WO2024050933A1 - 二维光电探测器、光追踪装置和光通信系统 - Google Patents

二维光电探测器、光追踪装置和光通信系统 Download PDF

Info

Publication number
WO2024050933A1
WO2024050933A1 PCT/CN2022/127178 CN2022127178W WO2024050933A1 WO 2024050933 A1 WO2024050933 A1 WO 2024050933A1 CN 2022127178 W CN2022127178 W CN 2022127178W WO 2024050933 A1 WO2024050933 A1 WO 2024050933A1
Authority
WO
WIPO (PCT)
Prior art keywords
photodiode
photosensitive
dimensional photodetector
current
light
Prior art date
Application number
PCT/CN2022/127178
Other languages
English (en)
French (fr)
Inventor
吕志坚
查露露
田金鹏
张文伟
Original Assignee
深圳技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学 filed Critical 深圳技术大学
Publication of WO2024050933A1 publication Critical patent/WO2024050933A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/041Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00
    • H01L25/042Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L31/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers

Definitions

  • This application relates to the field of optical communication technology, for example, to a two-dimensional photoelectric detector, an optical tracking device and an optical communication system.
  • Underwater wireless optical communication has lower cost, less energy consumption, high-speed transmission rate exceeding Gb/s and long transmission distance of hundreds of meters, that is, it has both high transmission rate and long transmission distance, making it more and more popular. More and more of them are used in the field of underwater detection.
  • the underwater environment can cause refraction and scattering of light, which can easily have a negative impact on optical links and lead to misalignment of optical communication systems.
  • This application provides a two-dimensional photoelectric detector, an optical tracking device and an optical communication system to solve the problems of unstable optical links and inaccurate optical communication systems.
  • the present application provides a two-dimensional photodetector, including at least one first photosensitive chip and at least one second photosensitive chip; each first photosensitive chip includes a plurality of first photosensitive units arranged along a first direction. ; Each second photosensitive chip includes a plurality of second photosensitive units arranged along a second direction; the first direction intersects the second direction, and the first direction and the second direction are parallel On the light receiving surface of the two-dimensional photodetector; each first photosensitive unit includes a first photodiode, a second photodiode and a first blocking wall structure; the first photodiode, the first blocking wall The structure and the second photodiode are arranged sequentially along the first direction; each second photosensitive unit includes a third photodiode, a fourth photodiode and a second blocking wall structure; the third photodiode, the The second retaining wall structure and the fourth photodiode are arranged in sequence along the second direction.
  • the area of the photosensitive area of the first photodiode is equal to the area of the photosensitive area of the second photodiode; the area of the photosensitive area of the third photodiode is equal to the area of the photosensitive area of the fourth photodiode. area.
  • each of the first photosensitive chips includes a first substrate; the first substrate includes a plurality of first N-well regions arranged along the first direction; in each first N-well region At least one first P-type doped region is provided; the at least one first P-type doped region is arranged along the first direction; the first photodiode and the second photodiode respectively include each of the A PN junction formed by each first P-type doped region in at least one first P-type doped region provided in each first N-well region and each first N-well region; each second The photosensitive chip includes a second substrate; the second substrate includes a plurality of second N-well regions arranged along the second direction; each second N-well region includes at least one second P-type doping region; The at least one second P-type doped region is arranged along the second direction; the third photodiode and the fourth photodiode respectively include at least one first photodiode provided in each second N-well region.
  • all first P-type doped regions of the first barrier structure and the first photodiode overlap with the gaps between all first P-type doped regions of the second photodiode; in the direction perpendicular to the plane of the second substrate, in the same second photosensitive unit, the second The barrier structure overlaps the gap between all second P-type doped regions of the third photodiode and all second P-type doped regions of the fourth photodiode.
  • both the first substrate and the second substrate include silicon-based substrates.
  • the value range of the height H1 of the first retaining wall structure is 10 ⁇ m ⁇ H1 ⁇ 14 ⁇ m; the value range of the height H2 of the second retaining wall structure is 10 ⁇ m ⁇ H2 ⁇ 14 ⁇ m.
  • both the first retaining wall structure and the second retaining wall structure include staggered stacks of metal layers and dielectric layers.
  • This application also provides an optical tracking device, including the above-mentioned two-dimensional photodetector, an optical tracking circuit and an optical tracking motor; the optical tracking circuit is electrically connected to the two-dimensional photodetector and the optical tracking motor respectively;
  • the two-dimensional photodetector is mechanically connected to the light tracking motor; the incident light received by the first photodiode of the two-dimensional photodetector is converted into a first current, and the second photodiode of the two-dimensional photodetector is The received incident light is converted into a second current.
  • the third photodiode of the two-dimensional photodetector converts the received incident light into a third current.
  • the fourth photodiode of the two-dimensional photodetector will receive The incident light is converted into a fourth current; the light tracking circuit is configured to determine the relationship between the incident light and the two currents based on the first current, the second current, the third current and the fourth current.
  • the angle value of the light receiving surface of the dimensional photoelectric detector is determined, and a control signal is output to the light tracking motor according to the angle value of the incident light; the light tracking motor is configured to operate according to the control signal to drive the two-dimensional
  • the photodetector rotates to adjust the angle between the incident light and the light receiving surface of the two-dimensional photodetector to a preset range.
  • This application also provides an optical communication system, including a signal output module, a laser transmitter, a signal receiving module and the above-mentioned optical tracking device; the signal output module is electrically connected to the laser transmitter; the optical tracking device is The signal receiving module is electrically connected; the laser transmitter is optically connected to the optical tracking device; the signal output module is configured to output a first digital signal to the laser transmitter; the laser transmitter is configured to The first digital signal emits an optical signal to the optical tracking device; the two-dimensional photodetector of the optical tracking device is configured to receive the optical signal, convert the optical signal into an analog signal and output it to the signal Receiving module; the signal receiving module is configured to receive the analog signal and convert the analog signal into a second digital signal.
  • Figure 1 is a schematic top view of a two-dimensional photodetector provided by an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a first photosensitive unit provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a second photosensitive unit provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of yet another first photosensitive unit provided by an embodiment of the present application.
  • Figure 5 is a schematic top structural view of a first photosensitive unit provided by an embodiment of the present application.
  • Figure 6 is a schematic top structural view of a second photosensitive unit provided by an embodiment of the present application.
  • Figure 7 shows the angle values between the first current, the second current, the third current and the fourth current and the incident light and the light receiving surface of the two-dimensional photodetector along the first direction and the second direction according to the embodiment of the present application. relationship diagram;
  • Figure 8 is a schematic structural diagram of yet another first photosensitive unit provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of yet another first photosensitive unit provided by an embodiment of the present application.
  • Figure 10 is a structural block diagram of an optical tracking device provided by an embodiment of the present application.
  • Figure 11 is a structural block diagram of an optical communication system provided by an embodiment of the present application.
  • Figure 12 is a structural block diagram of yet another optical communication system provided by an embodiment of the present application.
  • Figure 1 is a schematic structural diagram of a two-dimensional photodetector provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a first photosensitive unit provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a first photodetector provided by an embodiment of the present application.
  • the two-dimensional photodetector 10 includes at least one first photosensitive chip 100 and at least one second photosensitive chip 200; the first photosensitive chip 100 includes a plurality of first photosensitive units arranged along the first direction X.
  • the second photosensitive chip 200 includes a plurality of second photosensitive units 210 arranged along the second direction Y; the first direction X intersects the second direction Y, and the first direction X and the second direction Y are both parallel to the two The light receiving surface of the dimensional photodetector 10.
  • the first photosensitive unit 110 includes a first photodiode 111, a second photodiode 112 and a first barrier structure 113; the first photodiode 111, the first barrier structure 113 and the second photodiode 112 are along the Arrange in order in one direction X.
  • the second light sensing unit 210 includes a third photodiode 211, a fourth photodiode 212 and a second barrier structure 213; the third photodiode 211, the second barrier structure 213 and the fourth photodiode 212 are along the The two directions Y are arranged in sequence.
  • the two-dimensional photodetector 10 includes at least one first photosensitive chip 100 and at least one second photosensitive chip 200 .
  • Each first photosensitive chip 100 may include a plurality of first photodiodes 111 and a plurality of second photodiodes 112.
  • Each second photosensitive chip 200 may include a plurality of third photodiodes 211 and a plurality of fourth photodiodes 212. That is, the two-dimensional photodetector 10 includes a plurality of first photodiodes 111.
  • the first photosensitive chip 100 includes a plurality of first blocking wall structures 113.
  • the second photosensitive chip 200 includes a plurality of second baffle structures 213 along the second In the direction Y, the second blocking wall structure 213 is located between the photosensitive area 201 and the photosensitive area 202.
  • the second blocking wall structure 213 is higher than the photosensitive area 201 and the photosensitive area 202, and is used to block the light from the photosensitive area 201 to the photosensitive area 202 or from the photosensitive area 201 to the photosensitive area 202. At least part of the light from the photosensitive area 202 to the photosensitive area 201.
  • the first photosensitive unit 110 is not limited to the structure shown in FIG. 2 , and can also be the structure shown in FIG. 4 , as long as the first photodiode 111 , the first barrier structure 113 and the second photodiode are satisfied. 112 are arranged sequentially along the first direction No limitation is made; the second photosensitive unit 210 is not limited to the structure shown in FIG. 3 , and the embodiment of the present application does not limit this.
  • All the first photodiodes 111 of the two-dimensional photodetector 10 can receive illumination radiation through their photosensitive areas 101 to generate current, forming a first current I 1 .
  • the first current I 1 can represent all the first photodiodes of the two-dimensional photodetector 10
  • the sum of the currents generated by the diodes 111; all second photodiodes 112 of the two-dimensional photodetector 10 can receive illumination radiation through their photosensitive areas 102 to generate current, forming a second current I 2
  • the second current I 2 can represent a two-dimensional photoelectric detector.
  • the fourth current I 4 may represent the sum of the currents generated by all the fourth photodiodes 212 of the two-dimensional photodetector 10 .
  • the first current I 1 , the second current I 2 , the third current I 3 will result.
  • One or more of the four currents I 4 change.
  • the illumination intensity of the incident light is constant
  • the incident light is vertically irradiated to the light receiving surface of the two-dimensional photodetector 10, that is, the incident light is along the first direction
  • the angle ⁇ is zero
  • the angle ⁇ between the incident light and the second blocking wall structure 213 along the second direction Y is also zero
  • multiple parts of the photosensitive area 101 , the photosensitive area 102 , the photosensitive area 201 and the photosensitive area 202 are Light radiation can be received, and at this time, the first current I 1 , the second current I 2 , the third current I 3 and the fourth current I 4 are all at maximum values.
  • the first blocking wall structure 113 will block at least part of the incident light from irradiating the first light sensor.
  • the angle ⁇ is not zero, a shadow 103 will be formed in the photosensitive area 102, and the area of the photosensitive area 102 that can receive light radiation is reduced, that is, the second current I2 is also reduced.
  • the angle ⁇ when the angle ⁇ is not zero, a shadow 203 will be formed in the photosensitive area 202, and the area of the photosensitive area 202 that can receive illumination radiation is reduced, that is, the fourth current I 4 is also reduced.
  • the angle between the incident light and the light receiving surface of the two-dimensional photodetector 10 can be determined. The change.
  • FIG. 5 is a schematic top structural view of a first photosensitive unit provided by an embodiment of the present application
  • FIG. 6 is a schematic top structural view of a second photosensitive unit provided by an embodiment of the present application.
  • the area of the photosensitive area 101 of the first photodiode 111 is equal to the area of the photosensitive area 102 of the second photodiode 112
  • the area of the photosensitive area 201 of the third photodiode 211 is equal to the area of the photosensitive area 102 of the fourth photodiode 212.
  • the area of area 202 is a schematic top structural view of a first photosensitive unit provided by an embodiment of the present application
  • FIG. 6 is a schematic top structural view of a second photosensitive unit provided by an embodiment of the present application.
  • the first current I 1 is equal to the second current I 2
  • the third current I 3 is equal to the fourth current I 4 .
  • the second current I 2 is smaller than the first current I 1 .
  • a shadow 203 is formed in the photosensitive area 202, and the area of the photosensitive area 202 that can receive illumination radiation is reduced.
  • the fourth current I 4 is smaller than the third current I 3 .
  • Figure 7 shows the relationship between the first current I 1 , the second current I 2 , the third current I 3 and the fourth current I 4 provided by the embodiment of the present application and the incident light and the light receiving surface of the two-dimensional photodetector 10 along the first The relationship between the angle values in one direction X and the second direction Y. According to the ratio of the first current I 1 to the second current I 2 and the ratio of the third current I 3 to the fourth current I 4 , it can be determined that the incident light and the light receiving surface of the two-dimensional photodetector 10 along the first direction X and The angle value of the second direction Y.
  • the two-dimensional photodetector implemented in this application includes at least one first photosensitive chip and at least one second photosensitive chip.
  • the first photosensitive chip includes a plurality of first photodiodes, a plurality of second photodiodes and a plurality of third photodiodes.
  • the first photosensitive chip can generate different first currents and/or second currents as the angle between the incident light and the light receiving surface of the two-dimensional photodetector in the first direction changes;
  • the second photosensitive chip includes A plurality of third photodiodes, a plurality of fourth photodiodes and a plurality of second blocking wall structures, the second photosensitive chip can produce different changes in the second direction with the angle between the incident light and the light receiving surface of the two-dimensional photodetector.
  • the third current and/or the fourth current according to the first current, the second current, the third current and the fourth current, the angle between the incident light and the light receiving surface of the two-dimensional photodetector in the two-dimensional direction can be detected.
  • FIG. 8 is a schematic structural diagram of yet another first photosensitive unit provided by an embodiment of the present application.
  • the first photosensitive chip 10 includes a first substrate 120.
  • Fig. 8 only shows a part of the first substrate 120 located in the first photosensitive unit 110; the first substrate 120 includes a plurality of first substrates 120 along the first direction.
  • the first N-well region 121 is arranged in X; at least one first P-type doped region 122 is provided in the first N-well region 121; at least one first P-type doped region 122 is arranged along the first direction
  • the diode 111 and the second photodiode 112 respectively include a PN junction composed of at least one first P-type doped region 122 and a first N-well region 121 .
  • the second photosensitive chip includes a second substrate; the second substrate includes a plurality of second N-well regions arranged along the second direction; the second N-well region includes at least one second P-type doped region; at least A second P-type doped region is arranged along the second direction Y; the third photodiode and the fourth photodiode respectively include a PN junction composed of at least a second P-type doped region and a second N-well region.
  • each first photosensitive unit 110 can include a first N-well region 121;
  • the side of the first N-well region 121 close to the light-receiving surface is P-type doped to form a first P-type doped region 122.
  • Each first photosensitive unit 110 may include two first P-type doped regions 122;
  • the two first P-type doping regions 122 can respectively form PN junctions with the first N-well region 121 to form the first photodiode 111 and the second photodiode 112.
  • each first photosensitive unit 110 may also include two first N-well regions 121 and two first P-type doped regions 122, that is, a first photodiode 111 and a second photodiode.
  • the diodes 112 do not share the first N-well region 121, and the comparison is not limited in the embodiments of this application.
  • the structure of the second photosensitive chip 200 is similar to the structure of the first photosensitive chip 100, and will not be described again in the embodiment of the present application.
  • the PN junction formed by the first P-type doped region 122 and the first N-well region 121 operates under a reverse voltage.
  • incident light irradiates the photosensitive region 101 .
  • electron-hole pairs are generated in the first P-type doped region 122.
  • the electrons move toward the first N-well region 121, forming a reverse current, that is, the first current I 1 .
  • the first substrate 120 may be a P-type lightly doped substrate structure, forming a PNP-type structure with the first P-type doped region 122 and the first N-well region 121, so that most areas of the first photodiode 111 can be in reset state.
  • the collection efficiency of photosensitive carriers of the first photodiode 111 is improved, and the sensitivity of the first photodiode 111 can be improved.
  • the first blocking wall structure 113 and the first P-type doped structure of the first photodiode 111 overlaps.
  • the second blocking wall structure is connected to the second P-type doping region of the third photodiode and the second region of the fourth photodiode. The gaps between P-type doped regions overlap.
  • the surface of the first P-type doped region 122 on the left close to the incident light can be used as the photosensitive region 101 of the first photodiode 111 .
  • the side surface of the first P-type doped region 122 close to the incident light can serve as the photosensitive region 102 of the second photodiode 112 .
  • the side surfaces of the two second P-type doped regions close to the incident light can serve as the photosensitive region 201 of the third photodiode 211 and the photosensitive region 202 of the fourth photodiode 212 respectively.
  • the first blocking wall structure 113 can be located between the photosensitive area 101 and the photosensitive area 102
  • the second blocking wall structure 213 can be located between the photosensitive area 201 and the photosensitive area 202 .
  • the incident light does not illuminate vertically to the two-dimensional photodetector 10
  • the first blocking wall structure 113 will form a shadow 103 on the photosensitive area 101 or the photosensitive area 102, affecting the first current I 1 or the second current I 2
  • the second blocking wall structure 213 will form a shadow on the photosensitive area 101 or the photosensitive area 102 .
  • a shadow 203 is formed on the photosensitive area 201 or the photosensitive area 202, and/or the third current I 3 or the fourth current I 4 is formed.
  • both the first substrate and the second substrate include a silicon-based substrate, the band gap voltage of the silicon-based substrate is about 1.12V, and the first photosensitive chip and the second photosensitive chip using the silicon-based substrate Can absorb light wavelengths below 1.1 ⁇ m.
  • the value range of the height H1 of the first retaining wall structure is 10 ⁇ m ⁇ H1 ⁇ 14 ⁇ m; the value range of the height H2 of the second retaining wall structure is 10 ⁇ m ⁇ H2 ⁇ 14 ⁇ m.
  • the height H1 of the first retaining wall structure may be 12 ⁇ m, and the height H2 of the second retaining wall structure may also be 12 ⁇ m.
  • the physical dimensions of the height H1 of the first retaining wall structure and the height H2 of the second retaining wall structure are much larger. Depending on the absorbed light wavelength, it can effectively avoid light diffraction.
  • the length L1 of the photosensitive area 101 along the first direction X may be 15 ⁇ m, and the length L2 of the photosensitive area 102 along the first direction
  • the distance between the structures 113 is 30 ⁇ m;
  • the length L3 of the photosensitive area 201 along the second direction Y can be 15 ⁇ m, and the length L4 of the photosensitive area 202 along the second direction X can be 15 ⁇ m, that is, two adjacent second photosensitive units 210
  • the distance between the second retaining wall structures 213 is 30 ⁇ m, and the physical size is much larger than the absorbed light wavelength, which can effectively avoid light diffraction.
  • the length L1' of the photosensitive area 101 along the second direction Y can be the same as the length of the first photosensitive chip 100 along the second direction Y, for example, 620 ⁇ m.
  • the length L2' of the photosensitive area 201 along the second direction Y is equal to the length of the photosensitive area 101.
  • the length L1' along the second direction Y; the length of the first photosensitive chip 100 along the first direction X may also be 620 ⁇ m, that is, the first photosensitive chip 100 may be a square chip of 620 ⁇ m ⁇ 620 ⁇ m.
  • the length L3' of the photosensitive area 201 along the first direction X may be the same as the length of the second photosensitive chip 200 along the first direction
  • FIG. 9 is a schematic structural diagram of yet another first photosensitive unit provided by an embodiment of the present application.
  • both the first barrier structure 113 and the second barrier structure 213 include staggered stacks of metal layers 131 and dielectric layers 132 .
  • a metal wall can be formed by stacking metal layers 131, contacts, and holes available in the process using a semiconductor process.
  • the dielectric layer 132 between the metal layers 131 can be, for example, silicon dioxide (SiO 2 ).
  • the first The retaining wall structure 113 adopts a structure of stacked metal layers 131 and dielectric layers 132 to realize stacked intermetallic compound connection, which can improve the reliability of the first retaining wall structure 113.
  • the second retaining wall structure 213 is similar to the first retaining wall structure 113, and will not be described again in the embodiment of this application.
  • FIG. 10 is a structural block diagram of an optical tracking device provided by an embodiment of the present application.
  • the optical tracking device 01 includes the two-dimensional photodetector 10, the optical tracking circuit 20 and the optical tracking motor 30 provided in any embodiment of the present application; the optical tracking circuit 20 is electrically connected to the two-dimensional photodetector 10 and the optical tracking motor 30 respectively. Connection: mechanical connection between the two-dimensional photodetector 10 and the light tracking motor 30 .
  • the first photodiode 111 of the two-dimensional photodetector 10 can convert the received incident light into a first current
  • the second photodiode 112 of the two-dimensional photodetector 10 can convert the received incident light into a second current
  • the third photodiode 211 of the two-dimensional photodetector 10 can convert the received incident light into a third current
  • the fourth photodiode 212 of the two-dimensional photodetector 10 can convert the received incident light into a fourth current
  • the light tracking circuit 20 is configured to determine the angle value of the incident light beam and the light receiving surface of the two-dimensional photodetector 10 based on the first current, the second current, the third current and the fourth current, and to output a control signal based on the angle value of the incident light beam.
  • the light tracking motor 30 is configured to operate according to the control signal to drive the two-dimensional photodetector 10 to rotate to adjust the angle between the incident light and the light-receiving surface of the two-dimensional photodetector 10 to a preset range.
  • the preset range refers to the theoretical vertical range, which can be, for example, the angle value between the incident light along the first direction
  • the angle values of the receiving surface are all in the range of 85° to 95°.
  • the optical signal receiving effect of the two-dimensional photodetector 10 is not ideal, which may cause optical signal misalignment and affect the final optical communication.
  • the effect results in a low bit error rate.
  • the two-dimensional photodetector 10 can respectively form the first current I 1 , the second current I 2 , the third current I 3 and the fourth current I 4 according to the incident light.
  • the optical tracking circuit 20 The angle value of the incident light and the light receiving surface of the two-dimensional photodetector 10 can be determined according to the first current I1, the second current I2 , the third current I3 and the fourth current I4 , and the two-dimensional light is controlled by the light tracking motor 30
  • the photodetector 10 rotates so that the angle between the incident light and the light receiving surface of the two-dimensional photodetector 10 is within a preset range.
  • the light receiving surface of the two-dimensional photodetector 10 can still be adjusted through the light tracking device 01 so that the incident light illuminates the two-dimensional photodetector perpendicularly.
  • the light receiving surface of the two-dimensional photodetector 10 improves the light signal receiving effect of the two-dimensional photodetector 10, and can expand the receiving field of view of the light receiving surface of the two-dimensional photodetector 10 to 120° in the two-dimensional direction and reach 1.9°. Alignment accuracy.
  • the light tracking device implemented in this application can detect the angle between the incident light and the light receiving surface of the two-dimensional photodetector in the two-dimensional direction through the two-dimensional photodetector, and can determine the angle between the incident light and the two-dimensional photodetector through the light tracking circuit.
  • the angle value of the light receiving surface in the two-dimensional direction and controls the light tracking motor to drive the light receiving surface of the two-dimensional photodetector to rotate so that the incident light irradiates vertically to the light receiving surface; the light tracking device senses the angle of the incident light and
  • the control has good sensitivity, which can improve the optical signal reception effect and accuracy, thereby improving the optical communication effect.
  • the light tracking device provided by the embodiments of this application includes the two-dimensional photodetector provided by any embodiment of this application, and has the corresponding functional modules of the two-dimensional photodetector.
  • FIG. 11 is a structural block diagram of an optical communication system provided by an embodiment of the present application.
  • the optical communication system includes an optical tracking device 01, a signal output module 03, a laser transmitter 02, and a signal receiving module 04 provided by any embodiment of the present application; the signal output module 03 is electrically connected to the laser transmitter 02; optical tracking The device 01 is electrically connected to the signal receiving module 04; the laser transmitter 02 is optically connected to the optical tracking device 01.
  • the signal output module 03 is configured to output a first digital signal to the laser transmitter 02; the laser transmitter 02 is configured to emit an optical signal to the optical tracking device 01 according to the first digital signal; the two-dimensional photodetector 10 of the optical tracking device 01 is configured to Receive the optical signal, convert the optical signal into an analog signal and output it to the signal receiving module 04; the signal receiving module 04 is configured to receive the analog signal and convert the analog signal into a second digital signal.
  • laser diodes can be used as the laser transmitter 02.
  • the laser transmitter 02 has higher coherence and tracking performance, and is more suitable for wireless optical communication systems with modulation bandwidth exceeding GHz, even in the environment.
  • the receiving field of view of the light receiving surface of the two-dimensional photodetector 10 is at It can still reach 120° in the two-dimensional direction and achieve an alignment accuracy of 1.9°.
  • the non-Return-to-Zero On-Off Keying (NRZ-OOK) modulation method can be used between the signal output module 03 and the signal receiving module 04, making the transmission efficiency higher and the bit error rate lower.
  • the signal output module 03 can output the first digital signal of the binary sequence and transmit it in the form of an optical signal through LDs.
  • the optical tracking device 01 can receive the optical signal and adjust the light receiving surface of the two-dimensional photodetector 10 so that the incident light is When the angle is optimal to improve the alignment, the optical tracking device 01 outputs the received optical signal to the signal receiving module 04 in the form of current.
  • the signal receiving module 04 can obtain the second digital signal of the binary sequence according to the current signal.
  • the optical communication system can output the first digital signal of the binary sequence through the signal output system; through the laser transmitter, the first digital signal can be output to the optical tracking device in the form of an optical signal; the optical tracking device can according to The incident light adjusts the light receiving surface of the two-dimensional photodetector 10 so that the angle of the incident light is optimal, and the light signal is converted into a current and output to the signal receiving module; the current can be converted into a binary second number through the signal receiving module signal, it can achieve higher output transmission rate and lower bit error rate, making the wireless optical communication link more solid and reliable, and more suitable for actual wireless communication applications.
  • FIG. 12 is a structural block diagram of yet another optical communication system provided by an embodiment of the present application.
  • the optical communication system also includes a DC power supply 06, a biaser 05, an amplifier 07 and a filter 08; the signal output module 03 is electrically connected to the laser transmitter 02 through the biaser 05; the DC power supply 06 passes through the biaser 05 It is electrically connected to the laser transmitter 02; the optical tracking device 01 is electrically connected to the signal receiving module 04 through the amplifier 07 and the filter 08.
  • the signal output module 03 can generate a binary sequence as the first digital signal
  • the DC power supply 06 and the biaser 05 can form a DC bias to drive the laser emitter 02 to emit light
  • the optical tracking device 01 receives the optical signal and generates current
  • the amplifier 07 can realize power amplification, and is low-pass filtered by the filter 08, and finally decoded and converted into a second array signal of a binary sequence by the signal receiving module 04. In this way, the robustness of the optical communication system can be improved.
  • the optical communication system provided by the embodiments of the present application includes the optical tracking device provided by any embodiment of the present application, and has corresponding functional modules of the optical tracking device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Light Receiving Elements (AREA)

Abstract

本申请公开了一种二维光电探测器、光追踪装置和光通信系统。二维光电探测器包括至少一个第一光感芯片和至少一个第二光感芯片;每个第一光感芯片包括多个沿第一方向排列的第一光感单元;每个第二光感芯片包括多个沿第二方向排列的第二光感单元;每个第一光感单元包括第一光电二极管、第二光电二极管和第一挡墙结构;第一光电二极管、第一挡墙结构和第二光电二极管沿第一方向依次排列;每个第二光感单元包括第三光电二极管、第四光电二极管和第二挡墙结构;第三光电二极管、第二挡墙结构、第四光电二极管沿第二方向依次排列。

Description

二维光电探测器、光追踪装置和光通信系统
本申请要求在2022年09月08日提交中国专利局、申请号为202211093089.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信技术领域,例如涉及一种二维光电探测器、光追踪装置和光通信系统。
背景技术
随着水下导航、水下传感网络、海洋研究、海洋石油勘探和水产养殖等领域蓬勃发展,水下无线通信的研究也越来越多。水下无线光通信成本较低、能耗较少,且具超过Gb/s的高速传输速率和长达数百米的远传输距离,即兼具高传输速率和远传输距离,使得其越来越多的被应用于水下探测领域。但是,水下环境会引起光线的折射和散射,容易对光链路产生负面影响,导致光通信系统失准。
申请内容
本申请提供了一种二维光电探测器、光追踪装置和光通信系统,以解决光链路不稳定,光通信系统失准的问题。
本申请提供了一种二维光电探测器,包括至少一个第一光感芯片和至少一个第二光感芯片;每个第一光感芯片包括多个沿第一方向排列的第一光感单元;每个第二光感芯片包括多个沿第二方向排列的第二光感单元;所述第一方向与所述第二方向相交,且所述第一方向和所述第二方向均平行于所述二维光电探测器的光接收面;每个第一光感单元包括第一光电二极管、第二光电二极管和第一挡墙结构;所述第一光电二极管、所述第一挡墙结构和所述第二光电二极管沿所述第一方向依次排列;每个第二光感单元包括第三光电二极管、第四光电二极管和第二挡墙结构;所述第三光电二极管、所述第二挡墙结构、所述第四光电二极管沿所述第二方向依次排列。
可选的,所述第一光电二极管的感光区域的面积等于所述第二光电二极管的感光区域的面积;所述第三光电二极管的感光区域的面积等于所述第四光电二极管的感光区域的面积。
可选的,所述每个第一光感芯片包括第一衬底;所述第一衬底包括多个沿 所述第一方向排列的第一N阱区;每个第一N阱区内设置有至少一个第一P型掺杂区;所述至少一个第一P型掺杂区沿所述第一方向排列;所述第一光电二极管和所述第二光电二极管分别包括由所述每个第一N阱区内设置的至少一个第一P型掺杂区中的每个第一P型掺杂区与所述每个第一N阱区构成的PN结;所述每个第二光感芯片包括第二衬底;所述第二衬底包括多个沿所述第二方向排列的第二N阱区;每个第二N阱区包括至少一个第二P型掺杂区;所述至少一个第二P型掺杂区沿所述第二方向排列;所述第三光电二极管和所述第四光电二极管分别包括由所述每个第二N阱区内设置的至少一个第二P型掺杂区中的每个第二P型掺杂区与所述每个第二N阱区构成的PN结。
可选的,在垂直于所述第一衬底所在平面的方向上,同一第一光感单元中,所述第一挡墙结构与所述第一光电二极管的所有第一P型掺杂区和所述第二光电二极管的所有第一P型掺杂区之间的间隙交叠;在垂直于所述第二衬底所在平面的方向上,同一第二光感单元中,所述第二挡墙结构与所述第三光电二极管的所有第二P型掺杂区和所述第四光电二极管的所有第二P型掺杂区之间的间隙交叠。
可选的,所述第一衬底和所述第二衬底均包括硅基衬底。
可选的,所述第一挡墙结构的高度H1的取值范围为10μm≤H1≤14μm;所述第二挡墙结构的高度H2的取值范围为10μm≤H2≤14μm。
可选的,所述第一光电二极管的感光区域沿所述第一方向的长度L1的取值范围为13μm≤L1≤17μm;所述第二光电二极管的感光区域沿所述第一方向的长度L2为13μm≤L2≤17μm;其中,L1=L2;
所述第三光电二极管的感光区域沿所述第二方向的长度L3的取值范围为13μm≤L3≤17μm;所述第四光电二极管的感光区域沿所述第二方向的长度L4为13μm≤L4≤17μm;其中,L3=L4。
可选的,所述第一挡墙结构和所述第二挡墙结构均包括交错堆叠的金属层和介电层。
本申请还提供了一种光追踪装置,包括上述二维光电探测器、光追踪电路和光追踪马达;所述光追踪电路分别与所述二维光电探测器和所述光追踪马达电连接;所述二维光电探测器与所述光追踪马达机械连接;所述二维光电探测器的第一光电二极管接收到的入射光线转化为第一电流,所述二维光电探测器的第二光电二极管将接收到的入射光线转化为第二电流,所述二维光电探测器的第三光电二极管将接收到的入射光线转化为第三电流,所述二维光电探测器的第四光电二极管将接收到的入射光线转化为第四电流;所述光追踪电路设置 为根据所述第一电流、所述第二电流、所述第三电流和所述第四电流确定所述入射光线与所述二维光电探测器的光接收面的角度值,并根据所述入射光线的角度值输出控制信号至所述光追踪马达;所述光追踪马达设置为根据所述控制信号运转,带动所述二维光电探测器旋转,以调整所述入射光线与所述二维光电探测器的光接收面的角度值至预设范围。
本申请还提供了一种光通信系统,包括信号输出模块、激光发射器、信号接收模块以及上述的光追踪装置;所述信号输出模块与所述激光发射器电连接;所述光追踪装置与所述信号接收模块电连接;所述激光发射器与所述光追踪装置光通信连接;所述信号输出模块设置为输出第一数字信号至所述激光发射器;所述激光发射器设置为根据所述第一数字信号射出光信号至所述光追踪装置;所述光追踪装置的二维光电探测器设置为接收所述光信号,并将所述光信号转化为模拟信号输出至所述信号接收模块;所述信号接收模块设置为接收所述模拟信号,并将所述模拟信号转化为第二数字信号。
附图说明
下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种二维光电探测器的俯视结构示意图;
图2为本申请实施例提供的一种第一光感单元的结构示意图;
图3为本申请实施例提供的一种第二光感单元的结构示意图;
图4为本申请实施例提供的又一种第一光感单元的结构示意图;
图5为本申请实施例提供的一种第一光感单元的俯视结构示意图;
图6为本申请实施例提供的一种第二光感单元的俯视结构示意图;
图7为本申请实施例提供的一种第一电流、第二电流、第三电流和第四电流与入射光线与二维光电探测器的光接收面沿第一方向和第二方向的角度值的关系图;
图8为本申请实施例提供的又一种第一光感单元的结构示意图;
图9为本申请实施例提供的又一种第一光感单元的结构示意图;
图10为本申请实施例提供的一种光追踪装置的结构框图;
图11为本申请实施例提供的一种光通信系统的结构框图;
图12为本申请实施例提供的又一种光通信系统的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1为本申请实施例提供的一种二维光电探测器的俯视结构示意图,图2为本申请实施例提供的一种第一光感单元的结构示意图,图3为本申请实施例提供的一种第二光感单元的结构示意图。参考图1,二维光电探测器10包括至少一个第一光感芯片100和至少一个第二光感芯片200;第一光感芯片100包括多个沿第一方向X排列的第一光感单元110;第二光感芯片200包括多个沿第二方向Y排列的第二光感单元210;第一方向X与第二方向Y相交,且第一方向X和第二方向Y均平行于二维光电探测器10的光接收面。参考图2,第一光感单元110包括第一光电二极管111、第二光电二极管112和第一挡墙结构113;第一光电二极管111、第一挡墙结构113和第二光电二极管112沿第一方向X依次排列。参考图3,第二光感单元210包括第三光电二极管211、第四光电二极管212和第二挡墙结构213;第三光电二极管211、第二挡墙结构213、第四光电二极管212沿第二方向Y依次排列。
继续参考图1-图3,二维光电探测器10包括至少一个第一光感芯片100和至少一个第二光感芯片200,每个第一光感芯片100可以包括多个第一光电二极管111和多个第二光电二极管112,每个第二感光芯片200可以包括多个第三光电二极管211和多个第四光电二极管212,即二维光电探测器10中包括多个第一光电二极管111、多个第二光电二极管112、多个第三光电二极管211、多个第四光电二极管212;第一光电二极管111包括感光区域101,第二光电二极管112包括感光区域102,第三光电二极管211包括感光区域201,第四光电二极管212包括感光区域202。第一光感芯片100包括多个第一挡墙结构113,沿第一方向X,第一挡墙结构113位于感光区域101和感光区域102之间,第一挡 墙结构113高于感光区域101和感光区域102,用于遮挡从感光区域101至感光区域102的或者从感光区域102至感光区域101的至少部分光线;第二光感芯片200包括多个第二挡墙结构213,沿第二方向Y,第二挡墙结构213位于感光区域201和感光区域202之间,第二挡墙结构213高于感光区域201和感光区域202,用于遮挡从感光区域201至感光区域202的或者从感光区域202至感光区域201的至少部分光线。
可以理解的是,第一光感单元110并不仅限于图2所示的结构,还可以是图4所示的结构,只要满足第一光电二极管111、第一挡墙结构113和第二光电二极管112沿第一方向X依次排列,且第一挡墙结构113可遮挡从感光区域101至感光区域102的或者从感光区域102至感光区域101的至少部分光线即可,本申请实施例对此不做限定;第二光感单元210也不仅限于图3所示的结构,本申请实施例对此也不做限定。
二维光电探测器10的所有第一光电二极管111可通过其感光区域101接收光照辐射产生电流,形成第一电流I 1,第一电流I 1可表示二维光电探测器10的所有第一光电二极管111产生的电流的总和;二维光电探测器10的所有第二光电二极管112可通过其感光区域102接收光照辐射产生电流,形成第二电流I 2,第二电流I 2可表示二维光电探测器10的所有第二光电二极管112产生的电流的总和;同理,二维光电探测器10的所有第三光电二极管211可通过其感光区域201接收光照辐射产生电流,形成第三电流I 3,第三电流I 3可表示二维光电探测器10的所有第三光电二极管211产生的电流的总和;二维光电探测器10的所有第四光电二极管212可通过其感光区域202接收入射光线的光照辐射产生电流,形成第四电流I 4,第四电流I 4可表示二维光电探测器10的所有第四光电二极管212产生的电流的总和。在入射光线的光照强度不变的情况下,若入射光线与二维光电探测器的光接收面的角度发生变化,会导致第一电流I 1、第二电流I 2、第三电流I 3第四电流I 4的一个或多个发生变化。
示例性的,在入射光线的光照强度不变的情况下,当入射光线垂直照射至二维光电探测器10的光接收面时,即入射光线沿第一方向X与第一挡墙结构113的夹角α为零,且入射光线沿第二方向Y与第二挡墙结构213的夹角β也为零时,感光区域101、感光区域102、感光区域201和感光区域202的多个部分均可以接收到光照辐射,此时,第一电流I 1、第二电流I 2、第三电流I 3和第四电流I 4均处于最大值。在入射光线的光照强度不变的情况下,当入射光线不再垂直照射至二维光电探测器10的光接收面时,即入射光线沿第一方向X与第一挡墙结构113的夹角α不为零,和/或,入射光线沿第二方向Y与第二挡墙结构213的夹角β不为零时,第一挡墙结构113会阻挡至少部分入射光线照射至第一光感芯片100的第一光电二极管111或第二光电二极管112,第一电流I 1或第二 电流I 2会减小;第二挡墙结构213会阻挡至少部分入射光线照射至第二光感芯片200的第三光电二极管211或第四光电二极管212,第三电流I 3或第四电流I 4会减小。以图2为例,夹角α不为零时,在感光区域102会形成阴影103,感光区域102可接收光照辐射的面积减小,即第二电流I 2也随之减小。以图3为例,夹角β不为零时,在感光区域202会形成阴影203,感光区域202可接收光照辐射的面积减小,即第四电流I 4也随之减小。根据第一电流I 1、第二电流I 2、第三电流I 3和第四电流I 4中的一个或多个的变化,可以确定入射光线与二维光电探测器10的光接收面的角度的变化。
可选的,图5为本申请实施例提供的一种第一光感单元的俯视结构示意图,图6为本申请实施例提供的一种第二光感单元的俯视结构示意图。参考图5和图6,第一光电二极管111的感光区域101的面积等于第二光电二极管112的感光区域102的面积;第三光电二极管211的感光区域201的面积等于第四光电二极管212的感光区域202的面积。
示例性的,入射光线垂直照射至二维光电探测器10的光接收面时,第一电流I 1等于第二电流I 2,第三电流I 3等于第四电流I 4。当入射光线沿第一方向X与第一挡墙结构113的夹角α不为零时,以图2为例,在感光区域102形成阴影103,感光区域102可接收光照辐射的面积减小,第二电流I 2小于第一电流I 1。当入射光线沿第二方向Y与第二挡墙结构213的夹角β不为零时,以图3为例,在感光区域202形成阴影203,感光区域202可接收光照辐射的面积减小,第四电流I 4小于第三电流I 3。图7为本申请实施例提供的一种第一电流I 1、第二电流I 2、第三电流I 3和第四电流I 4与入射光线与二维光电探测器10的光接收面沿第一方向X和第二方向Y的角度值的关系图。根据第一电流I 1与第二电流I 2的比值和第三电流I 3与第四电流I 4的比值,可以确定入射光线与二维光电探测器10的光接收面沿第一方向X和第二方向Y的角度值。
本申请实施的二维光电探测器,包括至少一个第一光感芯片和至少一个第二光感芯片,第一光感芯片包括多个第一光电二极管、多个第二光电二极管和多个第一挡墙结构,第一光感芯片可随入射光线与二维光电探测器的光接收面在第一方向的角度变化产生不同的第一电流和/或第二电流;第二光感芯片包括多个第三光电二极管、多个第四光电二极管和多个第二挡墙结构,第二光感芯片可随入射光线与二维光电探测器的光接收面在第二方向的角度变化产生不同的第三电流和/或第四电流;根据第一电流、第二电流、第三电流和第四电流,可以探测入射光线与二维光电探测器的光接收面在二维方向的角度。
可选的,图8为本申请实施例提供的又一种第一光感单元的结构示意图。参考图8,第一光感芯片10包括第一衬底120,图8仅示出了位于第一光感单 元110的部分第一衬底120;第一衬底120包括多个沿第一方向X排列的第一N阱区121;第一N阱区121内设置有至少一个第一P型掺杂区122;至少一个第一P型掺杂区122沿第一方向X排列;第一光电二极管111和第二光电二极管112分别包括由至少一个第一P型掺杂区122与第一N阱区121构成的PN结。同理,第二光感芯片包括第二衬底;第二衬底包括多个沿第二方向排列的第二N阱区;第二N阱区包括至少一个第二P型掺杂区;至少一个第二P型掺杂区沿第二方向Y排列;第三光电二极管和第四光电二极管分别包括由至少一个第二P型掺杂区与第二N阱区构成的PN结。
示例性的,在第一衬底120靠近光接收面一侧进行N型掺杂,可形成第一N阱区121,每个第一光感单元110可包括一个第一N阱区121;在第一N阱区121靠近光接收面一侧进行P型掺杂,可形成第一P型掺杂区122,每个第一光感单元110可包括两个第一P型掺杂区122;两个第一P型掺杂区122可分别与第一N阱区121构成PN结,形成第一光电二极管111和第二光电二极管112,此时,第一光电二极管111和第二光电二极管112共用第一N阱区121。在其它可选的实施例中,每个第一光感单元110也可包括两个第一N阱区121和两个第一P型掺杂区122,即第一光电二极管111和第二光电二极管112不共用第一N阱区121,本申请实施例对比不做限定。同理,第二光感芯片200的结构与第一光感芯片100的结构类似,本申请实施例不再赘述。
以图8所示的第一光电二极管111为例,第一P型掺杂区122与第一N阱区121构成的PN结在反向电压之下工作,当有入射光线照射至感光区域101时,第一P型掺杂区122会产生电子-空穴对,在反向电压的作用下,电子向第一N阱区121运动,形成反向电流,即第一电流I 1。第一衬底120可以是P型轻掺杂衬底结构,与第一P型掺杂区122和第一N阱区121构成PNP型结构,使得第一光电二极管111的大部分区域可以在复位时完全耗尽,提高第一光电二极管111的光感载流子的收集效率,可提高第一光电二极管111的灵敏度。
可选的,继续参考图8,在垂直于第一衬底120所在平面的方向上,同一第一光感单元110中,第一挡墙结构113与第一光电二极管111的第一P型掺杂区122和第二光电二极管112的第一P型掺杂区122之间的间隙交叠。同理,在垂直于第二衬底所在平面的方向上,同一第二光感单元中,第二挡墙结构与第三光电二极管的第二P型掺杂区和第四光电二极管的第二P型掺杂区之间的间隙交叠。
示例性的,如图8所示,在第一光感单元110中,左侧的第一P型掺杂区122靠近入射光线的一侧表面可作为第一光电二极管111的感光区域101,右侧的第一P型掺杂区122靠近入射光线的一侧表面可作为第二光电二极管112的 感光区域102。同理,第二光感单元210中,两个第二P型掺杂区靠近入射光线的一侧表面可分别作为第三光电二极管211的感光区域201和第四光电二极管212的感光区域202。第一挡墙结构113可位于感光区域101和感光区域102之间,第二挡墙结构213可位于感光区域201和感光区域202之间,当入射光线未垂直照射至二维光电探测器10的光接收面时,第一挡墙结构113会在感光区域101或感光区域102上形成阴影103,影响第一电流I 1或第二电流I 2,和/或,第二挡墙结构213会在感光区域201或感光区域202上形成阴影203,和/或,第三电流I 3或第四电流I 4
可选的,第一衬底和第二衬底均包括硅基衬底,硅基衬底的带隙电压约为1.12V,使用硅基衬底的第一光感芯片和第二光感芯片可以吸收1.1μm以下的光波长。
可选的,继续参考图8,第一挡墙结构的高度H1的取值范围为10μm≤H1≤14μm;第二挡墙结构的高度H2的取值范围为10μm≤H2≤14μm。
示例性的,第一挡墙结构的高度H1可为12μm,第二挡墙结构的高度H2也可为12μm,第一挡墙结构的高度H1和第二挡墙结构的高度H2的物理尺寸远大于吸收的光波长,可有效避免光的衍射现象。
可选的,参考图5、图6和图8,第一光电二极管111的感光区域101沿第一方向X的长度L1的取值范围为13μm≤L1≤17μm;第二光电二极管112的感光区域102沿第一方向X的长度L2为13μm≤L2≤17μm;其中,L1=L2。第三光电二极管211的感光区域201沿第二方向Y的长度L3的取值范围为13μm≤L3≤17μm;第四光电二极管212的感光区域202沿第二方向Y的长度L4为13μm≤L4≤17μm;其中,L3=L4。
示例性地,感光区域101沿第一方向X的长度L1可为15μm,感光区域102沿第一方向X的长度L2可为15μm,即相邻两个第一光感单元110的第一挡墙结构113之间的距离为30μm;感光区域201沿第二方向Y的长度L3可为15μm,感光区域202沿第二方向X的长度L4可为15μm,即相邻两个第二光感单元210的第二挡墙结构213之间的距离为30μm,物理尺寸远大于吸收的光波长,可有效避免光的衍射现象。感光区域101沿第二方向Y的长度L1'可与第一光感芯片100沿第二方向Y的长度相同,例如可以是620μm,感光区域201沿第二方向Y的长度L2'等于感光区域101沿第二方向Y的长度L1';第一光感芯片100沿第一方向X的长度也可以是620μm,即第一光感芯片100可以是620μm×620μm的方形芯片。感光区域201沿第一方向X的长度L3'可与第二光感芯片200沿第一方向X的长度相同,例如可以是620μm,感光区域202沿第一方向X的长度L4'等于感光区域201沿第一方向X的长度L3';第二光感芯片200沿第二方向Y 的长度也可以是620μm,即第二光感芯片200也可以是620μm×620μm的方形芯片。
可选的,图9为本申请实施例提供的又一种第一光感单元的结构示意图。参考图1和图9,第一挡墙结构113和第二挡墙结构213均包括交错堆叠的金属层131和介电层132。
示例性的,可利用采用半导体工艺堆叠金属层131、触点和工艺中可用的孔而形成金属墙,金属层131之间的介电层132例如可以是二氧化硅(SiO 2),第一挡墙结构113采用堆叠金属层131和介电层132结构,实现叠层金属间化合物连接,可提高第一挡墙结构113的可靠性。同理,第二挡墙结构213与第一挡墙结构113类似,本申请实施例不再赘述。
本申请实施例还提供一种光追踪装置,图10为本申请实施例提供的一种光追踪装置的结构框图。参考图10,光追踪装置01包括本申请任意实施例所提供的二维光电探测器10、光追踪电路20和光追踪马达30;光追踪电路20分别与二维光电探测器10和光追踪马达30电连接;二维光电探测器10和光追踪马达30之间机械连接。
二维光电探测器10的第一光电二极管111可将接收到的入射光线转化为第一电流,二维光电探测器10的第二光电二极管112可将接收到的入射光线转化为第二电流,二维光电探测器10的第三光电二极管211可将接收到的入射光线转化为第三电流,二维光电探测器10的第四光电二极管212可将接收到的入射光线转化为第四电流;光追踪电路20设置为根据第一电流、第二电流、第三电流和第四电流确定入射光线与二维光电探测器10的光接收面的角度值,并根据入射光线的角度值输出控制信号至光追踪马达30;光追踪马达30设置为根据控制信号运转,带动二维光电探测器10旋转,以调整入射光线与二维光电探测器10的光接收面的角度值至预设范围。
预设范围是指理论垂直范围,例如可以是入射光线沿第一方向X与二维光电探测器10的光接收面的角度值和入射光线沿第二方向Y与二维光电探测器10的光接收面的角度值均处于85°~95°的范围内。
示例性的,在入射光线未垂直照射至二维光电探测器10的光接收面时,二维光电探测器10的光信号接收效果并不理想,可能会导致光信号失准,影响最终光通信的效果,导致误码率较低,二维光电探测器10可根据入射光线分别形成第一电流I 1、第二电流I 2、第三电流I 3和第四电流I 4,光追踪电路20根据第一电流I1、第二电流I 2、第三电流I 3和第四电流I 4可确定入射光线与二维光电探测器10的光接收面的角度值,通过光追踪马达30控制二维光电探测器10旋转,使得入射光线与二维光电探测器10的光接收面的角度值处于预设范围内。 如此,即便入射光线未垂直照射至二维光电探测器10的光接收面,依旧可以通过光追踪装置01调整二维光电探测器10的光接收面,使得入射光线垂直照射至二维光电探测器10的光接收面,提高二维光电探测器10的光信号接收效果,可将二维光电探测器10的光接收面的接收视场在二维方向上扩大至120°,并达到1.9°的对准精度。
本申请实施的光追踪装置,通过二维光电探测器可以探测入射光线与二维光电探测器的光接收面在二维方向的角度,通过光追踪电路可以确定入射光线与二维光电探测器的光接收面在二维方向的角度值,并控制光追踪马达带动二维光电探测器的光接收面旋转,以使得入射光线垂直照射至光接收面;光追踪装置对入射光线的角度的感知和控制具有较好的灵敏度,可以提高光信号接收效果和准确度,进而提高光通信效果。
本申请实施例所提供的光追踪装置包括本申请任意实施例所提供的二维光电探测器,具备二维光电探测器相应的功能模块。
本申请实施例还提供一种光通信系统,图11为本申请实施例提供的一种光通信系统的结构框图。参考图11,光通信系统包括本申请任意实施例所提供的光追踪装置01、信号输出模块03、激光发射器02、信号接收模块04;信号输出模块03与激光发射器02电连接;光追踪装置01与信号接收模块04电连接;激光发射器02与光追踪装置01光通信连接。
信号输出模块03设置为输出第一数字信号至激光发射器02;激光发射器02设置为根据第一数字信号射出光信号至光追踪装置01;光追踪装置01的二维光电探测器10设置为接收光信号,并将光信号转化为模拟信号输出至信号接收模块04;信号接收模块04设置为接收模拟信号,并将模拟信号转化为第二数字信号。
示例性的,可采用激光二极管(Laser Diode,LDs)作为激光发射器02,激光发射器02具有更高的相干性和追执行,更加适用于调制带宽超过GHz的无线光通信系统,即便在环境光功率密度为11.4μW/cm 2的环境中,激光发射器02的LDs的功率密度由600μW/cm 2降低至33μW/cm 2时,二维光电探测器10的光接收面的接收视场在二维方向上仍可达到120°,并达到1.9°的对准精度。
此外,信号输出模块03和信号接收模块04之间可采用无归零开关键控(Non-Return-to-Zero On–Off Keying,NRZ-OOK)调制方法,使得传输效率更高,误码率更低。信号输出模块03可输出二进制序列的第一数字信号,通过LDs以光信号的形式传输出去,光追踪装置01可接收光信号,并调整二维光电探测器10的光接收面,使得入射光线的角度达到最佳,以提高对准度,光追踪装置01将接收的光信号以电流的形式输出至信号接收模块04,信号接收模块04可 以根据电流信号得到二进制序列的第二数字信号。
本申请实施例的光通信系统,通过信号输出系统可输出二进制序列的第一数字信号;通过激光发射器,可以将第一数字信号以光信号的形式输出至光追踪装置;光追踪装置可根据入射光线调整二维光电探测器10的光接收面,使得入射光线的角度达到最佳,并将光信号转化为电流输出至信号接收模块;通过信号接收模块可以将电流转化为二进制的第二数字信号,可实现较高的输出传输速率和较低的误码率,使得无线光通信链路更加坚实可靠,更适用于实际的无线通信应用。
可选的,图12为本申请实施例提供的又一种光通信系统的结构框图。参考图12,光通信系统还包括直流电源06、偏置器05、放大器07和滤波器08;信号输出模块03通过偏置器05与激光发射器02电连接;直流电源06通过偏置器05与激光发射器02电连接;光追踪装置01通过放大器07和滤波器08与信号接收模块04电连接。
示例性的,信号输出模块03可生成而二进制序列作为第一数字信号,直流电源06和偏置器05可形成直流偏置驱动激光发射器02发光,光追踪装置01接收光信号并产生电流,放大器07可实现功率放大,并由滤波器08低通滤波,最后由信号接收模块04解码转化为二进制序列的第二数组信号,如此,可提高光通信系统的鲁棒性。
本申请实施例所提供的光通信系统包括本申请任意实施例所提供的光追踪装置,具备光追踪装置相应的功能模块。
应该理解,可以使用上面所示的多种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的多个步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果,本文在此不进行限制。

Claims (10)

  1. 一种二维光电探测器,包括至少一个第一光感芯片和至少一个第二光感芯片;
    每个第一光感芯片包括多个沿第一方向排列的第一光感单元;每个第二光感芯片包括多个沿第二方向排列的第二光感单元;所述第一方向与所述第二方向相交,且所述第一方向和所述第二方向均平行于所述二维光电探测器的光接收面;
    每个第一光感单元包括第一光电二极管、第二光电二极管和第一挡墙结构;所述第一光电二极管、所述第一挡墙结构和所述第二光电二极管沿所述第一方向依次排列;
    每个第二光感单元包括第三光电二极管、第四光电二极管和第二挡墙结构;所述第三光电二极管、所述第二挡墙结构、所述第四光电二极管沿所述第二方向依次排列。
  2. 根据权利要求1所述的二维光电探测器,其中,所述第一光电二极管的感光区域的面积等于所述第二光电二极管的感光区域的面积;所述第三光电二极管的感光区域的面积等于所述第四光电二极管的感光区域的面积。
  3. 根据权利要求1所述的二维光电探测器,其中,所述每个第一光感芯片包括第一衬底;所述第一衬底包括多个沿所述第一方向排列的第一N阱区;每个第一N阱区内设置有至少一个第一P型掺杂区;所述至少一个第一P型掺杂区沿所述第一方向排列;所述第一光电二极管和所述第二光电二极管分别包括由所述每个第一N阱区内设置的至少一个第一P型掺杂区中的每个第一P型掺杂区与所述每个第一N阱区构成的PN结;
    所述每个第二光感芯片包括第二衬底;所述第二衬底包括多个沿所述第二方向排列的第二N阱区;每个第二N阱区包括至少一个第二P型掺杂区;所述至少一个第二P型掺杂区沿所述第二方向排列;所述第三光电二极管和所述第四光电二极管分别包括由所述每个第二N阱区内设置的至少一个第二P型掺杂区中的每个第二P型掺杂区与所述每个第二N阱区构成的PN结。
  4. 根据权利要求3所述的二维光电探测器,其中,在垂直于所述第一衬底所在平面的方向上,同一第一光感单元中,所述第一挡墙结构与所述第一光电二极管的所有第一P型掺杂区和所述第二光电二极管的所有第一P型掺杂区之间的间隙交叠;
    在垂直于所述第二衬底所在平面的方向上,同一第二光感单元中,所述第二挡墙结构与所述第三光电二极管的所有第二P型掺杂区和所述第四光电二极管的所有第二P型掺杂区之间的间隙交叠。
  5. 根据权利要求3所述的二维光电探测器,其中,所述第一衬底和所述第二衬底均包括硅基衬底。
  6. 根据权利要求1所述的二维光电探测器,其中,所述第一挡墙结构的高度H1的取值范围为10μm≤H1≤14μm;所述第二挡墙结构的高度H2的取值范围为10μm≤H2≤14μm。
  7. 根据权利要求1所述的二维光电探测器,其中,所述第一光电二极管的感光区域沿所述第一方向的长度L1的取值范围为13μm≤L1≤17μm;所述第二光电二极管的感光区域沿所述第一方向的长度L2为13μm≤L2≤17μm;其中,L1=L2;
    所述第三光电二极管的感光区域沿所述第二方向的长度L3的取值范围为13μm≤L3≤17μm;所述第四光电二极管的感光区域沿所述第二方向的长度L4为13μm≤L4≤17μm;其中,L3=L4。
  8. 根据权利要求1所述的二维光电探测器,其中,所述第一挡墙结构和所述第二挡墙结构均包括交错堆叠的金属层和介电层。
  9. 一种光追踪装置,包括权利要求1-8任一项所述的二维光电探测器、光追踪电路和光追踪马达;所述光追踪电路分别与所述二维光电探测器和所述光追踪马达电连接;所述二维光电探测器与所述光追踪马达机械连接;
    所述二维光电探测器的第一光电二极管将接收到的入射光线转化为第一电流,所述二维光电探测器的第二光电二极管将接收到的入射光线转化为第二电流,所述二维光电探测器的第三光电二极管将接收到的入射光线转化为第三电流,所述二维光电探测器的第四光电二极管将接收到的入射光线转化为第四电流;
    所述光追踪电路设置为根据所述第一电流、所述第二电流、所述第三电流和所述第四电流确定所述入射光线与所述二维光电探测器的光接收面的角度值,并根据所述入射光线的角度值输出控制信号至所述光追踪马达;
    所述光追踪马达设置为根据所述控制信号运转,带动所述二维光电探测器旋转,以调整所述入射光线与所述二维光电探测器的光接收面的角度值至预设范围。
  10. 一种光通信系统,包括权利要求9所述的光追踪装置、信号输出模块、激光发射器、信号接收模块;
    所述信号输出模块与所述激光发射器电连接;所述光追踪装置与所述信号接收模块电连接;所述激光发射器与所述光追踪装置光通信连接;
    所述信号输出模块设置为输出第一数字信号至所述激光发射器;所述激光发射器设置为根据所述第一数字信号射出光信号至所述光追踪装置;所述光追踪装置的二维光电探测器设置为接收所述光信号,并将所述光信号转化为模拟信号输出至所述信号接收模块;所述信号接收模块设置为接收所述模拟信号,并将所述模拟信号转化为第二数字信号。
PCT/CN2022/127178 2022-09-08 2022-10-25 二维光电探测器、光追踪装置和光通信系统 WO2024050933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211093089.1A CN115172487A (zh) 2022-09-08 2022-09-08 一种二维光电探测器、光追踪装置和光通信系统
CN202211093089.1 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024050933A1 true WO2024050933A1 (zh) 2024-03-14

Family

ID=83481710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127178 WO2024050933A1 (zh) 2022-09-08 2022-10-25 二维光电探测器、光追踪装置和光通信系统

Country Status (2)

Country Link
CN (1) CN115172487A (zh)
WO (1) WO2024050933A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172487A (zh) * 2022-09-08 2022-10-11 深圳技术大学 一种二维光电探测器、光追踪装置和光通信系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1449130A (zh) * 2003-04-25 2003-10-15 中国科学院上海光学精密机械研究所 多发射光源自动跟踪无线激光通信端机
CN103453877A (zh) * 2013-08-09 2013-12-18 西安交通大学 一种用于光源方向检测的自供电单片集成数字传感器
CN106209237A (zh) * 2016-07-19 2016-12-07 深圳市新岸通讯技术有限公司 光通信自动跟踪系统以及光通信自动跟踪方法
US20200044745A1 (en) * 2017-03-17 2020-02-06 National Institute Of Information And Communications Technology High-speed photodetector array
CN112491470A (zh) * 2020-11-20 2021-03-12 长春光客科技有限公司 利用通信光外围部分实现对准跟踪无线光通信装置及方法
CN115172487A (zh) * 2022-09-08 2022-10-11 深圳技术大学 一种二维光电探测器、光追踪装置和光通信系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1449130A (zh) * 2003-04-25 2003-10-15 中国科学院上海光学精密机械研究所 多发射光源自动跟踪无线激光通信端机
CN103453877A (zh) * 2013-08-09 2013-12-18 西安交通大学 一种用于光源方向检测的自供电单片集成数字传感器
CN106209237A (zh) * 2016-07-19 2016-12-07 深圳市新岸通讯技术有限公司 光通信自动跟踪系统以及光通信自动跟踪方法
US20200044745A1 (en) * 2017-03-17 2020-02-06 National Institute Of Information And Communications Technology High-speed photodetector array
CN112491470A (zh) * 2020-11-20 2021-03-12 长春光客科技有限公司 利用通信光外围部分实现对准跟踪无线光通信装置及方法
CN115172487A (zh) * 2022-09-08 2022-10-11 深圳技术大学 一种二维光电探测器、光追踪装置和光通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LV ZHIJIAN, HE GUI, QIU CHENGFENG, FAN YOUYOU, WANG HONGYI, LIU ZHAOJUN: "CMOS monolithic photodetector with a built-in 2-dimensional light direction sensor for laser diode based underwater wireless optical communications", OPTICS EXPRESS, OPTICAL SOCIETY OF AMERICA, US, vol. 29, no. 11, 24 May 2021 (2021-05-24), US, pages 16197, XP093147333, ISSN: 1094-4087, DOI: 10.1364/OE.425792 *

Also Published As

Publication number Publication date
CN115172487A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US12040415B2 (en) High speed photosensitive devices and associated methods
US10361232B2 (en) Photosensitive imaging devices and associated methods
CN106158895B9 (zh) 三维传感器、系统和相关的方法
US8476681B2 (en) Photosensitive imaging devices and associated methods
KR100723137B1 (ko) 포토다이오드 소자 및 이를 이용한 광센서용 포토다이오드어레이
US9112087B2 (en) Waveguide-based energy converters, and energy conversion cells using same
TW201947754A (zh) 製造影像感測陣列之方法
JP2017022361A (ja) 量子井戸バンド間遷移に基づく光電検出器、光通信システム及び画像形成装置
US20120051378A1 (en) Photodetection
WO2024050933A1 (zh) 二维光电探测器、光追踪装置和光通信系统
US20060108657A1 (en) Photodiode detector
CN116682875A (zh) 倾斜光电探测器单元
US11830954B2 (en) Microstructure enhanced absorption photosensitive devices
US11152528B2 (en) Non-contiguous layouts for photosensitive apparatus
CN217740536U (zh) 一种半导体器件及其封装结构
KR100424366B1 (ko) 이산분포형 확산층을 갖는 포토 다이오드와 제조방법 및이를 이용한 회로기판 및 전자기기
CN104900748B (zh) 一种具有不等光电口径的垂直进光雪崩光电二极管
CN115312630B (zh) 一种具有双漂移区的雪崩光电探测器的制备方法
US7579668B2 (en) Method for photo-detecting and apparatus for the same
KR100567786B1 (ko) 차동형 이종접합 포토트랜지스터
Dutta Prospects of photonic devices for energy generation, communication, and imaging
CN113517307A (zh) 一种级联型光电探测器及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957898

Country of ref document: EP

Kind code of ref document: A1