏装置
US20160307939A1 (en) * 2014-11-18 2016-10-20 Shih-Yuan Wang Microstructure enhanced absorption photosensitive devices
CN110047969A (zh) * 2019-05-06 2019-07-23 北京工业大学 一种SOI基SiGe双异质结光敏晶体管探测器
CN111640813A (zh) * 2020-06-10 2020-09-08 北京工业大学 一种宽光谱高吸收太阳能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105556680A (zh) * 2013-05-22 2016-05-04 王士原 微结构增强型吸收光敏装置
US20160307939A1 (en) * 2014-11-18 2016-10-20 Shih-Yuan Wang Microstructure enhanced absorption photosensitive devices
CN110047969A (zh) * 2019-05-06 2019-07-23 北京工业大学 一种SOI基SiGe双异质结光敏晶体管探测器
CN111640813A (zh) * 2020-06-10 2020-09-08 北京工业大学 一种宽光谱高吸收太阳能电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551633A (zh) * 2022-02-27 2022-05-27 北京工业大学 一种吸收区独立且带有周期性光控单元的双极晶体管型硅基光探测器

Similar Documents

Publication Publication Date Title
US11749772B2 (en) Photodetector, manufacturing method thereof, and lidar system
CN101090138A (zh) P+pin硅光电探测器
CN106356419A (zh) 一种含埋氧层结构的光电探测器
CN110047969A (zh) 一种SOI基SiGe双异质结光敏晶体管探测器
US20100282948A1 (en) Optical semiconductor device
CN103904152A (zh) 光电探测器及其制造方法和辐射探测器
CN109904274B (zh) 一种锗硅光电探测器
CN112420857A (zh) 光子晶体SiGe/Si光敏晶体管探测器
CN105226129B (zh) 一种SiGe/Si异质结光敏晶体管探测器
CN100424879C (zh) 深亚微米cmos工艺电感补偿型光电探测器及制作方法
US8871533B2 (en) Method for making solar cell and solar cell system
CN112531068A (zh) 一种集成微透镜结构的雪崩光电二极管
CN204067379U (zh) 新型零伏响应雪崩光电探测器芯片
Zeyu et al. All-silicon PIN photodetector based on black silicon microstructure
CN115377242B (zh) 一种soi上单片光电集成的台面型雪崩光电探测阵列芯片及其制备方法
WO2024050933A1 (zh) 二维光电探测器、光追踪装置和光通信系统
CN109686805B (zh) 硅基高速高响应pin光电探测器及其制作方法
JP3589390B2 (ja) 光電気集積回路およびヘテロ接合ホトトランジスタ
CN107240616B (zh) 具有本征层结构的InGaAs/InP光敏晶体管红外探测器
US20040036146A1 (en) Phototransistor device with fully depleted base region
US9349894B2 (en) Solar cell and solar cell system
CN112420858B (zh) 一种硅基脊波导光电晶体管探测器
CN103545399A (zh) 行波电极渐变耦合脊波导InP双异质结光敏晶体管
CN107302037B (zh) 基区Ge组分分段分布的SiGe/Si异质结光敏晶体管探测器
US9349890B2 (en) Solar cell and solar cell system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210226